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Abstract

Background: Phosphorus deficiency is a major limiting factors for affecting crop production globally. To
understand the genetic variation of phosphorus-deficiency-tolerance, a total of 15 seedling traits were evaluated
among 707 Chinese wheat landraces under application of phosphorus (AP) and non-application of phosphorus
(NP). A total of 18,594 single-nucleotide polymorphisms and 38,678 diversity arrays technology sequencing markers
were used to detect marker-trait associations under AP and NP.

Results: Top ten genotypes with extremely tolerance and bottommost ten genotypes with extremely sensitivity were
selected from 707 Chinese wheat landraces for future breeding and genetic analysis. A total of 55 significant markers
(81 marker-trait associations) for 13 traits by both CMLM and SUPER method. These were distributed on chromosomes
1A, 1B, 2A, 2B, 2D, 3A, 4B, 5A, 5B, 6A, 6B, 6D, 7A and 7B. Considering the linkage disequilibrium decay distance, 25 and
12 quantitative trait loci (QTL) were detected under AP and NP, respectively (9 QTL were specific to NP).

Conclusions: The extremely tolerant landraces could be used for breeding phosphorus-deficiency-tolerant cultivars.
The QTL could be useful in wheat breeding through marker-assisted selection. Our findings provide new insight into
the genetic analysis of P-deficiency-tolerance, and will be helpful for breeding P-deficiency-tolerant cultivars.

Keywords: Abiotic stress, Association analysis, Compressed mixed linear model, Genetic variation, Phosphorus-
deficiency tolerance, Triticum aestivum L, Wheat landrace, Seedling stage, QTL, SNP

Background
Phosphorus (P) is an essential macronutrient for plant
growth, and yet it is a major limiting factor for crop pro-
duction globally [1, 2]. Although total P in soil is abun-
dant, it is largely unavailable for uptake by plants.
Phosphorus readily forms complexes with metal cations,
and microorganisms in the soil convert phosphate P into
organic compounds [3–5], thus making P unavailable in
soils. Phosphorus fertilizer is commonly used to overcome

this problem. However, applying large quantities of
fertilizer causes environmental concerns about fertilizers
leaching into water systems, and accelerates the exhaus-
tion of nonrenewable phosphate resources [6, 7]. It has
been estimated that the global P resources will be
exhausted by the end of this century [2, 8]. Thus, it is
important to breed P-deficiency-tolerant varieties for sus-
tainable agriculture.
Wheat (Triticum aestivum L.) is among the earliest

domesticated crop plants, being cultivated 10,000 years
ago in the pre-pottery Neolithic Near East Fertile Cres-
cent [9, 10]. Currently, wheat is the most widely culti-
vated food crop, contributing about a 20% of the calories

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: yuming71@hotmail.com; liuyaxi@sicau.edu.cn
†Yu Lin and Guangdeng Chen contributed equally to this work.
1Triticeae Research Institute, Sichuan Agricultural University, Wenjiang,
Chengdu 611130, China
Full list of author information is available at the end of the article

Lin et al. BMC Plant Biology          (2020) 20:330 
https://doi.org/10.1186/s12870-020-02492-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-020-02492-3&domain=pdf
http://orcid.org/0000-0001-6814-7218
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yuming71@hotmail.com
mailto:liuyaxi@sicau.edu.cn


consumed by humans. P is an important limiting nutri-
ent for wheat growth and development. Wheat yield has
been severely limited by P deficiency globally [11, 12].
Hence, development of P-deficiency-tolerance wheat is
critical. Landrace genotypes are an important resource
for wheat improvement. Chinese wheat landraces have
been shown to be enriched with genes and alleles that
are tolerant or resistant to abiotic and biotic stress [13–
16]. Therefore, screening tolerant genotypes and under-
standing the genetic basis of P-deficiency tolerance in
Chinese wheat landraces could provide important in-
sights for the breeding of tolerant wheat cultivars.
The genetic control of P-deficiency-tolerance traits has

