Batyrshina et al. BMC Plant Biology (2020) 20:19

https://doi.org/10.1186/512870-019-2214-z BMC Pla Nt BIO | Ogy

RESEARCH ARTICLE Open Access

Comparative transcriptomic and metabolic ®
analysis of wild and domesticated wheat
genotypes reveals differences in chemical
and physical defense responses against
aphids

Zhaniya S. Batyrshina', Beery Yaakov', Reut Shavit', Anuradha Singh' and Vered Tzin'#"

Check for
updates

Abstract

Background: Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage
and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent
compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether
both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against
aphids—an economically costly pest in cereal production.

Results: In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three
selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat
genotypes: two tetraploid wheat genotypes, domesticated durum ‘Svevo’ and wild emmer ‘Zavitan,” and one
hexaploid bread wheat, ‘Chinese Spring.’ The full transcriptomic analysis revealed a major difference between the
three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two
domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the
genes associated with primary metabolism, as well as the pathways associated with defense such as
phytohormones and specialized metabolites, were different between the three genotypes. Measurement of
benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two
domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the
benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated
wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese
Spring is more resistant than the tetraploid genotypes.

Conclusions: Our results show that benzoxazinoids play a more significant defensive role than trichomes.
Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in
which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical
defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
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Background

Crop plants are continually exposed to different environ-
mental stress conditions, such as herbivore infestation
[1]. Insect herbivory is a crucial factor in yield loss and
quality degradation in agricultural crop production.
Average losses can reach 20-30% of yield, and in some
cases, they can cause a total yield loss [2]. One of the
most economically significant herbivores is found in the
aphid family (Hemiptera: Aphididae) [3], a piercing-
sucking pest that feeds on the phloem sap. Aphid infest-
ation causes direct damage by consumption of water and
nutrients, as well as indirect damage by plant virus
transmission [4—6]. In response to insect infestation,
plants produce constitutive and inducible defenses to
reduce damage and enhance their own fitness [7]. Al-
though many plant defenses are produced constitutively
during a specific developmental stage, regardless of
insect attack, others are inducible in response to insect
damage. Examples of herbivore-induced defense mecha-
nisms are the accumulation of toxic chemicals such as
benzoxazinoids, glucosinolates, and alkaloids, which are
classes of specialized metabolites that function as deter-
rents. Another mechanism is mechanical defense, in-
cluding physical barriers such as the increased density of
thorns, spikes, or trichomes [8—13]. Most of the toxic
defenses are abundant in young seedlings and decrease
during development toward the juvenile stage [14—16].
The herbivore-induced mechanisms are mediated by the
modification of signaling (i.e, jasmonic and salicylic
acid) [17], which allows the plants to conserve metabolic
resources and energy to be directed toward growth and
reproduction in the absence of insect herbivory.

Wheat is a staple crop that provides 20% of the world
population’s caloric and protein intake [18]. It was first
domesticated more than 10,000 years ago, making it one
of the earliest domesticated crops [19]. The process of
domestication, centuries of cultivation, and modern
wheat breeding have led to the reduction or narrowing
of genetic variation compared to their wild ancestors
[20]. This reduction is due to the small initial crop
population, coupled with intense selection for agronomic
traits, considered as a “domestication bottleneck” [21,
22]. Adaptation of domesticated wheat and wheat var-
ieties to local conditions intensified the reduction, giving
rise to landrace cultivars [23]. Moreover, the cultivation
of a germplasm with a narrow genetic base entails a risk
due to genetic vulnerability to biotic and abiotic stresses,
possibly resulting in severe crop losses. By using wild
relatives of wheat as a proxy, the genetic diversity of
agriculturally important traits can be contrasted before
and after domestication [21]. It has been suggested that
several agriculturally important traits, such as biotic and
abiotic stress resistance, significantly decreased during
wheat domestication [24, 25]. This lowered resistance,
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reported for responses to herbivore attack [26, 27],
bacterial blight [28], and fungal disease [29], was re-
vealed in domesticated members of the plant families
Fabaceae and Brassicaceae [25]. In contrast, increased
resistance of domesticated wheat to aphids was also
reported [30]. It was suggested that the tuning of
plant domestication defense mechanisms is dependent
on pest feeding habits [31].

