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Abstract

Background: Many conifer breeding programs are paying increasing attention to breeding for resistance to needle
disease due to the increasing importance of climate change. Phenotyping of traits related to resistance has many
biological and temporal constraints that can often confound the ability to achieve reliable phenotypes and
consequently, reliable genetic progress. The development of next generation sequencing platforms has also enabled
implementation of genomic approaches in species lacking robust reference genomes. Genomic selection is,
therefore, a promising strategy to overcome the constraints of needle disease phenotyping.

Results: We found high accuracy in the prediction of genomic breeding values in the disease-related traits that were
well characterized, reaching 0.975 for genotyped individuals and 0.587 for non-genotyped individuals. This compared
well with pedigree-based accuracies of up to 0.746. Surprisingly, poorly phenotyped disease traits also showed very
high accuracy in terms of correlation of predicted genomic breeding values with pedigree-based counterparts.
However, this was likely caused by the fact that both were clustered around the population mean, while deviations
from the population mean caused by genetic effects did not appear to be well described. Caution should therefore be
taken with the interpretation of results in poorly phenotyped traits.

Conclusions: Implementation of genomic selection in this test population of Pinus radiata resulted in a relatively
high prediction accuracy of needle loss due to Dothistroma septosporum compared with a pedigree-based approach.
Using genomics to avoid biological/temporal constraints where phenotyping is reliable appears promising.
Unsurprisingly, reliable phenotyping, resulting in good heritability estimates, is a fundamental requirement for the
development of a reliable prediction model. Furthermore, our results are also specific to the single pathogen
mating-type that is present in New Zealand, and may change with future incursion of other pathogen varieties. There
is no doubt, however, that once a robust genomic prediction model is built, it will be invaluable to not only select for
host tolerance, but for other economically important traits simultaneously. This tool will thus future-proof our forests
by mitigating the risk of disease outbreaks induced by future changes in climate.
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Background

Dothistroma needle blight (DNB), also known as red band
needle blight, is one of the most important needle diseases
that affect conifer species (pines) across the world [1-4].
Frequency and severity of reports have been on the rise
since the early 1990s, including new locations and host
species [3]. The severity of DNB has put pressure on the
productivity of pine plantations and led to the abandon-
ment of further deployment of a number of pine species
across the world [3].

Dothistroma needle blight is caused by the pathogen
Dothistroma septospora (Dorog.) Morelet and character-
ized by 1-3 mm wide brick-red bands around the needles,
caused by the release of a mycotoxin (dothistromin) [5].
Infection of Pinus radiata D. Don. by this pathogen is
dependant on climate [6]. High levels of infection follow
periods combining both warm temperatures and nee-
dles remaining wet [7, 8]. Older needles found closer
to the main stem are more affected than younger nee-
dles and infection can be spread from affected needles to
other trees via wind. The disease causes large losses in
growth, the loss increasing in proportion with the degree
of affected crown, with van der Pas [9] reporting 1% loss
in productivity for each 1% increase in disease level and
a significant reduction in stand growth once defoliation
exceeds 25 percent [9].

Previous studies have found moderate genetic control
in resistance of P. radiata to DNB [10-12] and breed-
ing for resistance in the P. radiata breeding program is
recommended for high-risk areas [11]. Ivkovi¢ et al. [4]
found a negative genetic correlation of -0.39 between
resistance to DNB at an early age and productivity at
a later age, translating to high economic losses. This is
despite P. radiata naturally developing resistance to Doth-
istroma at around age 15 [13, 14] possibly due to structural
changes in wax surface topography and stomatal orga-
nization [15]. Therefore, reliable phenotyping of traits
related to Dothistroma resistance at early ages remains
important. Similar to other needle diseases [16], pheno-
typing during the optimum spread and intensity of disease
is vital for any genetics study, and the ability to achieve this
remains confounded by annual variability in the weather
conditions and the narrow window of time available for
quality phenotyping.

Genomic selection (GS) has been proposed as a tool
to predict phenotypes based on genetic markers obtained
from whole genome sequencing [17]. The method is based
on the capture of genealogy (both historical and contem-
porary [18]), co-segregation and linkage disequilibrium
between markers and quantitative trait loci (QTL) [19].
The development of next-generation sequencing tech-
nologies such as genotyping by sequencing [20] or exome
capture [21] has allowed the development of genomic
resources and the implementation of genomic selection
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approaches in species without reference genomes, a com-
mon limitation in conifers [22-29]. The efficiency of
genomic selection depends on the heritability of a trait,
the size of the population used for training the prediction
model and genetic distance between the training popula-
tion and material being predicted [30]. Forest tree progeny
tests are typically large populations containing thousands
of individuals, which has prevented full-scale genotyping
[25]. Therefore, the combination of phenotype, pedigree
and genomic information through a single-step evalua-
tion approach [31] is the preferred strategy in forest tree
breeding [32-34].