been investigated extensively using linkage mapping of bi-
parental wheat populations. Quantitative trait loci (QTL)
for P-deficiency-tolerance traits have been successfully
identified using this approach [17–20]. An alternative
method, which may have greater potential for improving
P-deficiency tolerance, is to identify the allelic variations
due to divergent selection pressures, within a large genetic
diversity panel. Through genome-wide association studies
(GWAS), such natural allelic variations for P-deficiency-
tolerance have been identified in Arabidopsis [21], Aegi-
lops tauschii [22], soybean [23], but not yet in wheat.
Thus, our objective was to identify such allelic variations
in wheat through GWAS. These findings will provide new
insights for the improvement of P-deficiency tolerance.
Phosphorus nutrition during the early growing stage is

critical for wheat final yield. P deficiency during the early
growing stage causes large reductions in tiller development

and head formation, and plants cannot recover from this,
even if sufficient P is later supplied [24, 25]. Therefore, it is
important to understand the genetic control of P-
deficiency-tolerance during the seedling stage, and to de-
velop P-deficiency-tolerant cultivars. In this study, we first
examined phenotypic variation in 15 P-deficiency-tolerant
traits in a core of 707 wheat landraces at seedling stage. We
then evaluated the P-deficiency-tolerance of these landraces
to identify suitable wheat germplasm for future breeding of
tolerant wheat cultivars. Finally, we performed a GWAS
using 57,272 polymorphism markers to identify marker–
trait associations (MTAs).

Results
Phenotypic variation
To evaluate variation in the phenotypic response to P
deficiency, 707 wheat landraces were grown under both
application of phosphorus (AP) and non-application of
phosphorus (NP). Fifteen traits were evaluated to deter-
mine the effect of P deficiency and their genetic vari-
ation at the seedling stage. There was significant
variation among genotypes for all traits (p < 0.001;
ANOVA; Table 1). The P treatment had highly signifi-
cant effects on all traits (p < 0.001; Table 1). Phosphorus
deficiency had negative effects on almost all traits, ex-
cept for the dry root–shoot ratio (DRS), fresh root–
shoot ratio (FRS), and root diameter (RD). The coeffi-
cients of variation for the traits were 1.22 to 49.09%
under AP, and 1.21 to 48.40% under NP (Table 2).

Table 1 Variance analysis for the tested traits under application of phosphorus (AP) and non-application of phosphorus (NP)

Variables Type III sum of squares Mean Squares F value Significance

Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment

df 706 1 706 1 706 1 706 1

DRS 8.85 9.08 0.012 9.08 3.17 2292.51 *** ***

FRS 52.14 83.31 0.07 83.31 3.97 4478.5 *** ***

RD 2.65 0.47 0.0038 0.47 1.71 212.72 *** ***

RDW 0.12 0.012 0.00016 0.012 6.40 485.66 *** ***

RF 212,855,532.7 133,653,108.3 301,495.1 133,653,108.3 7.33 3247.4 *** ***

RFW 33.06 21.14 0.048 21.14 6.29 2838.74 *** ***

RL 61,471.86 18,706.07 87.07 18,706.07 3.88 834.46 *** ***

RSA 234,356.7 153,275.36 331.95 153,275.36 5.94 2744.28 *** ***

RT 271,319,964.8 56,198,030.7 384,305.9 56,198,030.7 6.44 941.31 *** ***

RV 18.54 10.56 0.03 10.56 5.92 2380.57 *** ***

SDW 0.94 0.77 0.0013 0.77 7.09 4089.51 *** ***

SFW 47.14 165.52 0.068 165.52 3.70 9165.92 *** ***

SL 52,187.5 100,420.59 73.92 100,420.59 3.78 5135.41 *** ***

TL 145,012.95 205,857.11 205.4 205,857.11 3.15 3156.8 *** ***

TRL 21,672,647.14 14,211,126.91 30,697.8 14,211,126.91 4.72 2185.79 *** ***

*** represent significance level of p < 0.001
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The broad-sense heritability (H2) was moderate to
high for all traits except RD. heritability varied from
0.16 for RD to 0.85 for root forks (RF) under AP,
and from 0.15 for RD to 0.77 for root tips (RT)
under NP (Table 2). RD showed low heritability
under both conditions. The Shannon–Weaver diver-
sity index (H′), which shows the diversity of each
trait, was 0.28 to 0.86 under AP and 0.28 to 0.87

under NP; it reflected moderate to high diversity for
the traits, except for RT (Table 2).