Integration between transcriptomic and metabolic
datasets is commonly used to expose how insects may
modify their host plant to their advantage [32, 33]. In
this research, we investigated the differences in the tran-
scriptome and metabolome of wheat seedlings, and we
studied the effect on the chemical and physical defenses
against Rhopalosiphum padi aphids. The variation be-
tween Triticum species for cereal aphid resistance has
demonstrated the potential of using tetraploid wheat to
reveal plant defense mechanisms [34—36]. Therefore, we
focused our research on three representative wheat
genotypes: i) Svevo, a tetraploid durum wheat cultivar
(Triticum turgidum ssp. durum), ii) a wild emmer,
Zavitan, a tetraploid ancestor of modern domesticated
tetraploids (Triticum turgidum ssp. dicoccoides); both
tetraploids have been intensively investigated as potential
sources for resistance genes and markers [30, 37]; and
iii) the spring wheat genotype Chinese Spring, which is
widely used as a reference genome and for cytogenetic
studies [20, 38—-43]. We investigated young wheat seed-
lings (11-18days old), which produce high levels of
chemical and physical defenses. The chemical deterrent
metabolites (benzoxazinoids) and the physical defenses
(trichomes) were analyzed and compared with R padi
aphid reproduction. Altogether, this study evaluates the
dynamics of defense mechanisms in response to aphid
attack.

Results

Overview of the transcriptomic dataset differences
between the three wheat genotypes

To investigate the global transcriptomic profile of the
three wheat genotypes, leaves from 11-day-old seedlings
were collected from genotypes with the same phenology
(two-leaf stage; Additional file 2: Figure S1). A compari-
son of transcriptomic data was performed with anno-
tated gene models found in the Chinese Spring reference
genome sequence [20, 38], and the mapped sequence
reads showed high similarity between the genotypes:
Svevo, 95.85%; Zavitan, 94.68%; and Chinese Spring,
96.72% from the total mapped reads (Additional file 1:
Table S1). Due to differences in the number of subge-
nomes, we eliminated all the transcripts that were anno-
tated to the D subgenome or an unidentified subgenome
(U). This analysis revealed 42,474 transcripts (Additional
file 1: Table S2). The total transcript levels were used to
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conduct a principal component analysis (PCA) plot. As
presented in Fig. 1, the PCA plot indicated that samples
from each genotype were clustered with one another,
while the genotypes were totally separated from each
other, with component 1 (45%) showing a separation of
Chinese Spring from the tetraploid wheat genotypes, and
component 2 (36%) separating the wild (Zavitan) and
cultivated (Svevo and Chinese Spring) wheat genotypes.
Overall, the transcriptomic analysis of the three geno-
types showed a unique pattern for each one.

Clustering of expression patterns and pathway

enrichment and gene ontology in the transcriptomic data
In order to detect differentially expressed genes in the
RNA-seq data, the number of sequences associated with
each gene (counts) for each sample was used to statisti-
cally compare between- and within-condition variability,
by a negative binomial generalized linear model, using
the R package DESeq2. The DESeq2 output, compared
using the likelihood ratio test (LRT), was subjected to an
rlog transformation, and the resulting heatmap clearly
divided the overall transcriptional profiles of the two
cultivated genotypes (Svevo and Chinese Spring) from
the wild genotype (Zavitan), presented in Additional file
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Fig. 1 A principal component analysis (PCA) of the three wheat
transcriptomic datasets. The PCA plot comprises 42,474 genes
identified by transcript profiling (RNA-seq) of the three wheat
genotypes, Svevo, Zavitan, and Chinese Spring, as 11-day-old
seedlings (n=13)
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2: Figure S2. The analysis of differentially expressed
genes (g-value < 0.05; |log, (fold change)| > = 1) resulted
in 8735 unique transcripts. We estimated the cluster
number of the results using clusGap [44], which sug-
gested dividing the data into eight clusters. The k-means
analysis was performed on scaled and centered rlog
values, and each cluster is represented by the Z-score
(standard score) of gene expression from the set of genes
showing similar response patterns in the three wheat ge-
notypes (Fig. 2). The eight clusters were divided into five
expression groups, derived from trends observed in the
standard scores: i) Clusters 1 and 2: genes with a higher
level in Zavitan than in Svevo and Chinese Spring. Clus-
ter 2 presents genes with a higher Z-score than Cluster
1. ii) Clusters 3 and 4: genes with a lower level in Zavi-
tan than in Svevo and Chinese Spring. Cluster 4 presents
genes with a lower Z-score than Cluster 3. iii) Clusters 5
and 6: genes with moderately lower levels in Svevo than
in Zavitan and Chinese Spring. Cluster 5 presents genes
with a higher Z-score than Cluster 6. iv) Cluster 7: genes
that have lower levels in Zavitan than in Svevo and
Chinese Spring. v) Cluster 8: genes that have lower levels
in Chinese Spring than in Svevo and Zavitan (Fig. 2).
The distribution of genes into the eight clusters is
presented in Additional file 1: Table S3.