The aim of this study was to present a proof-of-concept
for the implementation of genomic selection for traits
where biology and the environment constrains genetic
progress in typical tree breeding approaches. We use the
example of phenotyping expression of a needle disease
(Dothistroma septosporum) on Pinus radiata to illustrate
this approach.

Results
Genetic parameters and model fit
A visual exploration of spatial patterns in the level of phe-
notypic expression of disease found the lowest level at an
early age (two years after planting) across all investigated
sites with exception of Kaingaroa (Figs. 1, 2 and 3). This
exception can be explained by higher intensity of attack
at Kaingaroa compared to Kinleith sites. These findings
were reflected in the relatively low heritability at Kinleith
sites at age 2, from 0.188 to 0.219, compared with the
moderate heritability at later ages, from 0.309 to 0.429,
as well as 0.321 at Kaingaroa at age of two (Table 1).
The non-additive genetic component reached a moderate
level, between 13% (Kinleith 1 and Kinleith 2) and 37%
(Kaingaroa) of the additive genetic variance. This pattern
corresponded to the trends apparent in the broad-sense
heritability, ranging from 0.212 (Kinleith 1 - age 2) to 0.536
(Kinleith 2 - age 3). Exploration of the breeding values esti-
mated on the basis of the pedigree-based analysis found
strong shrinkage of breeding values toward the population
mean where heritability was low (Kinleith 1 - age 2) and
a corresponding wider dispersion in populations where
heritability was higher (Kinleith 2 - age 3) (Fig. 4).
Investigation of the optimal weighting of pedigree and
genomic information through model fit in terms of DIC
criterion found that the best model mostly differed to
the default (0.05 weight put on pedigree-based relation-
ship matrix). There was also a tendency to place a higher
weight on the documented pedigree with decreasing her-
itability, resulting in an increasing accumulation of breed-
ing values around the population mean. There was only
one exception, where the best scenario was the default
weighting, and this was for the population with the low-
est heritability (Kinleith 1 - age 2). In general, the optimal
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Fig. 1 Spatial distribution of phenotypes at Kaingaroa. Spatial distribution of phenotypes measured as percentage of crown affected by
Dothistroma needle blight at Kaingaroa site at age 2

weighting scenario defined by the lowest DIC criterion
was reached at a weight of 0.4 - 0.6 for the documented
pedigree in populations with low to moderate heritabil-
ity, and for populations with a higher heritability, the best
weighting was 0.2 (Table 2).

Predictive ability

The ability to predict appeared to reflect a trend in her-
itability across all populations and was at its lowest in
the population with the lowest heritability. The predic-
tive ability at Kinleith 1 - age 2 (the population with the
lowest heritability) was as low as 0.260 using ABLUP and

0.259 using HBLUP. Higher predictive ability was possible
for genotyped individuals (0.285) compared with non-
genotyped individuals. The ability to predict phenotypes
gradually increased with the increasing heritability of the
studied population and reached 0.454 using ABLUP, 0.488
using HBLUP and 0.485 using HBLUP1 (the optimal sce-
nario) in a population with the highest heritability. The
lower predictive ability that was found in the optimal sce-
nario based on model fit (DIC) appeared to be caused by a
decreased predictive ability in non-genotyped individuals,
with a corresponding increase in genotyped individuals
compared with the default HBLUP scenario.
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Fig. 2 Spatial distribution of phenotypes at Kinleith 1. Spatial distribution of phenotypes measured as percentage of crown affected by Dothistroma

needle blight at Kinleith 1 site at age 2
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Fig. 3 Spatial distribution of phenotypes at Kinleith 2. Spatial distribution of phenotypes measured as percentage of crown affected by Dothistroma
needle blight at Kinleith 2 site at age 2 (plot A), age 3 (plot B) and age 4 (plot C)

The predictive ability of GS prediction models between
environments and ages showed the clear impact of phe-
notyping precision (in terms of each traits’ heritability).
The lowest predictive ability was at Kinleith 1 - age 2, with
values from 0.174 to 0.199 for non-genotyped individu-
als and from 0.268 to 0.298 for genotyped individuals. As
expected, the highest was at Kinleith 2 between ages 3 and
4 (0.292) for non-genotyped and (0.553) for genotyped
individuals.