Correlation analysis
Under AP, correlation coefficients ranged from 0.018 to
0.976 (Table 3; correlations under AP are shown below
the diagonal). With the exception of DRS, FRS, and RD,
the correlations between all pairs of the 15 traits were

Table 2 Analysis of basic parameters and heritability for the tested traits under application of phosphorus (AP) and non-application
of phosphorus (NP)

Traits Range Mean SD CV (%) Heritability Shannon-Weaver diversity index

AP NP AP NP AP NP AP NP AP NP AP NP

DRS 0.24–0.45 0.32–0.50 0.30 0.40 0.032 0.03 10.67 7.50 0.57 0.56 0.81 0.82

FRS 0.39–0.83 0.59–1.18 0.56 0.84 0.07 0.09 12.50 10.71 0.62 0.62 0.86 0.81

RD 0.35–0.38 0.37–0.40 0.36 0.38 0.0044 0.0046 1.22 1.21 0.16 0.15 0.84 0.78

RDW 0.012–0.044 0.012–0.030 0.022 0.019 0.0048 0.0032 21.82 16.84 0.76 0.70 0.81 0.83

RF 313.74–2975.52 279.25–826.76 764.83 408.98 290.13 82.96 37.93 20.28 0.85 0.56 0.63 0.74

RFW 0.16–0.94 0.16–0.39 0.38 0.24 0.11 0.04 28.95 16.67 0.81 0.57 0.79 0.81

RL 16.19–32.61 13.66–28.69 24.23 20.03 2.77 2.43 11.43 12.13 0.62 0.58 0.86 0.83

RSA 16.24–84.95 15.62–35.31 33.95 21.88 9.00 2.90 26.51 13.25 0.81 0.53 0.74 0.80

RT 234.05–2701.40 148.33–1385.13 528.45 297.12 259.39 143.82 49.09 48.40 0.74 0.77 0.28 0.28

RV 0.15–0.68 0.13–0.35 0.31 0.21 0.075 0.03 24.19 14.29 0.78 0.64 0.79 0.83

SDW 0.043–0.16 0.031–0.079 0.075 0.048 0.017 0.0082 22.67 17.08 0.79 0.74 0.79 0.81

SFW 0.40–1.32 0.24–0.42 0.68 0.29 0.12 0.02 17.65 6.90 0.70 0.37 0.78 0.81

SL 29.90–46.76 21.94–35.66 38.59 28.86 2.65 2.29 6.87 7.93 0.59 0.63 0.85 0.87

TL 50.64–78.13 39.66–58.36 62.82 48.88 4.25 3.16 6.77 6.46 0.56 0.52 0.82 0.81

TRL 151.22–835.66 148.46–279.27 305.43 189.34 84.33 21.81 27.61 11.52 0.78 0.40 0.72 0.80

Table 3 Correlation coefficients among all tested traits under application of phosphorus (AP) and non-application of
phosphorus (NP)

