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Abstract

Background: Mitogen-activated protein kinase kinase kinases (MAPKKKSs) are significant components in the MAPK
signal pathway and play essential roles in regulating plants against drought stress. To explore MAPKKK gene family
functioning in cotton response and resistance to drought stress, we conducted a systematic analysis of GhMAPKKKS.

Results: In this study, 157 nonredundant GhMAPKKKs (including 87 RAFs, 46 MEKKs and 24 ZIKs) were identified in
cotton (Gossypium hirsutum). These GhMAPKKK genes are unevenly distributed on 26 chromosomes, and segmental
duplication is the major way for the enlargement of MAPKKK family. Furthermore, members within the same
subfamily share a similar gene structure and motif composition. A lot of cis-elements relevant to plant growth and
response to stresses are distributed in promoter regions of GhMAPKKKs. Additionally, these GhMAPKKKs show
differential expression patterns in cotton tissues. The transcription levels of most genes were markedly altered in
cotton under heat, cold and PEG treatments, while the expressions of some GhMAPKKKs were induced in cotton
under drought stress. Among these drought-induced genes, we selected GhRAF4 and GhMEKK12 for further
functional characterization by virus-induced gene silencing (VIGS) method. The experimental results indicated that
the gene-silenced cotton displayed decreased tolerance to drought stress. Malondialdehyde (MDA) content was
higher, but proline accumulation, relative leaf water content and activities of superoxide dismutase (SOD) and
peroxidase (POD) were lower in the gene-silenced cotton, compared with those in the controls, under drought
stress.

Conclusion: Collectively, a systematic survey of gene structure, chromosomal location, motif composition and
evolutionary relationship of MAPKKKs were performed in upland cotton (Gossypium hirsutum). The following
expression and functional study showed that some of them take important parts in cotton drought tolerance. Thus,
the data presented here may provide a foundation for further investigating the roles of GhMAPKKKs in cotton
response and resistance to drought stress.
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Background

Cotton is an important crop that produces excellent nat-
ural fibers extensively used in textile industry around the
world [1]. Hence, cotton has been cultivated on a large
scale worldwide. Upland cotton (Gossypium hirsutum) is
an allotetraploid species (AD1, 2n =4X=52), and con-
tributes about 90% vyield of cotton fibers in the world
[2]. According to reports, 57% of cotton worldwide is
cultivated in water-deficit areas (World Resources Insti-
tute, http://www.wri.org/). Drought stress severely af-
fected cotton production and quality [3]. Therefore, it is
important to improve the water-use efficiency of cotton
and to generate drought-tolerant cultivars by genetic
engineering.

Mitogen-activated protein kinase (MAPK) signal cas-
cades that are highly conserved in eukaryotes are widely
involved in plant growth and defense against abiotic
stresses [4, 5]. Plants sense environmental stimuli and
transmit extracellular signals into intracellular through
typical mechanisms and cause a series of responses [6].
MAPK signal cascade acts as a comprehensive signal
transduction module to activate plant response to envir-
onmental stimuli. First, upstream signals activate
mitogen-activated  protein  kinase kinase kinase
(MAPKKK) by phosphorylating them, and then the
phosphorylated MAPKKK further phosphorylates
mitogen-activated protein kinase kinase (MAPKK) at Ser
and Thr residues. Finally, the activated MAPKK further
phosphorylates MAPK at Thr residue. Thus, the signal is
gradually amplified and relayed to downstream compo-
nents. The phosphorylated MAPKs can regulate down-
stream genes through phosphorylating the related
enzymes, transcription factors and other signal compo-
nents. In plants, MAPK signal cascades have important
functions in abiotic stress responses such as drought,
high salinity and reactive oxygen species [7]. To date,
many MAPK signal cascades have been identified in
plants. Arabidopsis MEKK1-MKK4/5-MPK3/6 signal
pathway is the first found MAPK cascade in plant, which
is related to plant innate immunity [4]. Besides, NPK1-
MEKI1-Ntf6 cascade participates in plant response to to-
bacco mosaic virus infection [8]. Under drought stress,
cotton GEMAP3K15 phosphorylates GhMKK4, then the
phosphorylated ~GhMKK4  further  phosphorylates
GhMPKB6, and at last the phosphorylated GEMPK6 phos-
phorylates GhWRKY59. Then, the phosphorylated
GhWRKY59 interacts with the W-box cis-element in the
promoter of GEDREB2 to activate its expression. The
above genes/proteins constitute a regulatory module that
takes part in cotton drought response [9].