To elucidate the metabolic processes, an over-
representation pathway enrichment analysis was per-
formed on each cluster using MetGenMAP [45], using
rice orthologues (LOC gene ID; Additional file 1: Table
S4). Table 1 describes the significantly enriched path-
ways of each cluster. The pathways that were signifi-
cantly enriched in Clusters 1 and 2 (high in Zavitan)
were mainly associated with polyamine biosynthesis and
sugar degradation. The genes related to threonine and
homoserine biosynthesis, phenylpropanoid biosynthesis,
cell structure biosynthesis (cellulose) phospholipases,
and ascorbate biosynthesis were associated with low ex-
pression in Zavitan (Clusters 3 and 4). The pathways
that were significantly enriched in Clusters 5 and 6
(slightly low in Svevo) were mainly associated with the
isoprenoid phosphate pathway, glycine, and glycerol
degradation, brassinosteroid, jasmonic acid (13-lipoxy-
genase; 13-LOX) and gibberellin phytohormone
biosynthesis, N-acetylgalactosamine biosynthesis, TCA-,
Calvin-, and y-glutamyl cycles and sugar degradation.
The pathways that were significantly enriched in Cluster
7 (slightly low in Zavitan) were mainly associated with
glutathione, P-alanine, methionine, homocysteine, and
cysteine biosynthesis, as well as gluconeogenesis,
tyrosine degradation, phospholipid desaturation, and
fatty acid p-oxidation. Additionally, pathways that
were significantly enriched in Cluster 8 (slightly low
in Chinese Spring) were mainly associated with phy-
tohormone cytokinin biosynthesis. Together, these
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Fig. 2 Gene expression patterns of the three wheat genotypes divided into eight clusters. A one-way ANOVA was performed on the
transcriptomic dataset of the three wheat genotypes, Svevo, Zavitan, and Chinese Spring, as 11-day-old seedlings (n = 3). The analysis revealed a
total of 8735 unique transcripts with significant expression profile changes for at least one wheat genotype. The k-means analysis was performed
on scaled and centered rlog values, and it is represented by the Z-score. The total number of transcripts in each cluster is indicated, and the data
for individual genes are shown in light gray. The expression responses for each cluster are shown in black. The names of each individual sample

observations indicate a unique gene expression for
each wheat genotype that involves diverse pathways
from primary and secondary metabolites, phytohor-
mones, oxidation state, and cell wall.

To determine which gene ontology categories were
represented, we conducted a Singular Enrichment
Analysis (SEA) using agriGO v2 [46], with default pa-
rameters. The International Wheat Genome Sequencing
Consortium (IWGSC) database gene IDs were used as
background in the SEA. In Additional file 1: Table S5,
the GO terms of the biological processes of all eight

clusters are presented in pairs. In Cluster 5 for example,
the comparison between Zavitan-Svevo and Zavitan-
Chinese Spring revealed biological processes related to
isoprenoid biosynthesis, lipid metabolism, oxidation-
reduction process, photosynthesis, and tetrapyrrole
metabolism. The results of Cluster 5 are partially redun-
dant with the pathway enrichment results (Table 1),
regarding the lipid/13-LOX biosynthesis and the iso-
prenoid biosynthesis. The functional enrichment terms
in this cluster are the most consistent with the differ-
ences in defense adaptations between the three
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Table 1 Enrichment analysis of metabolic pathways significantly over-represented in the three wheat genotypes
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Gene expression pattern Cluster number Pathway Description P value
High in Zavitan 1 acyl-CoA thioesterase pathway 1.05E-02
sucrose degradation 1.29E-02
starch degradation 1.87E-02
3-D-glucuronide degradation 4.19E-02
2 superpathway of polyamine biosynthesis 2.06E-02
{3-alanine betaine biosynthesis 3.56E-02
Low in Zavitan 3 threonine biosynthesis from homoserine 2.44E-02
flavonoid biosynthesis 2.73E-02
phenylpropanoid biosynthesis 3.37E-02
de novo biosynthesis of pyrimidine deoxyribonucleotides 4.06E-02
4 cellulose biosynthesis 2.70E-03
trehalose degradation (high osmolarity) 1.47E-02
phospholipases 1.76E-02
ascorbate biosynthesis 2.24E-02
Slightly low in Svevo 5 isopentenyl diphosphate biosynthesis 3.52E-04
glycine cleavage complex 7.60E-03
divinyl ether biosynthesis Il (13-LOX) 141E-02
13-LOX and 13-HPL pathway 141E-02
brassinosteroid biosynthesis 2.62E-02
glycerol degradation 345E-02
reductive TCA cycle 4.88E-02
6 brassinosteroid biosynthesis 1.29E-03
UDP-N-acetylgalactosamine biosynthesis 391E-03
UDP-glucose conversion 4.78E-03
Calvin cycle 4.78E-03
GDP-L-fucose biosynthesis | (from GDP-D-mannose) 5.53E-03
NAD salvage pathway |I 9.16E-03
UDP-galactose biosynthesis 1.10E-02
ent-kaurene biosynthesis 1.17E-02
dTDP-L-rhamnose biosynthesis 1.95E-02
superpathway of GA12 biosynthesis 2.10E-02
galactose degradation 2.22E-02
y-glutamy! cycle 2.55E-02
GDP-D-rhamnose biosynthesis 4.59E-02
Slightly low in Zavitan 7 glutathione biosynthesis 1.91E-04
B-alanine biosynthesis 3.66E-03
gluconeogenesis 5.68E-03
tyrosine degradation 5.82E-03
phospholipid desaturation 1.87E-02
fatty acid B-oxidation 3.98E-02
glycolipid biosynthesis 411E-02
methionine biosynthesis 4.11E-02
homocysteine and cysteine biosynthesis 4.77E-02
Slightly low in Chinese Spring 8 cytokinins biosynthesis 148E-03