TL RL SL SFW RFW SDW RDW FRS DRS TRL RSA RD RV RT RF

TL 1 .819** .744** .624** .650** .416** .525** .192** .203** .690** .674** −.365** .584** .255** .459**

RL .847** 1 .226** .317** .532** .227** .420** .425** .364** .599** .565** −.397** .462** .282** .270**

SL .849** .438** 1 .690** .484** .442** .403** −.168** −.078* .473** .486** −.156** .453** .104** .463**

SFW .692** .618** .555** 1 .762** .786** .707** −.112** −0.073 .662** .731** −0.038 .742** .309** .706**

RFW .634** .687** .391** .869** 1 .771** .917** .526** .330** .834** .920** −.106** .932** .501** .756**

SDW .656** .610** .503** .962** .903** 1 .827** .165** −.165** .587** .696** 0.065 .761** .469** .650**

RDW .565** .621** .338** .728** .889** .791** 1 .474** .397** .776** .871** −0.062 .899** .536** .761**

FRS .169** .390** −.101** .163** .603** .292** .637** 1 .611** .394** .430** −.134** .428** .285** .214**

DRS −.097** .092* −.256** −.257** .094* −.194** .415** .653** 1 .366** .355** −.209** .306** .128** .233**

TRL .672** .717** .423** .817** .911** .854** .843** .497** .084* 1 .965** −.494** .826** .590** .859**

RSA .645** .703** .392** .851** .965** .889** .879** .556** .097** .976** 1 −.280** .944** .616** .868**

RD −.389** −.347** −.312** −.150** −.087* −.150** −.132** .081* 0.040 −.390** −.200** 1 0.033 −.171** −.286**

RV .572** .639** .332** .830** .962** .868** .864** .593** .114** .888** .966** 0.033 1 .583** .794**

RT .453** .525** .244** .621** .648** .648** .582** .258** −0.043 .796** .765** −.289** .683** 1 .644**

RF .532** .538** .364** .809** .860** .858** .782** .413** −0.018 .931** .924** −.284** .858** .825** 1

Using ‘1’ as diagonal line, the correlation of all tested traits under AP and NP are below and above the diagonal line, respectively;* and ** represent significance
level of P < 0.05 and P < 0.01, respectively
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significantly positive. DRS was significantly negatively
correlated with shoot dry weight (SDW), shoot fresh
weight (SFW), shoot length (SL), and total length of
shoot and root (TL). DRS was significantly positively
correlated with the other traits, and was not significantly
correlated with RD, RF, and RT. FRS was significantly
negatively correlated with SL, and significantly positively
correlated with the other traits. RD was significant posi-
tively correlated with FRS, and significantly negatively
correlated with the other traits, except for DRS and root
volume (RV).
Under NP, the correlation coefficients ranged from

0.033 to 0.965 (Table 3; correlations under NP are
shown above the diagonal). With the exception of
DRS, FRS, and RD, all pairs traits were significantly
positively correlated. DRS was significantly negatively
correlated with RD, SDW, and SL, and significantly
positively correlated with the others except for SFW.
FRS was significantly negatively correlated with RD,
SFW, and SL, and significantly positively correlated
with the others. RD was significantly negatively corre-
lated with all traits except root dry weight (RDW),
RV, SDW, and SFW.
Under both AP and NP, root surface area (RSA) and

total root length (TRL) had the highest correlations.
With the exception of DRS, FRS, and RD, all pairs of
correlations were significantly positive. Among the six
root morphological traits (RF, root length (RL), RSA,
RT, RV, and TRL), the correlations were moderately to
highly positive. The other root morphological trait, RD,
was negatively correlated with RF, RL, RSA, RT, and
TRL under both conditions.

Principal component (PC) analysis
The PC analysis were performed using the relative trait
values. The cumulative amount of phenotypic variation
explained (PVE) by the first three PCs was 82.98%
(Table 4). PC1 explained 57.84% of the phenotypic vari-
ation. With the exception of DRS, FRS, and RD, all of
the other traits were important factors within the char-
acteristic vector of PC1. PC1 represented plant biomass
and root architecture, and can thus be defined as the
biomass and root factor. PC2 (eigenvalue 2.53) explained
16.84% of the phenotypic variation. DRS and FRS, which
influence P absorption in shoots and roots under P-
deficiency, were important factors within the character-
istic vector of PC2. PC2 can thus be defined as the root–
shoot ratio factor. The relative values of TL, SL, SFW,
SDW, and RT for PC2 were negative, indicating that an
increase in the root–shoot ratio will reduce TL, SL,
SFW, SDW, and RT. PC3 (eigenvalue 1.24), for which
RD was the only important factor, explained 8.29% of
the phenotypic variation. The relative values of TL, RL,
SL, FRS, DRS, TRL, and RT were negative for PC3,

indicating that an increase in RD will correspond to a re-
duction in TL, RL, SL, FRS, DRS, TRL, and RT.