MAPKKKs are significant constituent parts of MAPK
signal pathway [10]. It has been reported that a rice Raf
MAPKKK gene (DSM]I) is involved in increasing plant
drought tolerance [11]. Overexpression of tobacco NPKI
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in maize strengthens drought resistance [12]. In Arabi-
dopsis, overexpressing MAPKKKI8 enhances drought
tolerance of the transgenic plants [13]. These results in-
dicate MAPKKKs play crucial roles in plant response
and defense against drought stress.

MAPKKKs compose a large gene family in plants. It
has been reported that there are 80 putative
MAPKKKs in Arabidopsis, 78 in rice, 155 in wheat,
74 in maize, 59 in cucumber, and 89 in tomato [14—
18]. Up to now, however, the information of
MAPKKK family is still unclear in upland cotton. At
the same time, the recent release of the completed
genome sequence and annotation of the latest version
of upland cotton provides us a chance to more accur-
ately identify and characterize MAPKKK gene family
in the allotetraploid cotton genome [19]. In this
study, we identified 157 putative GhHMAPKKKs by
genome-wide scanning in upland cotton. We analyzed
their evolutionary relationship, chromosomal distribu-
tion, gene structure and motif composition, and de-
tected the transcriptional levels of these genes under
normal condition and different abiotic stresses. More-
over, we further investigated the function of the se-
lected MAPKKKs in cotton defense against drought
stress by using virus-induced gene silencing (VIGS)
technology.

Results

Identification of MAPKKKs in cotton

To identify MAPKKKs in cotton, the 80 Arabidopsis
MAPKKK protein sequences were used as query to carry
out a blast search against cotton (Gossypium hirsutum)
genome database (https://www.cottongen.org). The pro-
tein sequences of putative GhMAPKKKs were subjected
to SMART and Pfam tools for testing the presence of
kinase domain. Each of the identified 157 GhMAPKKKs
contains a conserved kinase domain, and the
GhMAPKKK proteins vary from 294 to 1433 amino
acids in length. The molecular weight of GhMAPKKKs
varies 33.51 to 157.75 KDa and the isoelectric point (pl)
of GhMAPKKKs varies from 4.4 to 9.68. Bioinformatics
analysis predicted that 25 GhMAPKKK proteins may be
located in the chloroplast, 35 proteins in the cytoplasm,
12 proteins in the mitochondria, 82 proteins in the nu-
cleus, 2 proteins in the plastid and 1 protein in the vacu-
ole. All the characteristics and chromosome location of
the identified GEMAPKKKs are shown in Additional file 1
Table S1.

We analyzed the evolutionary relationship of
GhMAPKKKs by constructing a phylogenetic tree ac-
cording to the multiple sequence alignment of 157
GhMAPKKK protein sequences and 80 Arabidopsis
MAPKKK protein sequences. Based on phylogenetic
analysis, we found that cotton MAPKKK family can be
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divided into RAF, MEKK and ZIK groups, similar to
those Arabidopsis MAPKKKs (Fig. 1). The RAF group
contains 87 members, MEKK group includes 46 members,
and ZIK group has 24 members in cotton (Additional file
1 Fig. S1). They were designated as GhRAFI — GhRAFS87,
GhMEKKI — GhMEKK45, and GhZIKl — GhZIK23 in
terms of their exact positions on cotton (G. hirsutum)
chromosomes 1-26 (Additional file 1 Table S1). Addition-
ally, predictive analytics of subcellular localization showed
that most cotton RAFs are located in the nucleus and
cytoplasm, and ZIKs and MEKKs are often distributed in
the nucleus (Additional file 1 Table S1). Furthermore, the
GhMAPKKKs display an interspersed spread in most
clades, indicating the GEMAPKKK gene family expanded
before the divergence of the lineages. We also observed
that a lot of Arabidopsis MAPKKKs have two or more
paralogous genes in cotton, indicating that GZMAPKKKs
are duplicated after divergent evolution of cotton and
Arabidopsis.