Gene expression patterns were sorted into eight clusters, as determined by a k-means analysis of transcripts detected in the three wheat genotypes,

and analyzed using a MetGenMAP pathway enrichment analysis [45]
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genotypes. Other clusters included functions such as the
organic acid metabolic process, the cellular amino acid
metabolic process, cell redox homeostasis and metal ion
transport (Cluster 7), the oxidation-reduction process
(only differentially expressed genes of Svevo vs. Chinese
Spring; Cluster 6), and the phenylalanine catabolic
process (only differentially expressed genes of Svevo vs.
Zavitan; Cluster 3). The remaining clusters included
functional enrichment terms, such as protein phosphory-
lation, lipid transport, and recognition of pollen.

Characterization of metabolic and physiological
differences between the three wheat genotypes
Several pathways related to central metabolism, such as
carbohydrate, amino, and fatty acids and the TCA cycle,
showed variation in gene expression between the three
genotypes (Table 1). Therefore, we performed a
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metabolic analysis of 11-day-old wheat seedlings using
gas chromatography-mass spectrometry (GC-MS). This
analysis revealed the relative levels of 72 metabolites, in-
cluding amino acids, organic acids, sugars, and sugar al-
cohols (Additional file 1: Table S6). Table 2 shows the
relative levels of 24 significantly different metabolites
using a one-way-ANOVA. The results indicated that
three aromatic amino acids, organic acids, and sugars
were significantly lower in Svevo. Other metabolites
showed no significant differences and are presented in
Additional file 1: Table S6.

Both the pathway enrichment analysis of Cluster 2
(Table 1) and the GO terms of Cluster 5 (Additional file
1: Table S5) revealed that genes related to polyamine
biosynthesis and the oxidation-reduction process are
differently expressed between the three genotypes. Poly-
amines serve as substrates for oxidation reactions that

Table 2 Analysis of the central metabolites in the three wheat genotypes detected by gas chromatography-mass spectrometry

(GC-MS)
Svevo Zavitan Chinese Spring one way ANOVA
Class Metabolite (relative abundance  Average +/— SE Average +/—- SE Average +/— SE Fvalue P value
of the ion counts) (FDR)
Amino acid Aspartic acid 941 +/- 048 ab 2023 +/- 760 a 567 +/- 087 b 6l 5.0E-02
Phenylalanine 070 +4/- 007 b 213 +/- 077 a 059 +/- 005 b 76 3.5E-02
Tryptophan 001 4/~ 000 b 005 +/~ 002 a 002 +/- 001 ab 84 32E-02
Tyrosine 002 +/- 001 b 010 +/— 003 ab 014 +/— 004 a 6.2 4.8E-02
Organic acid  Citric acid 540 +/- 032 b 1703 +/- 609 a 473 +/- 046 b 81 33E-02
Fumaric acid 028 +/- 002 b 103 +/- 028 a 04 +/- 006 b 117 14E-02
Gluconic acid 014 +/- 001 b 099 +/— 039 a 0.30 +/— 002 b 90 3.0E-02
Glyceric acid 192 +/- 011 b 557 +/- 188 a 446 +/- 057 ab 63 4.8E-02
Hexadecanoic acid 395 +/- 035 b 1222 +/- 209 a 598 +/- 124 b 126 1.3E-02
Hydroquinone 015 +4/- 001 b 038 +/- 01 a 014 +/- 002 b 83 3.2E-02
Malic acid 551 +/—- 052 b 1882 +/— 477 a 7.15 +/— 071 135 1.2E-02
Octadecanoic acid 492 +4+/- 039 b 1430 +/- 228 a 7.23 +/— 091 18.7 7.2E-03
Quinic acid 433 4+/- 052 b 1322 +/- 316 a 8.75 +/— 093 ab 106 1.9E-02
Saccharic acid 072 +/- 006 b 223 4/~ 075 a 013 4/~ 001 b 134 1.26-02
Shikimic acid 411 4/ 073 b 743 +/— 233 ab 9.1 +/— 067 a 6.8 4.2E-02
2-Oxogluconic acid 529 +4/- 062 b 1744 +/- 353 ab 2368 +/- 590 a 67 4.2E-02
Sugar Fructose 316 +/- 019 b 1179 +/- 360 ab 2036 +/- 505 a 7.5 3.5E-02
Glucose 345 +/- 038 b 1101 +/- 254 ab 1629 +/- 256 a 144 1.2E-02
Maltose 043 +/- 002 b 6883 +4/—- 2233 a 0.65 +/- 011 b 202 7.2E-03
Ribose 05 +/- 005 b 175 +/- 060 a 239 +/- 015 a 190 72803
Xylose 015 +/- 001 b 039 +/~- 014 a 039 +/- 004 a 75 3.5E-02
N-acetylmannosamine 037 +/- 002 b 106 +/- 038 a 099 +/- 004 a 88 3.0E-02
Sugar acid Galactaric acid 024 +/- 001 b 05 4/~ 018 a 003 +/~ 001 b 142 1.2E-02
Sugar alcohol  Galactinol 193 +/- 021 b 1073 +/- 363 a 190  +/- 035 b 121 1.4E-02