Prediction accuracy

In contrast, prediction accuracy estimated as the corre-
lation between predicted genomic breeding values and
estimated pedigree-based breeding values (rl) preferred

using ABLUP over HBLUP, especially in populations with
low to moderate heritability. Accuracies reached values
from 0.729 in a population with the highest heritabil-
ity to 0.830 in a population with the lowest heritability
using ABLUP. The default HBLUP resulted in an increased
accuracy of 0.746 in a population with the highest heri-
tability but a decreased accuracy of 0.801 in a population
with the lowest heritability. Similar results were observed
in HBLUP1 scenario (Table 3). Comparing the predic-
tion accuracy among genotyped and non-genotyped sets
of individuals, a higher prediction accuracy (0.812) was
evident in the non-genotyped individuals compared with
the genotyped individuals (0.792) in populations with a
low heritability. The opposite pattern (0.676 vs. 0.794
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Table 1 Variance components, narrow-sense and broad-sense heritability, their standard errors in parenthesis, column and row
autocorrelations and model fit in terms of Akaike’s Information Criterion (AIC) estimated for Dothistroma needle blight resistance at

each site and age

Kaingaroa Kinleith 1 Kinleith 2 Kinleith 2 Kinleith 2
Parameter Age 2 Age 2 Age 2 Age 3 Age 4
Add.Gen.Var. 0.678 (0.182) 0.317 (0.096) 0.165 (0.045) 20(19.12) 36.13(9.188)
Non-add.Gen.Var. 0.399 (0.108) 0.041 (0.066) 0.022 (0.028) 8(10.83) 6.984 (5.428)
Block Var. 0.032 (0.020) 0.122 (0.051) 8(0.012) 0.000 (0.000) 2.887 (1.545)
Residual Var. 1.036 (0.043) 1.327 (0.068) 0.566 (0.020) 88.01 (3.259) 78.12 (2.670)
ART1 col 0913 0.659 0.796 0.838 0.893
AR1 row 0.824 0.738 0.852 0.872 0918
h? 0.321(0.073) 0.188 (0.052) 0.219(0.053) 0429 (0.081) 0.298 (0.066)
H? 0.509 (0.027) 0.212(0.033) 0.249 (0.027) 0.536 (0.028) 0.356 (0.030)
AIC 4644 4961 2451 19474 18097
h?#* 0.316 (0.072) 0.161 (0.045) 0.211 (0.026) 0.370 (0.074) 0.270 (0.061)
AIC* 4737 5108 2562 19727 18327
Phenotypic mean 21.1 15.5 12.2 274 234
Phenotypic st. dev. 14.56 14.64 7.78 15.49 13.14

Two models were investigated: using experimental design terms (parameters with the star) and spatial analysis

using default HBLUP and 0.663 vs. 0.807 using HBLUP1)
was found in populations with the highest heritability
(Table 3). Very similar results were evident when compar-
ing HBLUP1 and default HBLUP, with some mixed trends.
However, the implementation of any HBLUP strategy has

a positive effect on the prediction accuracy of geno-
typed individuals in populations with higher heritability
(Table 3). When alternative approach for estimation of
prediction accuracy (r2) was implemented, the trends
in prediction accuracy were similar to traits with high
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Fig. 4 Distribution of pedigree-based breeding values. Family-wise distribution of pedigree-based breeding values estimated at each site: Kaingaroa
at age 2 (plot A), Kinleith 1 at age 2 (plot B), Kinleith 2 at age 2 (plot €) Kinleith 2 at age 3 (plot D) and Kinleith at age 4 (plot E)
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Table 2 Deviance Information criterion (DIC) scores obtained for each tested scenario using genotypic values, bold DIC score
represents scenario with best model fit (HBLUP1) (lower values represent better model fit)

Weight Kaingaroa Kinleith 1 Kinleith 2 Kinleith 2 Kinleith 2
on pedigree Age 2 Age 2 Age 2 Age3 Age 4
0.05 2886 225 -170 6270 5313
0.10 2884 223 -180 6263 5312
0.20 2877 220 -192 6262 5298
0.30 2877 217 -185 6272 5307
0.40 2867 218 -192 6278 5298
0.50 2871 215 -201 6285 5296
0.60 2867 215 -183 6305 5303
0.70 2875 215 -180 6329 5317
0.80 2883 221 -166 6465 5340
0.90 2902 222 -149 6365 5359
1.00 2917 228 -123 6443 5388

heritability while opposite to traits with low heritabil-
ity. In these cases, the prediction accuracy for genotyped
individuals achieved higher values compared to non-
genotyped individuals. Additionally, while the prediction
accuracy for non-genotyped individuals decreased com-
pared to values obtained when estimated using alternative
method (rl), higher values were reached for genotyped
individuals (Table 3).