Chromosomal location and gene duplication of
GhMAPKKKs

To determine the location of GEMAPKKKs on chromo-
somes, the information about the chromosomal location
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was obtained through BLASTN searches from cotton
genome database. As shown in Figs. 2, 155 GEMAPKKKs
were unevenly distributed on different chromosomes,
but the remaining two genes were unmapped on chro-
mosomes. Furthermore, cotton genome includes A-
subgenome and D-subgenome that contain 80 and 77
GhMAPKKKs, respectively, and the duplication events
may illuminate the mechanism about the expansion of
GhMAPKKK gene family. Therefore, we detected the
gene pairs in GEIMAPKKK family. A total of 115 gene
pairs were detected in GEMAPKKK gene family, and
some genes repeatedly participate in gene duplication
events (Fig. 2). In these gene pairs, 112 pairs are distrib-
uted on diverse chromosomes, suggesting that segmental
duplication is the primary expansion model of cotton
MAPKKK gene family. On the contrary, a few paralo-
gous genes are located on the same chromosomes, indi-
cating tandem duplication also contributes to the
expansion of GhMAPKKK family.

Upland cotton (G. hirsutum) is an allotetraploid spe-
cies, which is formed by hybridization of diploid A gen-
ome species (G. arboreum) and D genome species (G.
raimondii) [20]. Therefore, we investigated the ortholo-
gous genes of GEMAPKKKs in its ancestral diploid A

Fig. 1 Phylogenetic relationship of GRMAPKKKs with Arabidopsis MAPKKKs. The unrooted phylogenetic tree was constructed using MEGA 6.0 by
Neighbor-Joining method and the bootstrap test was performed with 1000 iterations. The three subfamilies are indicated with different colors
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Fig. 2 Chromosomal distribution and gene duplication of MAPKK genes in cotton (Gossypium hirsutum). The scale is in megabases (Mb), the value
on each chromosome represents chromosome length, the gene positions are indicated at each chromosome using black line, and the
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genome species (G. arboreum) and D genome species
(G. raimondii). We identified 77 and 76 orthologous
gene pairs within the At and Dt subgenomes, respect-
ively, of upland cotton and their corresponding genomes
of ancestral A and D diploid cotton species (Additional
file 1 Table S2). Moreover, we found that GZRAF37 in A
subgenome have no ortholog in G. arboretum, and
GhRAF65, GhRAF80 and GhMEKK30 in D subgenome
have no orthologs in G. raimondii, suggesting that these
genes may be generated after a polyploidization event in
Gossypium.

Gene structures and conserved protein motifs of cotton
MAPKKKs

The conserved motif of MAPKKK proteins was investi-
gated using MEME program. As shown in Fig. 3,
GhMAPKKK proteins possess 10 motifs. Then these
motifs were subjected to SMART online server to anno-
tate, and the results showed that motif 1-9 belong to
the Pkinase domain (PF07714). Furthermore, most

GhMAPKKK proteins share similar motif composition.
On the other hand, we also found some GhMAPKKK
proteins have different motif composition. For instance,
GhRAF83 lacks motif 8 and 9, while GhRAF4/31/36/50/
77 lack motif 8 in Pkinase domain. Only GhZIK proteins
have motif 10 which belong to Oxidative-stress-
responsive kinase 1 C-terminal domain (PF12202), im-
plying the motif 10 may be related to specific function of
the ZIK group.

The exon/intron distribution of GEMAPKKKs was in-
vestigated by using GSDS tool (http://gsds.cbi.pku.edu.
cn/). We found that most GEMAPKKKs possess multiple
exons and introns, while 19 GEMEKK genes contain no
intron in their coding regions. To explore if the gene
structure of GEMAPKKKSs is in agreement with the evo-
lutionary relationship, we conducted a phylogenetic ana-
lysis of GhMAPKKK protein sequences. As expected, we
found there is semblable exon/intron distribution pat-
tern between genes with close evolutionary relationship
(Fig. 3).
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Fig. 3 Phylogenetic analysis, conserved motifs and gene structure of MAPKKK family in cotton (Gossypium hirsutum). a The phylogenetic tree of

all MAPKKKs in cotton. b The conserved protein motifs were identified in cotton MAPKKK family. Each motif is indicated with a specific color. ¢
The exon/intron organization of cotton MAPKKK genes. Yellow boxes represent exons and black lines indicate introns
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Cis-elements existed in promoter regions of GhMAPKKKs
We analyzed promoter regions of GhMAPKKKs to
understand their roles in more depth. The 2kb se-
quences upstream from the transcription start site were
extracted from cotton genome database and were sub-
mitted to PLACE database to investigate their cis-
elements distribution. Many cis-elements involved in
plant development and in response to environmental
stresses were observed in the GHIMAPKKK promoters
(Additional file 1 Table. S3). Out of the 157
GhMAPKKKs, 97 have ABREs (ABA-responsive ele-
ments), and 22 contain DREs (dehydration responsive el-
ements) in their promoter regions. Each of these 97
genes has an average of 4 ABREs, while each of the 22
genes only contains one DRE in the promoter region
(Additional file 1 Fig. S2). The above results imply that
GhMAPKKKs may play significant roles in plant re-
sponse to drought stress.

