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Abstract

at plant physiological level.

under exogenous treatment of NaBiF4 nanoparticles.

Background: Nanoparticle causes soil pollution, which affected plant development and then resulted in biomass
decreased, especially in crops. However, little is known how sodium nanoparticles affect wheat root development

Results: We used NaBiF, (size of 50-100 nm) to analyze the effect in wheat development at plant physiological
level. Under exogenous application of 50 uM NaBiF, for treatment, wheat root elongation was inhibited, but fresh
weight and dry weight were increased. We also found that NaBiF, induced that the plant had lower content of
sodium than negative control. Used no-sodium nanoparticle of BiF; for another negative control, it was also
supported that NaBiF4 entered into cell to replace of sodium and exported sodium out of plant. These results
implied NaBiF, might induce sodium export to maintain the balance between sodium and potassium elements.
Additionally, metabolism analysis demonstrated that SOD activity was increased, but CAT and POD activity reduced

Conclusions: Sodium nanoparticles (NaBiF,) inhibited plant development by nanoparticle accumulation and
sodium homeostasis broken, and then involved reactive oxygen species (ROS) signaling system response. These
results provided more sights of sodium nanoparticle effect in plant development.
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Background

In the past several decades, the world’s population has
been increased year by year. And cereal production simi-
larly increased from 1.2 billion tons in 1969 to 2.8 billion
tons in 2014 (FAOSTAT 1. data). Environmental factors
play an essential role in crop plants development, such
as temperature, light, drought, soil quality, nutrition,
nanoparticles and so on. Environmental pollution, espe-
cially in soil, caused the crops production reduced due
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to affect root activity and impeded substance transport
activity.

Many nanoparticles contribute to their promising suit-
ability for solar cells, drug delivery, temperature sensors,
indoor illumination, and field emission displays. Once
nanoparticle is taken in through root pathway, it re-
sulted in beneficial or opposite effect in plant develop-
ment. Until now, several nanoparticles have been
reported on the interactions with the plants, including
carbonaceous nanomaterials (fullerenes and nanotubes),
metal oxides, zero-valent metals, nanopolymers, QDs
and other NPs (Ni(OH), and NaYF,) [1-8]. Actually,
nanoparticles are different with nutrition, which are
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assimilated by root as anion or cation type. Base on the
nanoparticle physical characteristic of composition, size,
concentration and coating of nanoparticle, it plays differ-
ent roles. To some degree, high concentrations or low
concentrations of nanoparticles have opposite functions
in plant development, as inhibited or promoted plants,
respectively. Nevertheless, magnetic Fe;O, even at the
concentration of 2 mM does not cause serious injury in
pumpkin (Cucurbita maxima) [9]. These positive effects
of nanomaterials on plants were mainly reported for Au
or Ag nanoparticles, Cu nanoparticles, Al related nano-
particles, TiO, nanoparticles, CeO, nanoparticles, SiO,
nanoparticles and carbonnanotubes [10-15].

Always, most of high concentrations of the nanoparti-
cles caused phytotoxicity by toxic ions, cell or tissue
damage, production of excess ROS, catalytic reactions
[16-20]. To detect nanoparticles in the plant tissues,
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there are several different detection mechanisms of
nanoparticles, such as fluorescence signaling, QDs, in
situ analysis, nanoparticles color and so on [21]. Until
now, little is known how nanoparticle affects crop plant
development at metabolism level.

Wheat (Triticum aestivum L.) is one of the most im-
portant crop plants in the world, which supports the 1/3
of the food for human. Previously, it was reported that
TiO, nanoparticles with diameters ranging from 14 nm
to 655 nm, were accumulated in wheat root. And TiO,
nanoparticles did not affect wheat seed germination, bio-
mass and transpiration [22]. As the nanoparticles enter
into plant cell, there are several different pathways for
transport, such as: vascular system, membrane system,
plasmodesmata system and so on. Base on the size of
pathway in vascular, membrane, plasmodesmata or other
system, we found nanoparticle size from 50 to 100 nm
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Fig. 1 Effect of NaBiF, nanoparticle in wheat development at seedling stage. a Images of wheat plants grown in MSO medium with various
concentrations of NaBiF4 nanoparticles at 10 DAG. Bar =1 cm. b Primary root length as a function of DAG. ¢ Fresh weight treated with different
NaBiF, nanoparticles at 10 DAG. d Dry weight treated with different NaBiF, nanoparticles at 10 DAG. Error bars represent standard error for at
least 5 samples. Values in the same column with different letters are significantly different (P < 0.05)
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Fig. 2 Cross section images of the wheat root tip treated with50 uM NaBiF,Eu** nanoparticles at 4 DAG: a Bright channel, b RFP channel and ¢
merged channel. Cross section images of the wheat root tip cultivated in MSO medium without nanoparticles at 4 DAG: d Bright channel, e RFP