The metabolic profile was conducted in 11-day-old wheat leaves, and metabolites were normalized to the internal standard and presented as the relative
abundance of the ion counts. The P value (fold discovery rate) was calculated using one-way ANOVA analysis (Tukey HSD), and the different superscript letters

indicate statistical significance (mean + SE, n = 3-6)
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produce hydrogen peroxide (H,O,) both intra- and ex-
tracellularly [47]. One of the earliest signaling roles in
many environmental stresses involves reactive oxygen
species (ROS). As the most stable ROS, hydrogen pero-
xide plays a crucial role in physiological processes in
plants, such as growth, development, and reproductive
growth, and it is also involved in defense against patho-
gens and diseases [48]. We measured hydrogen peroxide
in the leaves of 11-day-old plants using DAB staining (3,
3’-Diaminobenzidine). The leaves of Zavitan generated
more dark brown precipitate than the other two geno-
types. The sodium phosphate control treatment showed
no precipitate (Fig. 3a). This suggested that the oxidative
status of Zavitan is higher than Svevo and Chinese
Spring.

The effect of various abiotic and biotic stresses on the
photosynthetic apparatus is inevitably associated with
the formation of harmful ROS [49, 50]. In addition, both
oxidation-reduction processes and photosynthetic pro-
cesses were significantly represented in the GO term
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analysis (Additional file 1: Table S5, Cluster 5). As an in-
dication of the differences in photosynthesis, we mea-
sured the total chlorophyll content by quantifying the
levels of chlorophyll a and b [51]. As described in Fig. 3b,
Zavitan leaves had significantly lower levels of total
chlorophyll than Svevo and Chinese Spring leaves.

Genes related to sucrose and starch degradation were
expressed at higher levels in Zavitan than in the other two
genotypes (Cluster 1). Previous studies linked the effect of
carbohydrate metabolism to the condition of the photo-
synthetic apparatus [52] and water content [53]. There-
fore, we also measured the water content in the leaves,
which is a critical indication of plant response to different
environmental stresses [54—57]. As shown in Fig. 3¢, Zavi-
tan leaves have significantly higher water content than
Svevo and Chinese Spring leaves. The leaves’ fresh, turgid,
and dry weights are presented in Additional file 1: Table
S7. Overall, these results support our transcriptomic ana-
lysis and show some similarities to the cultivated wheat
genotypes relative to the wild emmer.
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Fig. 3 Physiological characterization of the three genotypes including ROS, total chlorophyll levels, and water content. a DAB staining of
hydrogen peroxide levels in the wheat leaves. Upper panel: DAB solution; lower panel: Na,HPO4 solution, which was applied as a control
treatment. b Total chlorophyll content in leaves of wheat plants (mean + SE, n=5). ¢ The relative water content of three wheat cultivars (mean
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Differences in gene expression related to chemical and
physical defense adaptations