Expression patterns of GWMAPKKKSs in cotton tissues
To further understand the functions of GhMAPKKKs,
their transcription patterns in cotton tissues were
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determined by analyzing cotton transcriptome data. As
shown in Fig. 4, GhMAPKKKs display different expres-
sion patterns among various organs and tissues. Further-
more, some GhMAPKKKs are highly expressed in a
specific tissue of cotton. For instance, the transcripts of
GhRAF5/25/36/72/78/81 are accumulated mainly in sta-
men, suggesting these genes may be necessary for sta-
men growth and development. On the other hand, some
GhMAPKKKs have higher accumulation of transcripts in
some vegetative organs. For instance, higher expression
levels of GhRAF32/78 and GhZIK7/18 were detected in
roots, while GKMEKK17/25/44 and GhZIK23 showed
strong expression in leaves. The above results suggest
GhMAPKKKs may participate in cotton growth and
developments.

Expression profiles of GAMAPKKKs in cotton under
different abiotic stresses

To investigate whether GhMAPKKKs are stress-
responsive regulatory proteins, we detected the expres-
sions patterns of GEMAPKKKs in cotton leaves under
various abiotic stresses. As shown in Fig. 5, the
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pheatmap package was used for the generation of heatmaps

Fig. 4 Expression patterns of GAMAPKKKs in cotton tissues. The transcriptomic data related to tissue expression were accessed from NCBI and the
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expression of most GEMAPKKKs was induced in cotton
leaves by abiotic stress. Additionally, more GEMAPKKKs
were significantly induced in leaves under osmotic stress
(PEG treatment) and high salinity stress than those
under hot and cold stresses. It should be noticed that
the expression of osmotic-induced GhMAPKKKs are
also increased in cotton leaves under high salinity stress
upon most occasions. For example, GhRAF2, GhRAF4,
GhRAF48, GhRAF50 and GhZIKS8 are significantly in-
duced in cotton under PEG and salt treatments for 12 h.
Additionally, some GhMAPKKKs are also induced in
cotton under cold and hot treatments. For instance, the
expression of GhRAF3, GhRAF49 and GhMEKK38 is in-
creased in cotton under cold treatment for 12 h, while
the transcripts of GhRAF7 and GhMEKK4S5 are in-
creased in cotton under hot treatment for 6 h.
MAPKKKSs have been reported to take part in plant re-
sistance to drought. For example, overexpression of to-
bacco NPKI in maize increased the ability of the
transgenic plants to defense drought stress [11]. To illu-
minate the possible functions of GEMAPKKKs in cotton
resistance to drought, the transcription patterns of

GhMAPKKKs in cotton under drought stress were deter-
mined by analyzing our previous transcriptome data,
which was performed with the leaves of a drought-
resistant cotton cultivar J-13 under drought treatment
for 0, 2, 4, 6 and 8 days, respectively [21]. Expression of
most GhMAPKKKs was induced in cotton leaves by
drought treatment. However, the transcription levels of
GhRAFI18, GhRAF50, GhRAF69 and GhMEKK39 were
decreased in cotton leaves under drought stress. Further-
more, the expression of GKMEKK12, GhMEKK3I and
GhMEKK36 was continuously induced in cotton under
drought stress, while the transcriptional levels of some
GhMAPKKKs were increased just in one or two drought
periods (Fig. 6). Furthermore, we found some
GhMAPKKKs contain DRE elements in their promoter
regions (Additional file 1 Figure S2), and paid attention
to the expression of these genes. However, only expres-
sion of GhRAF4 and GhEMEKKI2 was strongly induced
in cotton by drought stress (Fig. 6).

To confirm the results of transcriptome data, we fur-
ther detected the transcript abundance of GhMAPKKKs
in cotton seedlings under drought treatment by
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and visualization was performed using the pheatmap package

Fig. 6 Expression patterns of GAMAPKKKs in cotton under drought stress. Drought stress related transcriptomic data were obtained from our lab,
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quantitative RT-PCR analysis. As shown in Fig. 7, the
most genes examined were increased in cotton seedlings
after drought treatment for 2—8 days, consistent with the
transcriptome data. Under drought stress, many genes
exhibited similar expression patterns. For instance, the
transcripts of GhMEKK40, GhRAFS, GhRAF2I and
GhRAF78 were largely accumulated in cotton seedlings
under 2—4 days drought, but their expression levels were
decreased in cotton after the subsequent 6-8days
drought. The expressions of GEMEKK10, GhMEKK24,
GhMEKK36 and GhRAF4 were increased gradually in
cotton under drought stress, reaching the peak value at
8th day. The above results suggest that GEMAPKKKs
may be involved in cotton response and resistance to
drought stress.