only depended on membrane. Previously, we used
NaBiF, and BiF; for analysis the roles in rice root devel-
opment [23, 24]. We found that NaBiF, inhibited rice
root elongation, but promoted more crown root forma-
tion. We analyzed several ROS signaling genes, which
displayed transcript level of OsOVP1, OsNIP2:1, and
OsMT2 was reduced, but expression of OsMT2b in-
creased [24]. Exogenous application of nanoparticle of
BiFsfor treatment, which did not reduce rice root elong-
ation, but not mediate OsOVPI, OsNIP2:1, OsMT2, and
OsMT2b transcript level changed [23]. Because the com-
position of these two nanoparticles, only one element
(sodium) shows difference, which might interrupt the
native balance system, for example, homeostasis of
sodium-potassium balance.

Plants generally maintain a stable K'/Na* ratio and a
negative electrical membrane potential difference across
the plasma membrane under a normal physiological
state. Na™ enters into the roots through different chan-
nels and transporters [25]. However, if the balance was
broken, plant may start ROS response reactions. In this
study, we found that wheat root was much more sensi-
tive to NaBiF, nanoparticles than BiF3 nanoparticles in

root development, which caused the balance of sodium
potassium pump affected.

Results

Effect of nanoparticles on the wheat root development
To analyze the effect of synthesized nanoparticles in
wheat root development, wild type (WT) (Triticumaesti-
vum L cultivar Yangmai 13) were grown in MS medium
without sucrose (MS0), but with multiple concentrations
of NaBiF, nanoparticles. The images of the cultivated
wheat were shown at 10 days after germination (DAG)
in Fig. 1a. As demonstrated, the development of wheat
root was significantly reduced by the 50 uM concentra-
tion of nanoparticles. Clearly, compared with that of the
wheat grown on MS0O medium without nanoparticles as
a negative control (Mock), the elongation speed of pri-
mary roots was much slower for the seedlings treated
with 50 pM concentration of NaBiF, nanoparticles (WT-
HT) (Fig. 1b). And the length of WT-HT root reduced
about 57.14%. Nevertheless, when the concentration of
nanoparticles was declined to as low as 20 pM (WT-LT),
the length of the primary roots was not significantly
changed compared with the Mock (Fig. 1a-b). When the
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Fig. 3 Sodium and potassium concentration of NaBiF, nanoparticle treatment in wheat development. a Sodium concentration under different
NaBiF, nanoparticles treatment. b Potassium concentration under different NaBiF, nanoparticles treatment. Error bars represent standard error for
at least 5 samples. 20 uM NaBiF, (20 uM).50 uM NaBiF, (50 uM). Values in the same column with different letters are significantly
different (P < 0.05)

seedlings plants were treated with high concentration of
NaBiF, nanoparticles, the fresh weight and dry weight
were measured. Interestingly, although the primary root
elongation was inhibited, the fresh weight and dry
weight were increased up to 131.25 and 130%, respect-
ively (Fig. 1c-d). Here, we also used BiF3 nanoparticles as
another controls, these data indicated that 50 pM NaBiF,
nanoparticles induced wheat biomass accumulation.

Nanoparticles caused sodium export from wheat seedling
plant

Previously, we reported that NaBiF, nanoparticles caused
rice root elongation inhibited due to phytotoxicity [24]. Eu
acts as one type of earth element, which was visualized as
red emission in the RFP channel. And, the NaBiF Eu®*
nanoparticles not only emitted dazzling visible red emission
under the NUV excitation but also exhibited similar charac-
teristic as the NaBiF, nanoparticles in rice [24]. To get deep
insight into the location of the nanoparticles, the cross sec-
tion of root tip further confirmed that the NaBiF Eu®*
nanoparticles were distributed in the cells (Fig. 2a-c). Simi-
larly, the negative results did not have any obvious signals
in the wheat root grown in the MSO medium (Fig. 2d-f).
These results demonstrated that nanoparticles were accu-
mulated in root tip. These results were similar with in rice,
as the previous reported (Du et al., 2018).