The pathway enrichment suggested that several path-
ways related to plant defense mechanisms differ between
the genotypes. These include the 13-LOX and 13-HPL
pathway, which is related to JA biosynthesis [58], isopen-
tenyl diphosphate biosynthesis (terpenoids) [59], both in
Cluster 5, and flavonoid biosynthesis [60] in Cluster 3
(Table 1). Therefore, we further investigated the gene
expression of the benzoxazinoids as chemical toxic com-
pounds and trichomes as a physical defense mechanism.
To generate a gene list, we searched the BREAD-
WHEATCYC2.0 database (www.plantcyc.org) and the
literature (the benzoxazinoid biosynthetic genes named
Bx1 through Bx14) [16, 61, 62]. In the case of the un-
known Bx genes in wheat (Bx6, Bx7, and Bx10-14), we
aligned the maize protein sequences [63—-65] to the
wheat Ensemble Plant database (see Additional file 1:
Table S8 for the full gene list). The expression values of
Bx genes in each genotype are presented in the heatmap,
and the samples are sorted by hierarchical clustering
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(Fig. 4a). The heatmap indicated that the samples of the
cultivated wheat Svevo were closer to Chinese Spring
than to Zavitan. It also showed that some genes, such as
cytochrome P450, Bx3, and BxS5, were expressed at
higher levels in Zavitan, while other genes, such as the
downstream glucosidases and O-methyltransferases, were
higher in Svevo and Chinese Spring. This suggested
some similarities between Svevo and Chinese Spring
regarding the benzoxazinoid biosynthesis genes.

We also compared the gene expression of trichome-
formation-related genes as representative of a physical
barrier [66, 67]. To generate a gene list, we searched the
literature and found some evidence for trichome forma-
tion genes in rice, including Glabrous Rice 1, encoding a
homeodomain protein [68], and the pubescence gene
GL6 [69]. We also identified maize protein homologs,
including i) HD-ZIP IV transcription factor OCL4, which
is necessary for trichome patterning [70]; ii) UMC1273,
which is a protein trichome birefringence-like 39; iii)
UMCI1601 protein trichome birefringence-like 28; iv)
AY110056 protein trichome birefringence-like 26; and v)
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prm5 (powdery mildew resistant protein 5; (see Additional
file 1: Table S9 for the full gene list). The expression
values of the trichome formation genes in each genotype
are presented in the heatmap, and the samples are sorted
by hierarchical clustering (Fig. 4b). The heatmap did not
show a clear pattern, as two Svevo samples were clustered
with Zavitan and one was clustered with Chinese Spring.

Quantification of changes in benzoxazinoid levels during
plant development

We focused our analysis of defense metabolites on
benzoxazinoids (BXDs), which are major deterrent
compounds and have been demonstrated to play a role
in chemical defense in wheat leaves [71, 72]. The BXDs
are abundant in wheat seedlings and show the highest
activity in plants at the juvenile stage [14—16]. In this
experiment, we measured, by HPLC-UV, the levels of
BXDs in young wheat plants: 11, 15, and 18 days after
germination. Overall, three BXD compounds were
detected and identified, including 2,4-dihydroxy-7-methoxy-
1,4-benzoxazin-3-one, 4-dihydroxy-7,8-dimethoxy-1,4-ben-
zoxazin-3-one glucoside (DIM,BOA-Glc), and 2-hydroxy-
4,7-dimethoxy-1,4-benzoxazin-3-one glucoside
(HDMBOA-GIc) as presented in Fig. 5a-c. These
compounds were further annotated by comparing the
pattern of their fragment using UPLC-QToF-MS and
previous studies (Additional file 1: Table S10 [73, 74];
). All compounds were detected in at least one sam-
pling time point, in the domesticated wheat geno-
types, while they were below detection levels in the
wild emmer Zavitan. The genotypes Svevo and
Chinese Spring showed the highest levels of DIMBOA
on day 11, which gradually declined until day 18. In
Chinese Spring, DIMBOA levels declined more
rapidly than in Svevo. DIM,BOA-Glc levels showed
different accumulation patterns than DIMBOA, as the
highest levels were detected on day 15 when Chinse
Spring was much higher than Svevo. Overall, the two-
way-ANOVA of both DIMBOA and DIM,;BOA-Glc
demonstrates significant differences in time (day after
germination) and in the two wheat genotypes. The
HDMBOA-GIc levels were much lower than the other
two BXD compounds and only detected in Chinese
Spring 11 and 18 days after germination and only at
18 days after germination in Svevo leaves.

Calculating the trichome density
To explore the physical adaptation of wheat plants
against aphid invasion, we evaluated the trichome
density on the leaf edge and surface as a physical barrier
(Fig. 6). As presented in Fig. 6a, the two-way-ANOVA
suggests a significant difference in trichome number on
the edges between the three wheat genotypes (F
(2224)=498.36, P value <0.0001), the day