Screening for wheat tolerant genotypes
Using a weighting method [26], the synthesis value (S
value) was calculated to evaluate wheat tolerance to P
deficiency, and the P-deficiency tolerance index (PDTI)
for each trait was calculated. The accessions with ex-
tremely high or low S values are listed in Additional file 1:
Table S1. A high S value indicates high tolerance. The
wheat landraces were classified into three groups, ran-
ging from − 2.16 (accession AS661384) to 2.52 (acces-
sion AS661809) (Fig. 1). There were 173 accessions in
the first group (S ≥ 0.5; classified as high tolerance).
Group 2 (− 0.5 ≤ S < 0.5; intermediate tolerance) in-
cluded 353 accessions. The remaining accessions (S <
0.5) were classified as sensitive. Accessions with higher S
values also had higher PDTI (Additional file 1: Table
S1). This indicates that both of these indicators are ef-
fective for screening wheat landraces under P-deficiency.

Molecular markers and population structure
After excluding markers with missing data > 20% and
minor allele frequency (MAF) < 0.05, 57,272 polymorph-
ism markers were retained. Based on the ‘Chinese
Spring’ physical map v1.0, 21,503 were mapped on A
genome, 25,365 were mapped on B genome, and 10,404
markers were mapped D genomes.
Based on the delta-K model [27], using K = 5 had the

highest delta-K value. The landraces were divided into

Table 4 Principal component analysis (PCA) of all tested traits

Trait PC1 PC2 PC3

Characteristic vector DRS 0.06 0.90 −0.15

FRS 0.09 0.89 −0.09

RD −0.45 0.01 0.75

RDW 0.80 0.39 0.08

RF 0.91 0.09 0.10

RFW 0.92 0.23 0.21

RL 0.78 0.00 −0.28

RSA 0.96 0.20 0.11

RT 0.54 −0.18 −0.44

RV 0.90 0.23 0.3

SDW 0.78 −0.44 0.22

SFW 0.86 −0.31 0.29

SL 0.73 −0.44 −0.15

TL 0.86 −0.27 −0.25

TRL 0.93 0.14 −0.02

Eigenvalues 8.68 2.53 1.24

Contribution% 57.84 16.84 8.29

Cumulative contribution% 57.84 74.69 82.98
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five subgroups, of 207, 185, 128, 105, and 82 landraces,
respectively. Subgroup 1 comprised all of the landraces
from the Xinjiang Winter-Spring Wheat Zone and
mainly the landraces from the Northern Winter Wheat
Zone and the Yellow and Huai River Valleys Facultative.
Subgroup 2 comprised mainly the landraces from the
Middle and Low Yangtze Valleys Autumn-Sown Spring
Wheat Zone and the Southern Autumn-Sown Spring
Wheat Zone. Subgroup 3 comprised mainly the land-
races from the Southwestern Autumn-Sown Spring
Wheat Zone, and some landraces from the Yellow and
Huai River Valleys Facultative Wheat Zone and the Mid-
dle and Low Yangtze Valleys Autumn-Sown Spring
Wheat Zone. Subgroup 4 mainly included the landraces
from the Qinghai-Tibetan Plateau Spring-Winter Wheat
Zone and some landraces from the Southwestern
Autumn-Sown Spring Wheat Zone, the Northern Spring
Wheat Zone, and the Northwestern Spring Wheat Zone.
Subgroup 5 was a mixed group, comprising most of the
landraces from the Northeastern Spring Wheat Zone,
and from parts of other wheat zones.