The prediction accuracy of genomic prediction mod-
els between environments and ages showed similar pat-
tern compared to predictive ability. The lowest prediction
accurracy was at Kinleith 1 - age 2, with values from
0.478 to 0.534 for non-genotyped individuals and from
0.520 to 0.659 for genotyped individuals. The highest pre-
diction accuracy was reached between Kinleith 1 - age
2 and Kaingaroa - age 2 (0.663) for non-genotyped and

Table 3 Predictive ability (PA) and prediction accuracies estimated by two implemented strategies in parenthesis (1, r2) of
phenotypes for non-genotyped (NG), genotyped (G) and total (T) population using only pedigree (ABLUP), pedigree and markers using
standard weighting (HBLUP) and pedigree and markers using weighting derived from the model showing best fit in terms of DIC using

genotypic values (HBLUP1)

Kaingaroa Kinleith 1 Kinleith 2 Kinleith 2 Kinleith 2
Model Pop. Age 2 Age 2 Age 2 Age 3 Age 4
NG NA NA NA NA NA
ABLUP G NA NA NA NA NA
T 0.346 0.260 0.362 0454 0413
(0.809,0.616) (0.830,0.648) (0.745,0.788) (0.729,0.746) (0.738,0.795)
NG 0.270 0.224 0.320 0373 0322
(0.758,0.480) (0.812,0.558) (0.726,0.697) (0.676,0.613) (0.688,0.620)
HBLUP G 0.409 0.282 0433 0.584 0477
(0.804,0.728) (0.792,0.703) (0.759,0.942) (0.794,0.960) (0.743,0918)
T 0357 0.254 0.375 0488 0404
(0.790,0.635) (0.801,0.633) (0.738,0.816) (0.746,0.802) (0.718,0.778)
NG 0.253 0.231 0312 0.357 0.327
(0.747,0450) (0.817,0.576) (0.722,0.679) (0.663,0.587) (0.690,0.629)
HBLUP1 G 0415 0.285 0428 0.593 0474
(0.831,0.738) (0.832,0.710) (0.775,0.932) (0.807,0.975) (0.759,0912)
T 0353 0.259 0.369 0.485 0.405
(0.801,0.628) (0.825,0.646) (0.745,0.803) (0.746,0.797) (0.727,0.779)
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between Kinleith 2 - age 3 and Kinleith 2 - age 4 (0.724)
for genotyped individuals (Table 4).

Discussion

Factors affecting disease expression and precision of
phenotype

The current progress in global climate change has resulted
in the increased occurrence and severity of needle dis-
eases in forest trees around the globe. The incidence and
severity of needle disease expression depends on many
environmental factors, including soil, climate and expo-
sure and their interactions [7, 8, 35, 36]. Vuorinen and
Kurkela [37] found a positive correlation between soil fer-
tility, especially an excess of nitrogen and phosphorus, and
incidence of needle cast in Scots pine (Pinus sylvestris).
Fertilized trees contained higher levels of both elements
in their needles, and had increased needle length and inci-
dence of disease attack compared with trees under the
standard treatment. Ivory [38] reported that exposure to
sunlight increased the progression of the disease. Woods
et al [39] found that a change in the local precipitation pat-
tern during the summer season in northwestern British
Columbia resulted in optimal environmental conditions
for disease expression and was related to an increased
severity of Dothistroma septosporum attacks in lodgepole
pine forests.