genotype
after

Page 9 of 20

germination (F tme (2004) = 5.30, P value = 0.0056), and a
cross-effect (F genotypertime (2224) = 3.05, P value = 0.0178).
The highest number of trichomes on the leaf edges was
in Zavitan, while Svevo and Chinese Spring had a similar
number of trichomes, except 18 days after germination,
when Chinese Spring showed the lowest trichome num-
ber. The number of trichomes slightly increased over
time, mainly on Zavitan and Svevo. In Fig. 6b, the
trichome density on the leaf surface is presented. The
two-way-ANOVA suggests a significant difference in
trichome number on the surface between the three
wheat genotypes (F genotype (2372) = 268.32, P value
<0.0001), the day after germination (F (ime (2372) =
15.99, P value <0.0001), and a cross-effect (F genotypertime
2372 = 8.70, P value < 0.0001). The highest number of tri-
chomes on the leaf surface was in Zavitan, while Chinese
Spring possessed the lowest trichome number. Images of
the trichomes demonstrated that the trichomes are also
different in their lengths and angles. As shown in Fig. 6c,
the trichome lengths observed on the leaf surfaces of
Zavitan and Chinese Spring were longer than those on
Svevo. Additionally, the trichomes on the edges faced one
direction only on Zavitan and Chinese Spring, while on
Svevo, they faced both directions. Altogether, this
suggested that Zavitan has more trichomes as a physical
barrier than the other two genotypes.

Evaluation of aphid reproduction on different wheat
genotypes

The aphid performance on wheat seedlings infested with
aphids for 96 h was evaluated at two time points: 15 and
18 days after germination. The two-way ANOVA
suggested a significant difference in the aphid progeny
between the three wheat genotypes (F genotype (245) =
20.60, P value < 0.0001), the day after germination (F e
(1,45) = 161.93, P value < 0.0001), and a cross-effect (F g,
otypertime  (2,45) = 424, P value = 0.021), indicating the
effect of both genotype and age (day after germination)
on aphid reproduction (Fig. 7). In the two measurements
(15 and 18 days after germination), the Chinese Spring
genotype was more aphid-resistant than the other two
genotypes, while Zavitan and Svevo were not signifi-
cantly different. Additionally, 18-day-old wheat seedlings
were more susceptible to aphids than the 15-day-old
plants.

Discussion

In this research, we selected three wheat genotypes, in-
cluding wild emmer, durum, and bread wheat, to address
the fundamental question of the effect of domestication
on plant resistance against aphids. To understand the
overall gene levels and the differential gene expression
between genotypes [75], we compared the transcrip-
tomes of 11-day-old seedlings of the three genotypes.
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While the PCA plot based on the transcriptomic data
suggested a unique pattern for each genotype (Fig. 1),
the heatmap of the differentially expressed genes (8735
unique transcripts) indicated a higher similarity between
the domesticated genotypes than the wild emmer wheat

(Additional file 2: Figure S2). This pattern was similar
when we compared the gene expression of specific bio-
synthetic genes of the benzoxazinoid pathway (Fig. 4).
The similarity between Svevo and Chinese Spring is sup-
ported by a recent study that compared the exome of
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approximately 500 wheat genotypes and suggested that
wild emmer wheat is the progenitor of the A and B sub-
genomes of all the modern tetraploid and hexaploid ge-
notypes. The T. durum lineage was found to be the most
likely ancestor of the bread wheat cultivated germplasm
[20]. The similarity between Svevo and Chinese Spring
might be due to a “domestication bottleneck” [21-23].

A previous study that explored the variation between
19 hexaploid bread wheat pangenomes reported that

genes involved in the response to environmental stress
and defense against biotic stress were variable between
the genomes [76]. Similarly, in our results, several
enriched functional genes involved in the response to
environmental stress and defense responses are variable
between the three genotypes, including polyamine
biosynthesis and 13-lipoxygenase, which are the first en-
zymatic steps of the phytohormone, jasmonic acid
(Table 1). Additionally, the over-representation pathway
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enrichment analysis demonstrated that genes associated
with amino acid metabolism and the biosynthesis of car-
bohydrates, cell structures, fatty acids and lipids, phyto-
hormones, and specialized metabolites were significantly
different between the three genotypes. These observa-
tions indicated the major differences in the basal gene
expressions between the genotypes. This was supported
by several experiments where we measured the water
content (Fig. 3c) and primary metabolites of 11-day-old
leaves (Table 2). The main results suggested that Zavitan
has higher levels of amino acids, organic acids, and
sugars than the other two genotypes.

A recent study suggested that domesticated wheat has
maintained its defense traits against specialized herbi-
vores that have coexisted with the crop throughout its
domestication, but that it is less efficient against general-
ist herbivores [31]. We compared the reproduction of
the R padi aphid on the three wheat genotypes (Fig. 7),
which is among the most economically important aphid
associated with a host range of well over 100 species [77,
78]. Our results show that the wild emmer, which pos-
sessed a high number of trichomes and had benzoxazi-
noid levels below detection, is more susceptible to the R.
padi aphid than Chinese Spring (Figs. 5, 6 and 7). Zavi-
tan was also more susceptible to the R maidis aphid
then Svevo [30]. In contrast to our results, a previous
study by Migui and Lamb (2003) tested 41 accessions of
wild and cultivated wheat in the field for resistance to
three species of aphids, including R. padi. The results

showed that the highest aphid resistance was in the dip-
loid species and the lowest was in the hexaploid species
[35]. This discordance may arise from accession-specific
differences or may be due to the experiment being per-
formed on mature wheat plants in field conditions, com-
pared to young seedlings under controlled conditions
(Additional file 2: Figure S1). This was supported by an-
other study that suggests that the differences in aphid
preference depend on the plant’s developmental stage in
the field, compared to seedlings in the laboratory [79].