Significant loci for seedling traits under AP and NP
Using compressed mixed linear model (CMLM) by TAS-
SEL, a total of 57,272 markers were used to performed a
GWAS to detected significant markers for 15 traits
under AP and NP. The Bonferroni-corrected threshold
(−log10

(p) ≥ 4.76, α = 1) was applied to identify significant
markers. Under AP, 61 significant markers, representing
82 MTAs, were detected for 13 traits (PVE: 2.60 to
4.94%) (Additional file 2: Fig. S1 and Additional file 3:
Table S2). These 61 significant markers were distributed
on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 4A, 4B, 5A,
5B, 5D, 6A, 6B, 6D, 7A and 7B. Under NP, 22 significant
markers (34 MTAs) were detected for 10 traits (PVE
2.66 to 5.40%) (Additional file 2: Fig. S1 and Additional

file 3: Table S2). These 22 markers were distributed on
chromosomes 2D, 3A, 3D, 4B, 5B, 6A, 6B, 7A and 7B.
A GWAS was also performed using settlement of

mixed linear model under progressively exclusive rela-
tionship (SUPER) method in genome association and
prediction integrated tool (GAPIT) to verify the results
of TASSEL. Compared the results from TASSEL, a total
of 55 significant markers (81 MTAs) identified by TAS-
SEL were confirmed by SUPER method in GAPIT.
These 55 significant markers were used for further ana-
lysis. Based on the linkage disequilibrium decay distance,
we considered significant markers within a 5.98Mb re-
gion to constitute a single QTL [28]. According to this,
25 QTL were detected under AP, 12 under NP, and 3
under both. Thus, 9 QTL were specific to NP.
Under AP, we identified 25 QTL for 12 traits, distrib-

uted on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 4B, 5A,
5B, 6A, 6D, 7A and 7B (Additional file 3: Table S2). For
RT, root fresh weight (RFW), DRS, RF, RSA, SDW, TRL,
SL, RDW, RL, RV, and TL, 7, 6, 5, 5, 3, 3, 3, 2, 1, 1, 1,
and 1 QTL were identified, respectively. Under NP, we
identified 12 QTL for 10 traits, distributed on chromo-
somes 1A, 1B, 2A, 2B, 2D, 3A, 4B, 5A, 5B, 6A, 6D, 7A
and 7B (Additional file 3: Table S2). For RT, RV, SDW,
RDW, RF, RFW, RSA, SFW, SL, TRL, we identified 6, 2,
2, 1, 1, 1, 1, 1, 1 and 1 QTL, respectively.
Three QTL, QTL-2D-3, QTL-4B-2 and QTL-7A-1

were identified under both conditions (Additional file 3:
Table S2). These three QTL, located on chromosomes
2D, 4B and 7A, were stably expressed under both condi-
tions. Thus, nine QTL were specific to NP conditions.
This indicates that these QTL occurred exclusively
under P-deficiency stress.
Pleiotropy was revealed by GWAS. Seven QTL were

identified for multiple traits. QTL-2D-3 was associated
with six traits (RDW, RF, RFW, RSA, RV, and TRL)
under NP, and with RF under AP. QTL-4B-2 was

Fig. 1 Distribution histograph and box plots for S value
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associated with six traits, including RF, RFW, RSA, RT,
SDW, TRL under AP, and with RT under NP. This find-
ing is supported by Pearson’s correlation analysis, with
the correlation coefficients among these six traits ran-
ging from 0.578 (between SDW and TRL) to 0.976 (be-
tween RSA and TRL).

Discussion
As an important plant organ for P uptake and
utilization, the root system has been used in screening
P-deficiency-tolerant wheat genotypes [29]. The seedling
stage often determines the traits of the mature stage,
and the traits of the two stages are closely related. The
QTL associated with N-absorption rate detected in a
field experiment, and those associated with seedling
character in greenhouse hydroponic culture, were co-
located [30]. Further, the QTL of root hair on Chr. 2A
and 6A were also associated with yield-related traits
[31]. These results indicate that nutrient absorption and
utilization during the seedling stage can affect the
phenotype in the mature stage. The traits showed signifi-
cant variation in their responses to P deficiency. Most
showed moderate to high heritability (Table 2), revealing
their potential for analysis in our next GWAS. Most of
the traits were significantly correlated, and the six root
traits were moderately to highly correlated. High correla-
tions between wheat-root seedling traits have also been
reported in previous studies [32–35]. Those studies re-
vealed that seedling root traits are inherited together,
and that it is difficult to independently select for one of
these traits.
Here, the first three PCs explained more than 80%