Tree breeding is a logical response for both natural
and managed populations. Quantifying the genetic effect
where local, global and temporal variation affect disease
expression remains complex and unreliable. Each year,
for example, large variability in environmental conditions
can exist and performing reliable, timely phenotyping can
be difficult. Our analysis found higher levels of genetic
expression of the disease at sites/years with more disease
exposure, with a corresponding higher disease damage
site mean and variation (standard deviation). This follows
the concept that resolution of genetic differences in tree
disease tolerance/resistance can depend greatly on disease
incidence [40—42]. This challenge in consistent pheno-
typing is seen in other conifer diseases (e.g. cyclaneusma
needle cast [16]; Swiss needle cast [43] or red needle
cast [44]).
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Vectors that distribute disease are usually influenced by
temporal weather/envi- ronmental conditions, and thus
the frequency of disease incidences can be spatially struc-
tured and accumulated into ’epicentres’ with unequal
distribution across field experiments. Furthermore, the
release of conidia from already affected trees is rela-
tively local and spread is limited to 50 - 100 metres [45].
Such factors further promote spatially dependent disease
expression, resulting in even larger environmental hetero-
geneity which in turn underestimates heritability and the
potential response to selection [46, 47]. The implemen-
tation of spatial analyses to remove this environmental
heterogeneity resulted in improved heritability estimates
and model fit when assessing the resistance of P. radiata
to Phytophthora pluvialis [44] as well as Dothistroma sep-
tosporum [4]. Similarly, an uneven distribution of DNB
disease expression in P radiata was found in the cur-
rent study (Figs. 1, 2 and 3), and the spatial correction of
residuals resulted in improvements to genetic parameter
estimates (Table 1). Therefore, spatial analyses should be
considered when training genomic prediction models for
resistance to needle diseases as a means to improve the
quality of phenotypic information.

Parameter tuning to improve accuracy of single-step
genomic evaluation

The principle of genomic selection involves the training
of a genomic prediction model with a training popula-
tion for which both phenotypic and genomic information
is available. Thereafter, the trained model can be used
to predict phenotypes in another population where the
individuals have only genomic information available [17].
Single-step evaluation offers a means to include both
genotyped and non-genotyped individuals in genomic
analyses and thus benefit from the extensive phenotyp-
ing efforts that are usually part of the evaluation system
of forest trees [32]. There are two steps which are crit-
ical for unbiased estimates of genomic breeding values
when using single-step evaluations. Since the marker-
based relationship matrix captures both contemporary
and historical relatedness that predates the establishment
of the pedigree-based base population [18], it must be

Table 4 Predictive ability and prediction accuracy in parenthesis (r1) of phenotypes for non-genotyped (NG) (above diagonal),
genotyped (G) (below diagonal) across ages and environments using HBLUP1T model

Population Kaingaroa Kinleith 1 Kinleith 2 Kinleith 2 Kinleith 2

Age Age 2 Age 2 Age 2 Age 3 Age 4
Kaingaroa Age 2 1 0.223 (0.663) 0.270(0.512) 0.388 (0.565) 0.324 (0.525)
Kinleith 1 Age 2 0.238 (0.562) 1 0.190 (0.518) 0.199 (0.534) 74 (0478)
Kinleith 2 Age 2 0.379(0.577) 0.278 (0.659) 1 0.211(0.447) 0.204 (0.355)
Kinleith 2 Age 3 0492 (0.671) 0.298 (0.575) 0.345 (0.552) 1 0.292 (0.484)
Kinleith 2 Age 4 0.354(0.551) 0.268 (0.520) 0.304 (0.487) 0.533(0.724) 1
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re-scaled to the base population defined by pedigree. In
addition, a marker-based relationship matrix is not usually
positive-semidefinite which is a requirement for analy-
sis using mixed linear models, and sensible weighting
of information derived from both pedigree and genetic
markers is therefore required.

In this study, we evaluated step-wise weighting changes
for the pedigree versus genetic marker data and deter-
mined the corresponding model fit in terms of DIC. We
found that increased emphasis on genetic marker infor-
mation was rewarded with increased heritability (Table 2).
While the marker-based relationship matrix enables the
capture of not only relatedness but also co-segregation
and linkage disequilibrium between markers and QTLs
[19], the two latter factors can only be efficiently cap-
tured in populations with good phenotypic data and cor-
responding high heritability estimates. Capture of these
two factors is still possible for low-heritability traits, but
the size of the required training population is very large
[48]. However, predictions based mainly on LD between
markers and QTLs are still the most precise, with greater
transfer-ability across generations [49]. Therefore, the
GS prediction model re-training in future generations is
required when prediction relies mostly on the current
structure of relatedness in the training population [50].