Multiple factors affect ROS signaling response by
phytotoxicity, such as sodium stress, nutrition transport
disrupt, and so on. To further understand the mechan-
ism by nanoparticles treatment, we measured sodium
concentration. We found wheat seedling by 50uM
NaBiF, nanoparticles treatment had lower level of so-
dium (71.874%) than Mock, but 20 pM NaBiF, nanopar-
ticles treatment was not significant changed (Fig. 3a).
Here, we used potassium content for negative control,
which demonstrated that there were no obvious changed
(Fig. 3b) in these three groups. It implied that NaBiF,
nanoparticles entered into cell resulted in less sodium in
cell. Meanwhile, NaBiF, nanoparticles induced sodium
export from cell.

To further confirm this hypothesis, we used 50 pM
NaBiF, nanoparticles treatment for the similar experiments.
And the solution used water to instead of MSO medium in
case sodium contamination from MSO medium. With the
treatment of NaBiF, nanoparticles, sodium concentration
was decreased about 81.39% compare with negative control.
Also, we measured the sodium content in left solutions, so-
dium under NaBiF, nanoparticles treatment had more than
WT-CK (137.5%). And we also measured potassium con-
centration that there was no affected in Fig. 4b-d. This
stated clearly that NaBiF, nanoparticle caused extra sodium
export out of plant into solution.
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Fig. 4 Sodium and Potassium concentration of NaBiF, and BiF; nanoparticle treatment in wheat development. a Sodium concentration under
different NaBiF, nanoparticles treatment in wheat. b Potassium concentration under different NaBiF, nanoparticles treatment wheat. ¢ Sodium
concentration under different NaBiF, nanoparticles treatment export from cell into water. d Potassium concentration under different NaBiF,

nanoparticles treatment export from cell into water. Error bars represent standard error for at least 5 samples. Values in the same column with

Additional, this phenotype might due to Bismuth (Bi)
or Fluorine (F). we chose another nanoparticle BiF; for
synchronization. Exogenous application of 50 uM nano-
particle BiF;, which does not have sodium, did not in-
hibit root elongation in rice (Du et al., 2018a), as well as
in wheat (Fig. 1). Also, with 50 uM BiF3 nanoparticles
for treatment, sodium and potassium concentrations in
plant were not affected in plant and export solutions
(Fig. 4a-b). It further demonstrated that NaBiF, dis-
placed the sodium in cell to maintain the balance of so-
dium and potassium.

ROS metabolism due to nanoparticles
As deduced above, less sodium and much NaBiF, nano-
particles entered into plant cells, which might affect cell

metabolism reaction (phytotoxicity). This reaction in-
cludes two parts: affect sodium content, and xenobiotic
substance, which induced by the nanoparticles might be
the main factor to affect the development of the wheat
roots. To response the phytotoxicity, several ROS system
metabolism could be response to the wheat root, such as
the superoxide dismutase (SOD), catalase (CAT), and
peroxidase (POD) [11]. To better comprehend the nano-
particles induced phytotoxicity in the wheat root, the ac-
tivity level of SOD, CAT, POD to several phytotoxicity
related metabolism were analyzed in Fig. 5a-c. Com-
pared with Mock, the activity of the SOD was much
higher in these wheat roots treated with the NaBiF,
nanoparticles (50 uM), as well as treated with the BiF3
nanoparticles (50 uM). Noted that, with the treatment of
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the resultant nanoparticles, the activity level of the CAT
and POD were reduced (Fig. 5b-c). Since the nanoparti-
cles treated to the seedlings exhibited higher activity of
SOD, and then lower activity of CAT and POD involved,
it were expected to response to ROS system.