phenotypic variation and included all tested traits (Table
4). The first PC mostly reflected the contribution of 12
traits (with the exception of DRS, FRS and RD). The sec-
ond and third PCs reflected the contributions of root–
shoot ratio and RD, respectively. We found that increas-
ing root–shoot ratio led to reduction in aboveground
biomass. DRS, FRS, and RD were higher under NP than
under AP, whereas the other traits were lower under
NP. Increases in the root–shoot ratio in response to
stress have been reported previously [28, 36]. Plants can
increase their root–shoot ratio to promote P uptake and
utilization in response to low-P stress [37]. ‘Chinese
Spring’ was identified as sensitive to P deficiency (S = −
1.16), consistent with previous studies [19, 26, 38]. It in-
dicated that using S value was a reliable method to
screen wheat tolerant genotypes. Finally, ten extremely
sensitive and ten extremely tolerant landraces were se-
lected for further genetic analysis and for breeding toler-
ant cultivars (Additional file 1: Table S1).
The SUPER method is a power GWAS for identifying

QTL as it extracts a small subset of single-nucleotide
polymorphisms (SNPs) and use them in FaST-LMM

[39]. This method can retain the computational advan-
tages of FaST-LMM and increase statistical power [39].
A total of 81 of 116 (69.83%) MTAs by CMLM were
confirmed by SUPER method. Comparing with CMLM,
the number of MTAs identified using SUPER were
greatly increased (Additional file 2: Fig. S1). However,
quantile-quantile (Q-Q) plots from different algorithms
revealed that CMLM was fitted better than SUPER
(Additional file 2: Fig. S1). Previous studies revealed the
similar results [40, 41].
Pleiotropy was identified in seven QTL. QTL for dif-

ferent highly correlated traits may be located in the same
chromosomal regions [42]. We found that all traits ex-
cept DRS, FRS, and RD, were significantly positively cor-
related under both conditions. The six root
morphological traits were moderately to highly corre-
lated (Table 2). Pleiotropy has been observed in previous
studies [19, 32, 33, 43]. QTL-2D-3, located on Chr. 2D
at 186.65Mb, was associated with RDW, RF, RFW, RT,
TRL, RSA, and RV under NP, and with RF under AP. In
a previous study, QTL associated with P-use efficiency
were identified on Chr. 2D [44]. We found that QTL-
7A-1, located on Chr. 7A at 52.03Mb, was associated
with RT and RFW under AP, and with RT under NP.
This indicates that QTL-7A-1 may regulate and control
RT under both AP and NP, and root development under
AP. Previous studies have found that Chr. 7A may play
important roles in response to P deficiency [44, 45].

Conclusions
We evaluated 15 traits in 707 Chinese wheat landraces,
under application of P or non-application of P. Ten ex-
tremely tolerant and ten extremely sensitive accessions
were selected as germplasm materials for further study.
In total, 25 and 12 QTL were identified under AP and
NP, respectively, while nine of 12 were specific to NP. In
total, seven QTL showed pleiotropy, and several QTL
had been previously identified. Our findings provide new
insight into the genetic analysis of P-deficiency-
tolerance, and will be helpful for breeding P-deficiency-
tolerant cultivars.

Methods
Plant Germplasm
The 707 accessions used in this study were from a core col-
lection of wheat landraces [46] originating from ten agro-
ecological zones in China (Additional file 4: Table S3).