Potential of genomics to predict host resistance
Heritability, along with the size of the training popula-
tion and the effective number of chromosomal segments
involved in trait expression, are all factors that contribute
to the efficiency of genomic prediction [51]. Our study
found that ontogenetic stage of the studied individuals
was a key factor in the precise scoring of DNB. As two-
year-old individuals still have poorly developed crowns
and only a few branches, especially on less fertile sites, the
assessment of the proportion of the crown that is affected
by diseases on the twenty one-degrees scale (from 0% to
100% with 5% steps) is challenging, even in a year with
extensive disease expression. A similar pattern between
tree age and heritability was observed in a previous study
[11]. However, the same study did not find any connection
between the intensity of attack (stand mean infection at
the individual level) and heritability. Regardless, identifi-
cation of the most informative ontogenetic stage of plants
is required for reliable phenotyping.

Our study found a stable pattern in resistance to DNB
across ages resulting in a high prediction accuracy of
0.724 with good phenotypic expression. Similar results
were found in a previous study that explored results over
several field experiments, with average genetic correla-
tions between different environments ranging from 0.72
to 0.76, depending on the genetic composition of the pop-
ulations tested, and a slightly lower genetic correlation
across different ages of 0.68 [11]. In contrast, Li et al.
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[52] reported genotype by environment interaction (GxE)
among environments across New Zealand using a factor
analytic approach [53]. However, this statistical approach
is confounded with connectivity so that lower genetic
correlations may reflect low levels of genetic relatedness
(low number of shared parents) among environments.
Due to small data set, incompatible with a comprehensive
approach, and previous studies of the same needle dis-
ease with extensive data, showing low GXE (when genetic
connectivity between environments is sufficient) [52], our
study did not explore genotype by environment interac-
tion.

The predictive ability in terms of correlations between
genotypic values (used as phenotypes in the training pro-
cess of GS prediction model) and predicted genomic
breeding values showed a clear trend that reflected the
heritability for each trait. In contrast, the prediction accu-
racy was highest for traits with the lowest heritability.
This unusual pattern was likely due to the fact that the
genomic breeding values for these traits were predict-
ing the population mean rather than the deviation from
the population mean caused by genetic effects. Since
pedigree-based breeding values were also accumulated
around the population mean (Fig. 4), the resulting corre-
lations were relatively high. Considering both pedigree-
based and predicted genomic breeding values as true
breeding values and errors related to these estimates, any
shared proportion of the errors would result in upward
bias of correlation between them (ie. prediction accuracy)
[54]. This issue was partially improved when alternative
methods for estimation of prediction accuracy (r2) was
implemented, especially for traits with lower heritability.
On the other hand, genomic breeding values estimated
for traits with high heritability were able to predict the
individual deviations from the population mean caused
by genetic effects, supported by both the high correlation
between pedigree-based breeding values and predicted
genomic breeding values (Table 3) and the observed wider
dispersion of additive genetic effects around the popula-
tion mean (Fig. 4). Shrinkage of breeding value estimates
depends on both the phenotype errors and on the amount
of information available from related individuals [55]. In
our study, a low level of expression (ie. phenotype) caused
either by sub-optimal weather conditions or the immature
ontogenetic stage of plants to achieve reliable phenotyp-
ing likely produced large errors in the estimated breeding
values and shrunk their distribution toward the popula-
tion mean. This large amount of environmental variation
and lack of a clear genetic signal also appeared to cause
the genomic predictions to be shrunk towards the pop-
ulation mean. Therefore, the optimal ontogenetic stage
for phenotyping and sufficient disease expression are both
critical to achieve reliable genetic progress and accurate
prediction in disease resistance traits.
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Improvements in capturing phenotypes in the field
could be enhanced through the development of more
quantitative assessments using remote sensing [56—58],
replacing the subjective visual assessment methods
presently in place. In addition, screening systems where
environmental conditions are controlled could be advan-
tageous in discovering the underlying genetic signal. The
use of laboratory-based assays are under development as
a possible option for discovering a stronger genetic signal,
although even within more controlled conditions, vari-
ation remains a challenge [59]. Detached needle based
experiments are especially useful in situations where two
diseases often co-occur in the field and genetic signals can
be confounded, for example, Phytophthora pluvialis and
Phaeocryptopus gaeumannii causing Swiss needle cast in
Douglas-fir [60].

The lack of GxE interaction in resistance to DNB may
also be explained by the low genetic diversity of Doth-
istroma septosporum possibly due to the missing sexual
stage Mycosphaerella pini Rostr. ex Munk, identified only
in Europe and Canada to date [2, 3]. Analysis of New
Zealand’s population of Dothistroma has found very lim-
ited genetic diversity, supporting conclusion that all iso-
lates belonged to only one mating type [61]. This single
mating type has subsequently been shown to be the same
type detected in Australia [62]. Therefore, the results of
this study should be considered mating-type specific and
not necessarily applicable in environments affected by
other mating types. Thus, when interpreting our results,
we must consider not only the context of the trajectory of
climate change but also the biology and genetic diversity
of the pathogen population. [63].