Silencing GhRAF4 and GhMEKK12 compromises cotton
resistance to drought stress

Based on transcriptional levels of GEMAPKKKs in cot-
ton under drought stress, we inferred that some
GhMAPKKKs may take part in cotton response to

drought stress. So, we employed VIGS technology to
study the function of GAMAPKKKs in cotton under
drought stress. As the transcription levels of GhRAF4
and GhMEKKI2 are remarkably enhanced in cotton
under drought treatment (Fig. 7), we selected the two
genes for the VIGS experiments. After infection for 10
days, the plants with TRV2:GhCLA displayed the albino
phenotype (Fig. 8a), indicating success of the VIGS ex-
periment. Quantitative RT-PCR analysis revealed that
the expression of GhRAF4 and GHMEKK12 was signifi-
cantly suppressed in the TRV2:GhRAF4 and TRV2:
GhMEKKI12 plants, compared with the controls (Fig.
8b). Four weeks later, the target gene-silenced (TRV2:
GhRAF4 and TRV2:GhMEKKI12) and control (TRV2:00)
plants were treated by drought stress. After 15 days of
water-deficit treatment, the TRV2:GhRAF4 and TRV2:
GhMEKKI2 plants showed more severe wilting than the
controls (Fig. 8c). Further analyses showed that the sur-
vival rates of the target gene silenced plants were signifi-
cantly different from the control plants after re-watering.
After re-watering for 3 days, the growth status of control
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Fig. 7 Quantitative RT-PCR and RNA-seq analysis of expressions of eleven GhMAPKKKs in cotton under drought treatments. The fold change
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represents the correlation coefficient. Error bars denote the standard deviation calculated from three independent experiments. GhMEKK10
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plants gradually became normally, but only 66% TRV2:
GhRAF4 and 50% TRV2:GHMEKKI2 plants were
survived (Fig. 8c). Additionally, we measured several
physiological indexes including MDA and proline con-
tents, and SOD and POD activities under drought
treatment and normal growth conditions. As shown in
Fig. 8d-g, under normal growth condition, TRV2:
GhRAF4 and TRV2:GhMEKKI2 plants didn’t show any
difference compared with TRV2:00 control plants. How-
ever, after water-withholding for 15 days, MDA content
was increased, but the proline content and SOD and POD
activities were reduced in TRV2:GhRAF4 and TRV2:
GhMEKK]I2 plants, compared with those in TRV2:00 con-
trol plants. Furthermore, the relative water contents in soil
and leaves were no significant difference between the tar-
get gene silenced plants and the controls under normal
growth condition. On the contrary, the relative water con-
tents in both leaves and soil of target gene silenced plants
were remarkably lower than those in control plants after
drought treatment (Fig. 8h-i). When plants grew under
normal condition, the stomatal aperture status of the tar-
get gene silenced plants is similar to that of the controls.
Under drought treatment, however, the stoma of the tar-
get gene silenced plants opened larger than those of con-
trol plants (Fig. 8j-k). Collectively, the above results
indicated that both osmotic adjustment ability and
drought tolerance of the TRV2:GhRAF4 and TRV2:

GhMEKKI2 plants may be weakened owing to the
GhRAF4 or GhMEKK12 gene silence.

Discussion

MAPKKK gene family has been extensively analyzed in
some plant species [15, 18, 22]. However, information
about cotton MAPKKK gene family is relatively scarce
so far. In this study, we used the published Arabidopsis
MAPKKKs as queries to search upland cotton (Gossy-
pium hirsutum) genome database, and identified 157
GhMAPKKKs in cotton genome. Phylogenetic analysis
indicated the GAMAPKKKs can be divided into three
groups (including 87 RAFs, 46 MEKKs and 24 ZIKs).
Gene structure and motif composition analyses revealed
that most GhRMAPKKKs within the same group possess
similar gene structure and motif distribution. However,
some ZIKs and MEKKs also have particular motif com-
position, while some MEKK genes contain no intron in
the open reading frame. The gene duplication events are
significant in plant genomic variation, leading to the
generation of new genes and genetic regulation path-
ways. The gene duplication (including tandem gene du-
plication and segmental gene duplication) is the major
driver of gene family enlargement [23]. Our analysis
showed that segmental duplication is a predominant
driving force that contributed to the expansion of
GhMAPKKKs.
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normal growing conditions (control) and drought treatment. k Comparative stomatal aperture measurements. Ratio of stomata length to width
was determined in the target gene-silenced plants and mock plants under normal growing conditions (control) and drought treatment. Error bars