Discussion

As the industry development, soil contaminated day by
day due to heavy metal, salinization, nanoparticles accu-
mulation. Previously, we used multiple concentrations of
NaBiF, and BiF; for exogenous application to another
crop plant (rice) for treatment. These results demon-
strated that high content (100 uM) of NaBiF, caused tox-
icity by the root length reduced and more crown root
number. For the particles location, it is accumulated at
division and elongation zone. Further phytotoxicity related
genes, transcript level of OsOVPI, OsNIP2;1, and OsMT2
was reduced and OsMT2b increased [24]. Similar content
ofBiF; exogenous treatment with NaBiF, to rice did not
show any obvious phenotype, although BiF; also located
at root tip, as NaBiF, [23]. It implied that NaBiF, and BiF;
have significant and different roles in plant development.
In this study, we reported that same unsoluble nanoparti-
cles, NaBiF, and BiF3, which affected wheat development
similar with in rice. Exogenous application of 50 uM
NaBiF, caused root length decreased, but BiF; not. Inter-
estingly, higher activity of SOD and lower of POD by the
treatments of NaBiF, and BiF; nanoparticles, reduced
CAT activity by NaBiF,, which demonstrated that both
NaBiF, and BiF; affected ROS response reaction by tissue
or cell abnormal in wheat root. Previously, Wang reported
that nanoparticles caused phytotoxicity might due to (i)
the dissolution and release of toxic ions; (ii) size- or
shape-dependent mechanical damage and clogging; (iii)
the production of excess ROS; (iv) binding interactions
caused surface reconstruction of biological molecular
structures; (v) oxidation of biomolecules through catalytic

reactions [21]. Compare with BiF3 nanoparticles, NaBiF,
has one more element of sodium. We found less sodium
concentration in plant than control, as well as used BiF3
treatment for negative control. Meanwhile, the reduced
the sodium exported from the tissue into the solutions. It
means that NaBiF, play as sodium might cause sodium
and potassium balance, BiF3 acts as one type of the ex-
ogenous substance, which might due to tissue damage and
pathway clogging [21]. These results, above, indicated that
NaBiF, nanoparticles resulted in wheat root toxicity both
in NaBiF, accumulation in root and sodium export out of
plant, as depicted as Fig. 6a. And BiF; nanoparticles can
also induce ROS signaling response only in BiF; accumu-
lation in root (Fig. 6b).

Conclusion

Previously, we found that NaBiF, accumulated at rice
root elongation zone, and then induced ROS system sig-
naling response by several genes transcript level affected,
such as, OsOVPI1,0sNIP2;1,0sMT2, and OsMT2b. Here,
we used another crop plant, wheat, to further analyze
these phytotoxicity reactions from plant physiological
level. As the root assimilated NaBiF, nanoparticle into
cell, stable sodium from nanoparticle caused sodium ex-
port from root cell and then move into growth solution.
Due to nanoparticle accumulation and less floating so-
dium level for plant physiological reaction, ROS related
metabolism reactions were induced, which generated
higher activity of SOD, and then lower activity of CAT,
and POD. In the future, we will further analyze how
nanoparticles move into cell.

Methods

Plant materials

The wheat cultivars selected in this study was Wheat
(Triticum aestivum L. ‘Ningmail3’), which were pro-
vided by the Lixiahe Agricultural Research Institute.
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Synthesis of NaBiF,; and BiF; nanoparticles

High-purity powders of NaNOj, Bi(NOj3);-5H,0, and
NH,F acted as the raw materials to prepare the nanopar-
ticles [23]. To prepare the NaBiF, nanoparticles, two so-
lutions were prepared. BiF;, NaBiF, BiF3:Eu®" and
NaBiF4Eu®" were synthesized previous reported [23, 24].

Determination of K* and Na* concentrations
The K* and Na® concentrations were measured as de-
scribed previously [26-28].

SOD, CAT, POD assay

The activities of SOD, CAT, and POD activity of wheat
root was measured as described previously [29, 30].4 day
after germination, the seedling wheat plants were move
to 50 uM NaBiF,and BiF3; nanoparticles water solution
for 3 days. About 100 mg of mixed material were har-
vested and ground in liquid nitrogen to a fine powder
and then homogenized in 5 ml 10 mM PBS (pH 7.0) con-
taining 1% PVP (w/v), 1 mM PMSF, 0.1% Triton-X100
(w/v) and 0.1 mM EDTA. The extraction was performed
at 4°C. After centrifugation at 12,000 g for 20 min, the
supernatant solution was used as the preparation for in-
dividual enzyme activity. Then SOD and CAT activity
were measured by spectrophotometer at 560 nm and
240 nm, respectively. The adrenochrome formation in
the next 3 min was recorded at 470 nm in a UV-V is
spectrophotometer.

Statistical analysis
The experimental data was performed using t-test at a
probability significance level of P < 0.05 in SPSS.
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