Glasshouse experiments and phenotypic data collection
All landraces were grown hydroponically in a greenhouse
at the Triticeae Research Institute, Sichuan Agricultural
University. A completely randomized design, each with
three replications, was used in this study. The greenhouse
environment, hydroponic system, and phenotypic date
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collection were as previously described [26, 47, 48]. Briefly,
the AP and NP treatments contained the modified from
Hoagland’s nutrient solution [26, 47–49] with and without
NH4H2PO4 (1mmol/L), respectively. Two sets of seed-
lings were grown for 3 day under AP, and were then
grown for 12 day under AP and NP, respectively. Solutions
were replaced every 4 day. After 12 day of growth, pheno-
typic data of all traits were gathered as our previous de-
scribed method [28].

Phenotypic data analysis
To eliminate environmental effects, the best linear
unbiased prediction (BLUP) values across three repeti-
tions were conducted using the MIXED procedure in
SAS [50]. The BLUP values for each trait were used
to determine descriptive statistics, for ANOVA test-
ing, and to obtain the H′ and Pearson correlation co-
efficients, using IBM SPSS Statistics for Windows
20.0 (IBM Corp., Chicago, IL, USA). The H2 was cal-
culated using the formula H2 = VG/(VG + VE/r), where
VG is the genotypic variance, VE is the environment
variance, and r is the number of replications [51]. To
screen for P-deficiency-tolerance, we used a weighting
method to acquire the S value of each landrace geno-
type. The S value was calculated using the following

S ¼ Pk
i¼1riYi=

Pk
i¼1ri [26].

Genotyping and population structure analyses
Genomic DNA was extracted using the CTAB
method. Genotyping-by-sequencing libraries (96-plex)
were constructed via the two-enzyme method [52],
and sequenced on the Illumina HiSeq 2500 system.
SNP calling was done using the Tassel pipeline [53].
The physical distances of SNP were based on the
Chinese Spring reference sequence v1.0 [54]. SNPs
without physical distances were removed. The link-
age disequilibrium K-number neighbor imputation
method was used for imputation accuracies [55]. Fi-
nally, 18,594 SNPs were retained with missing data
≤20% and MAF ≥ 0.05. Besides, 38,678 DArT-seq
markers from our previous study were also used for
GWAS [46].
Population structure was evaluated using STRUCTUR

E 2.3.4, implementing model-based Bayesian cluster ana-
lysis [56]. Based on the admixture model, population
genetic clusters of K = 1 to K = 10 were estimated with
10,000 replicates for burn-in and 10,000 replicates for
MCMC. Five runs were set for each K. The optimal K
value was determined using STRUCTURE HARVESTER
[57] implementing the Evanno method [27]. The optimal
alignment of the five repeated runs was determined
using CLUMPP [58].

GWAS
In total, 57,272 markers (18,594 SNP and 38,678 DArT-
seq markers) were used to perform GWAS, using TAS-
SEL 5.2.60 [59]. A compressed mixed liner model were
used to detect marker–trait associations [60, 61] with
the Q matrix and kinship matrix as covariates by TAS-
SEL v5.2.60. Furthermore, the significant markers identi-
fied from TASSEL v5.2.60 were confirmed using SUPER
method [39] in GAPIT [62] implemented in the R 3.6.3
[63]. Significant markers for traits identified by both
TASSEL and GAPIT were used for further analysis.
Based on the Bonferroni-corrected p-value threshold
α = 1 [62–64], the threshold value of significant markers
was set as -log10(p) = 4.76. Manhattan and Q-Q plots of
GWAS results were drawn using R 3.6.3 [63] as our pre-
vious studies [28, 46].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-020-02492-3.

Additional file 1: Table S1. Top ten genotypes with extremely
tolerance and bottommost ten genotypes with extremely sensitivity
selected from 707 Chinese wheat landraces based on phosphorus
deficiency tolerance index (PDTI) and synthesis value (S value).

Additional file 2: Fig. S1. Manhattan plots and quantile-quantile (Q-Q)
plots for 15 seedling traits under application of phosphorus (AP) and
non-application of phosphorus (NP).

Additional file 3: Table S2. List of the significant markers for all
seedling traits in two conditions by TASSEL and GAPIT. Different QTL are
distinguished by yellow and green color.

Additional file 4: Table S3. Information of the 707 wheat accessions
assessed in the present study.
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