significant differences: *P < 0.05; **P < 0.01

denote the standard deviation calculated from three independent experiments. Asterisks represent Student's t-test in statistical analysis for

In order to further understand the possible functions
of GEMAPKKKs in cotton under different environmental
stresses, we surveyed the cis-element distribution in pro-
moter regions of GhMAPKKKs, and observed a huge
number of cis-elements related to plant abiotic stress re-
sponses, suggesting that GEMAPKKKs may participate
in regulation of cotton against abiotic stresses.

For the sake of better understanding of GhMAPKKKs
in cotton growth and abiotic stress tolerance, we investi-
gated the expression of GEMAPKKKs in various cotton
tissues under normal condition and several abiotic
stresses. The expression profiles of GAMAPKKK genes
in leaves under drought stress were obtained from the
transcriptome data in our lab, and we also detected the

transcription levels of GhMAPKKKs under drought
stresses by quantitative RT-PCR to confirm the previous
transcriptome data. The transcriptome data and quanti-
tative RT-PCR analysis revealed that the expression of
most GhMAPKKKSs is increased in cotton under water-
deficit treatment, indicating these genes might be related
to cotton drought response and resistance.

To investigate the roles of GEMAPKKKs in cotton
drought tolerance, silencing of two GhMAPKKKs,
GhRAF4 and GhMEKK12, was carried out. The results
showed that silencing GhRAF4 and GhMEKK12 com-
promises cotton resistance to drought stress. Further-
more, we measured several physiological indexes
(including MDA and proline contents, SOD and POD
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activities and leaf and soil relative water contents) under
drought stress. The experimental results indicated that
activities of SOD and POD were lower in the VIGS-
silenced plants under drought stress, compared with the
controls. The content of proline in the silenced plants
was lower, whereas MDA content in the silenced plants
was higher than those in the controls under drought
stress. Similarly, the relative water content in leaves of
the silenced plants as well as in soil was lower than that
in the controls under drought stress. Drought stress can
result in excessive production of reactive oxygen species
(ROS), which brings about peroxidation of membrane
lipid, disturbed physiological processes and programmed
cell death [24, 25]. Therefore, removing superabundant
ROS is a crucial process for plants defense to drought
stress [1]. SOD and POD are essential enzymes in ROS-
scavenging system, and their activities are increased in
plants under drought stress [26]. Here, the higher MDA
content, together with the lower SOD and POD activ-
ities in the VIGS-silenced cotton, suggest that the ability
to remove ROS may be impaired. Similarly, previous
studies also reported that MAPKKKs are related to plant
drought resistance by modulating accumulation of ROS
[27, 28]. Proline is known as an innoxious osmolyte and
participates in osmotic regulation of the plant cell. To
maintain the stability of protoplast colloid, the proline is
accumulated to increase the osmotic pressure of plant
cells under drought stress [29]. In this study, drought
stress induced accumulation of proline in cotton, and
thereby enhanced plant osmotic adjustment ability. The
lower accumulation of proline in the VIGS-silenced cot-
ton suggests the osmotic adjustment ability of these
plants was weakened by silencing MAPKKK genes.
Under drought stress, plants often reduce the opening
degree of stoma to limit water loss in cells [30-32]. In
this study, our data revealed that the stoma of the VIGS-
silenced cotton plants opened wider than the controls
under drought stress, suggesting that silencing GhRAF4
and GhHMEKKI2 influence the closure of stoma and
thereby increase the water loss from plants.

Conclusion

In this study, we comprehensively determined the evolu-
tionary relationship, gene structure, motif distribution,
cis-element dispersion and expression of GhIMAPKKKs
in cotton under normal condition and various abiotic
stresses. The data indicated that the sequence features of
GhMAPKKKs are both conservative and diverse. Besides,
the roles of two GhMAPKKK genes (GhRAF4 and
GhMEKKI12), whose expressions are significantly in-
duced in cotton under drought stress, were investigated
by VIGS technology. Silencing GhRAF4 and GRMEKKI12
in cotton resulted in the increased plant sensitivity to
drought stress. Thus, our data presented here may build
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up a good foundation for further investigating the roles
of GEMAPKKKs in cotton response to drought stress in
details.