Conclusions

Implementation of genomic selection in the test pop-
ulation achieved a relatively high prediction accuracy
compared with a pedigree-based approach. This result
is promising and implies that genomics is a promising
option to minimise the current biological/time constraints
on reliable disease phenotyping. Reliable phenotyping,
however, has to be available in the first instance, for the
successful training of the prediction model. Finding the
best ontogenetic stage for phenotyping plants and expo-
sure to optimal weather conditions for disease expression,
as well as the use of statistical approaches to remove envi-
ronmental heterogeneity, are all important for successful
prediction of resistance to needle diseases.

Methods

Material

The genomic prediction model was trained on three clon-
ally replicated full-sib experiments established and man-
aged by New Zealand Radiata Pine Breeding Company
Ltd (RPBC). The Kaingaroa site (Latitude S 38° 22’ 19.5,
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Longitude E 175° 55’ 41.5”) was established using an opti-
mal design [64] comprising of single tree plot, incomplete
blocks with 86 blocks each containing 36 trees with spac-
ing of 3.1 m x 3.1 m. There were 1381 genotypes with 1-12
ramets each (mean 2.24), with the experiment contain-
ing 3096 trees in total. Similarly, Kinleith 1 (Latitude S 38°
26’ 44.0", Longitude E 176° 30’ 22.9”) and Kinleith 2 (Lati-
tude S 38° 18’ 52.7’, Longitude E 176° 00’ 51.2”) sites were
established using the optimal design [64] with single tree
plot, incomplete blocks with 86 and 100 blocks. respec-
tively, with 36 trees per block. There were 1270 genotypes
with 1 - 9 ramets each (mean 2.02) at Kinleith 1, with a
total of 3,095 trees. At Kinleith 2, there were 653 geno-
types with 5 ramets each and 340 control individuals with
no replicates, giving a total of 3,590 trees. The number
of individuals that were genotyped was 720 at Kaingaroa,
647 at Kinleith 1, and 342 at Kinleith 2. The level of DNB
expression was scored as a percentage of the crown that
was affected in 5% steps [65]. Assessments for Kaingaroa
and Kinleith 1 were available for age 2, while Kinleith 2
had assessments from ages 2, 3 and 4. The expression
appeared to be suppressed for age 2 assessments and data
transformation via a square root function was performed.

Genomic data were generated through exome cap-
ture - genotyping-by-sequencing approach [21] using
genomic resources based on resequencing of transcrip-
tome extracted from compression wood xylem, spring
xylem, summer xylem, summer phloem, spring buds,
autumn buds, healthy needles, needles infected by Phy-
tophtora pluvialis, seedling phloem and seedling xylem
[66]. Captured markers were removed if heterozygosity
shown in megagametophyte tissues was higher than 5%,
average read depth less than 10, multiallelic status, sin-
gletons and additionally each datapoint was classified as
missing if ratio between reference and alternative allele
was lower than 0.1 and number of read was less that 10
[67]. The marker data were further refined for minor allele
frequency (MAF) >0.05, and missing data were replaced
by the mean genotype.

Statistical analysis

Genotype values were used as corrected phenotypes
to train the genomic prediction model, and estimated
through the following mixed linear model implemented in
ASReml-R statistical package [68]:

y=XB+Zg+Zb+e

where y is the vector of measurements, g is the vector
of fixed effects containing the overall mean, g is the vector
of random effects containing genotype effects following
var(g)~N(O,IUg2), where ng is the genotypic variance and
I is the identity matrix, b is the vector of random incom-
plete block effects following var(b)NN(O,IUbZ), where obz
is the incomplete block variance, X and Z are incidence
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matrices associating fixed and random effects to the vec-
tor of phenotypes y. The residual structure was divided
into spatially dependent and independent parts [46] as
follows:

R = o} [ARL(peot) Q) ARL(prow)] +05 T

where 03 is the spatially dependent variance, AR1(p) is
the first-order autoregressive correlation matrix, ) is the
Kronecker product and 082 is the spatially independent
residual variance. Alternatively, the model was updated
for including additive genetic effects to estimate narrow
sense heritability, as follows:

y=XB+Za+Zg +Zb+e

where a is the vector of random additive genetic effects
following var(a)NN(O,Aaj), where A is the average
numerator relationship matrix [69] and 03 is the additive
genetic variance. In this model, g’ is the vector of random
non-additive genetic effects following var(g’)NN(O,Iag%),

where 02 is the non-additive genetic variance. All other
terms in the model remained unchanged.
The narrow sense heritability was estimated as follows:
=2
o 0
G} +35, +52

and broad-sense heritability was estimated as follows:

~2
02— 9%

T =2, =2
Ug—|—0'e

The single-step genomic evaluation was performed
using a mixed linear model based on a Gibbs sampling
algorithm implemented in "BGLR" R package [70] as fol-
lows:

y=XB+Zu+e

where y is the vector of genotypic effects estimated in
the previous step, B is the overall mean assigned with a
flat prior, u is the vector of genomic estimated breeding
values following var(u)~MVN(0,Ho?2), where o2 is the
marker-based additive genetic variance with prior density
following the default setting of ~ x ~2(df=5, S=var(y)*0.5),
and H is the relationship matrix, incorporating informa-
tion from both the pedigree and genomic markers, and is
constructed as follows:

H— [Au + A1243, (Gy — A22)A3)} Az A12A3; Gy }
GuwAy  An Gw

where Aj; is the pedigree-based relationship matrix for
non-genotyped individuals, A2 is the pedigree-based
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matrix for genotyped individuals, Aj2 and Az are the
pedigree-based matrices between genotyped and non-
genotyped individuals, G,, is the rescaled and weighted
marker-based relationship matrix. The marker-based rela-
tionship matrix was estimated according to [71] as follows:

z7'
G= —————
23pi(1—p))

where Z = M - P, M is the genotype matrix with the ref-
erence allele homozygote coded as 0, a heterozygote as 1
and the alternative allele homozygote as 2 (reference and
alternative alleles are defined relative to the Pinus taeda
reference genome v. 1.01e [72]) and P is double the fre-
quency for the alternative allele. Since the marker-based
relationship matrix is reflecting both contemporary relat-
edness, as defined by the documented pedigree, and his-
torical relatedness, that existed prior to the development
of the base population as defined by the pedigree [18, 73],
therefore on a different scale to the pedigree-based rela-
tionship matrix. Therefore, rescaling of the marker-based
relationship matrix was required. We adopted the rescal-
ing approach developed in Gao et al. [74] as follows:

Avg.diag(G)p + o = Avg.diag(Aa2)
Avg.offdiag(G)B + o = Avg.offdiag(Az2)

The marker-based relationship matrix is often not pos-
itive semi-definite, which is one of the requirements of
mixed linear models for covariance structures, and thus
the weighting of information derived from genomic mark-
ers and pedigree has to be performed. We defined a
weighting of 0.05 for pedigree information as our default
scenario (HBLUP), however, all other weighting scenarios
were tested at 0.1 increments to determine the optimal
weighting for each separate trait (HBLUP1). Weighting
scenarios were evaluated on the basis of Deviance Infor-
mation Criterion (DIC) which is equivalent to Akaike’s
Information Criterion (AIC) in the Bayesian framework
(lower value represents better model fit). The weighting
of marker-based and pedigree-based relationship matrices
was performed as follows:

G, =G —w)+ Apw

where w is the proposed weighting for the pedigree-based
relationship matrix. Similar to the vector u, e is the vector
of residual effects following var(e)~MVN(0,I 062), where I
is the identity matrix and o2 is the residual variance with
a prior density following the default setting ~ x ~2(df=5,
S=var(y)*0.5). The number of iterations was set to 120,000,
burnln to 20,000, and thinning set to 10. Additionally, the
same mixed linear model was performed using pedigree-
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based relationship matrix [69] instead of H matrix to
investigate pedigree-based scenario (ABLUP).

Independent evaluation of the prediction model was
performed through 10-fold cross-validation, where one
tenth of individuals were iteratively defined as the val-
idation population, and all the phenotypes from these
individuals were masked as missing values. Predicted val-
ues from these individuals were then correlated with both
genotypic values to determine predictive ability (PA) and
with pedigree-based estimated breeding values to deter-
mine prediction accuracy (rl). Alternatively, the predic-
tion accuracy (r2) was estimated as follows:

_ cor(GEBV, )
V2

where the nominator is the predictive ability (correla-
tion between predicted genomic breeding values and cor-
rected phenotypes) and the denominator is the square
root of the heritability [75]. The heritability used in the
estimate of the prediction accuracy (r2) was inferred from
the model using a spatial analysis due to better model fit.
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