Methods

Plant materials and growth conditions

Cotton (Gossypium hirsutum cv. Coker312) seeds pro-
vided by our lab were surface-sterilized with 10% hydro-
gen peroxide for 1.5h, followed by washing three times
with sterile water. The sterilized seeds were soaked in
sterile water for 10-12h, and then planted in pots and
grew in a growth room under controlled conditions
(25°C, 16 h light/8 h dark). After approximately 10 days
of growth, cotton seedlings with fully expanded cotyle-
dons were used to conduct virus-induced gene silencing
(VIGS) experiment.

Sequence retrieval of GhMAPKKKs

The DNA and protein sequences of GhMAPKKKs were
searched in cotton (G. hirsutum L., cultivar TM-1
(AD1)) genome database (https://www.cottongen.org).
To identify GEMAPKKKs, the Arabidopsis MAPKKK
proteins were employed as queries to search cotton (G.
hirsutum) database. Then, to prove the accuracy of the
blast results, all predicted protein sequences were sub-
jected to InterproScan program and Pfam tools (http://
www.sanger.ac.uk/software/pfam) to verify the presence
of kinase domain [33]. Subsequently, we estimated the
basic properties of cotton MAPKKK proteins using Prot-
Param tool (http://www.expasy.org/tools/protparam.
html), and predicted the subcellular localization of cot-
ton MAPKKKs using TargetP 1.1 (http://www.cbs.dtu.
dk/services/TargetP/) and WoLF PSORT (http://wolfp-
sort.seq.cbrc.jp) programs [34, 35].

Phylogenetic analysis

The MAPKKK protein sequences of Arabidopsis and
cotton were used for multiple sequence alignments using
Cluster X software. Subsequently, we constructed the
unrooted phylogenetic tree based on the results of mul-
tiple sequence alignment using MEGA 6.0 software, and
then the phylogenetic tree was submitted to ITOL
(http://itol.embl.de/) to form the interactive tree.

Gene structure analysis and conserved motif
identification

The MAPKKK genomic sequences and their corre-
sponding coding regions retrieved from cotton (G. hirsu-
tum) genome were sent to Gene Structure Display
Server (http://gsds.cbi.pku.edu.cn/) to investigate their
exon/intron distribution [36]. All MAPKKK proteins
were subjected to Motif Elicitation (MEME) online pro-
gram (http://meme.sdsc.edu/meme/intro.html) to pre-
dict conserved motif. The InterProScan (http://www.ebi.
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ac.uk/Tools/InterPro-Scan/) was used to annotate the
identified motifs [37].

Chromosomal location and gene duplication analysis

The nucleotide sequences of these GEIMAPKKKs were
served as query for BLASTN to search cotton (G. hirsu-
tum) genome database for gaining chromosomal location
information. Next, we detected gene duplication events of
GhMAPKKKs based on principle described in previous
studies: (1) the alignment covers > 70% of the longer gene;
(2) the aligned region has an identity >70% [38-40]. The
Circos-0.69 Software was used to visualize chromosomal
location and gene duplication [41]. The Blast version 2.2.9
was used to identify orthologous gene pairs among the ge-
nomes of upland cotton and its ancestral A and D diploid
cotton species [42]. Then, MCscanX was employed to
identify homologous regions [43].

Cis-element distribution in promoter regions of
GhMAPKKKs

In order to determine cis-elements arrangement in pro-
moter of GEMAPKKKs, we retrieved 2 kb upstream se-
quence of the transcriptional start site of GhEMAPKKKs
and submitted them to PLACE database (http://www.
dna.affrc.go,jp/PLACE/) to investigate cis-element
distribution.

Expression analysis of GhMAPKKKs in cotton tissues under
normal condition and different abiotic stresses

We downloaded the corresponding transcriptomic data
of cotton (G. hirsutum) TM-1 from NCBI (https://www.
ncbi.nlm.nih.gov/sra/?term=PRJNA248163). The reads
were mapped to the cotton reference genome (v2.1)
using TopHat2, and gene expression quantification was
performed with Cufflinks (http://cole-trapnell-lab.github.
iocufflinks/) [44].

Analysis of expression of GWMAPKKKs under drought
stress

In previous study, we carried out a transcriptome se-
quencing (RNA-seq) for drought-treated cotton [21].
[llumina reads were mapped to the reference TM-1 gen-
ome (v2.1) using TopHat 2.1.1 and quantification of
gene expression was performed with Cufflinks version
2.2.1 (http://cole-trapnell-lab.github.iocufflinks/) by util-
izing the GTF annotation file [44].

For detecting the expression of GEMAPKKKSs in cotton
under drought stress, quantitative RT-PCR analysis was
employed. Cotton (cv. J13) seedlings grew in soil and
were subjected to drought treatment. Then the leaves of
these seedlings were collected at 0, 2, 4, 6, 8 days after
drought stress for RNA extraction. The quantitative RT-
PCR analysis was performed using gene-specific primers
(Additional file 1 Table S4). Relative expression value of
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candidate genes was calculated with the 2 - ACt method,
and the housekeeping gene GhUBII (EU604080) was
used as an internal control. The experiments were per-
formed with three biological replicates.

The fold change of gene expression from transcrip-
tome data and quantitative RT-PCR analysis is the ratio
of the gene expression value in cotton under drought
treatment vs. the same gene expression value under nor-
mal condition (control) [45]. Then, correlation coeffi-
cient R value is calculated by using CORREL formula of
Excel software.

Vector construction and procedure for VIGS in cotton

The virus-induced gene silencing (VIGS) experiment
was carried out by the method as previously described
[46]. The fragments (400bp) of GhRAF4 and
GhMEKK]12 were inserted into TRV2 vector to generate
TRV2:GhRAF4 and TRV2:GhMEKKI2 constructs, re-
spectively. All the relevant primers were listed in
Additional file 1 Table S3. The TRV1, TRV2:00, TRV2:
GhRAF4, TRV2:GhMEKKI12 and TRV2:CLA1I (cloroplas-
tos alterados 1) constructs were transferred into Agro-
bacterium tumefaciens strain GV3101. Then, A.
tumefaciens with TRV1 and A. tumefaciens containing
TRV2:00, TRV2:GhRAF4, TRV2:GhHMEKKI12 or TRV2:
CLA1 were mixed in equal amounts and incubated at
28 °C for 3 h. The mixed agrobacterium solution was in-
filtrated into the cotyledons of 10-day-old cotton seed-
lings to generate the control (TRV:00) and GhRAF4
(TRV:GhRAF4) and GEHMEKKI2 (TRV:GHMEKKI12) si-
lenced cotton plants. The TRV:CLA1 was used as a posi-
tive control. When the TRV:CLAI plants appear albino
phenotype, indicating that the gene has been silenced.
Subsequently, the expression of GhRAF4 and
GhMEKKI2 in the TRV:GhRAF4 and TRV:GhMEKKI2
silenced plants and wild type controls were detected by
quantitative RT-PCR analysis. Then the four-week-old
silenced cotton plants and wild type controls were sub-
jected to water-deficit treatment. The experiments were
performed with three independent biological replicates.

Expression analysis of GhRAF4 and GhMEKK12 in VIGS

and control plants

To investigate gene expression in TRV2:GhRAF4 and
TRV2:GEMEKK12 seedlings, the third true leaves of
these cotton seedlings were used to extract total RNA.
Then, the RNA was reversely transcribed into cDNA
using an RNA reverse transcription kit (AMV, version
3.0, TaKaRa, Shuzo, Otsu, Japan). The quantitative PCR
was performed using gene-specific primers (Additional
file 1 Table S4). The housekeeping gene GhUBII
(EU604080) was used as an internal control. The experi-
ments were performed with three biological replicates.
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Determination of drought stress-related physiological
parameters

Malondialdehyde (MDA) content was determined from
0.1g cotton leaf tissues by using MDA Quantification
Assay Kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). For quantification of proline content,
0.1g samples of cotton leaves were prepared and
followed the procedure as described by the manufacturer
of Proline Quantification Assay Kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). The relative
watering content of leaves was measured as the method
described by Barrs and Weatherley [47]. The measure-
ment of peroxidase (POD) and superoxide dismutase
(SOD) enzyme activities in the stressed plants and con-
trols was performed with described by the manufacturer
of Peroxidase (POD) assay kit and Superoxide Dismutase
(SOD) assay kit (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China). Stomatal aperture was observed in
leaves of cotton under normal condition and drought
treatment by microscopy, and the ratio of stomatal
length to width was measured (n>50 stomata per
sample).
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