In wheat, genes encoding defense mechanisms are
found in hexaploid bread wheat (genome BBAADD),
tetraploid wheat (genome BBAA), and in the three dip-
loid progenitors of hexaploid wheat (genomes AA, BB,
and DD) [16, 80], while several of the enzyme steps are
not yet identified. A comparison between the transcript
levels from the three subgenomes in hexaploid wheat in-
dicated that the homoeologs on the B subgenome are
the main contributors to the benzoxazinoid biosynthesis
pathway, especially in shoots [16, 81]. It was suggested
that gene expression in diploids and tetraploids are far
more varied than in the hexaploid population, indicating
that the former species likely encode a greater allelic
variation that, in turn, could facilitate breeding for
pest resistance [82]. In this research, Bx gene expres-
sion was detected in all three genotypes, while the
two domesticated wheat genotypes showed a closer
pattern of gene expression and BXD levels than the
wild emmer (Fig. 4a).
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The BXDs are a diverse class of specialized metabo-
lites, which are mainly known for their deterrent func-
tions. They are known to have a crucial effect on plant
resistance to insects such as aphids [71, 83, 84], chewing
herbivores [85-87], fungal infection [88], and other in-
sects, diseases and weeds [89]. A recent study reported
that the molecular functions of the BXDs are diverse be-
yond their toxicity. It was suggested that the BXDs
function in shaping the root microbiome by selectively
attracting the plant-beneficial rhizobacterium Pseudo-
monas putida [90, 91], and are also used as iron chela-
tors [92]. Also, it has been estimated that naturally
occurring DIMBOA may govern a physical defense
mechanism against aphid feeding by the accumulation of
callose [93]. Furthermore, it was reported that in maize,
plant-aphid infestation caused secretion into the apo-
plast of DIMBOA-Glc, but not HDMBOA-Glc [71],
which may indicate a unique function of DIMBOA-Glc.
Our results indicated that the domesticated bread wheat
Chinese Spring, which showed the lowest amount of
aphid progeny, possesses a varied array of BXDs, includ-
ing DIMBOA and DIM,;BOA-Glc, and HDMBOA-Glc
(Fig. 5).

Interestingly, the total chlorophyll and chlorophyll a
and b levels were clustered together with the amount of
DIMBOA measured at 11 days (Fig. 8). Previous studies
revealed a new function of BXDs as iron chelators in the
roots [94, 95]. In plants, iron is an essential micronu-
trient that functions as a redox-active metal in many
metabolic processes, including photosynthesis, mito-
chondrial respiration, nitrogen assimilation, hormone
biosynthesis, and the production and scavenging of ROS
[96]. Iron-deficient bread wheat plants exhibit signifi-
cantly lower chlorophyll content and chlorosis, as well
as low iron concentrations in leaves and grains [97]. Our
results suggest that DIMBOA may play a role in iron-
chelating in the leaves. Therefore, high levels of DIM-
BOA (as found in Svevo and Chinese Spring) may
determine the chlorophyll levels or other processes that
can affect photosynthesis. However, this requires further
investigation.

BXDs are constitutively produced in young plants
[14-16], and tend to decline as the plant ages [98]. Our
results showed that aphid progeny numbers increased
over time, while BXD levels decreased (Figs. 5, 7, and 8).
The leaf surface is the first defense barrier against in-
sects; it includes trichomes, thorns, silica, and wax [8,
99, 100]. Trichomes are used as a physical defense by
disturbing herbivore movement, development, and ovi-
position, while glandular trichomes are used for exudate
storage and secretion [101]. The surface density of tri-
chomes and their dispersal on the leaf edges were not
directly proportional to the number of aphid progeny.
This suggests higher effectiveness of the chemical
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defenses compared with the physical defensive barrier.
Additionally, the metabolic profile and water content in-
dicated that 11-day-old Zavitan seedlings had higher
water content, as well as higher levels of some amino
acids, organic acids, and sugars, than the cultivated
wheat genotypes. This lack of chemical defense and bet-
ter water and nutrient status may be beneficial for aphid
reproduction on Zavitan relative to the domesticated
wheat.

Conclusions

In this study, we combined transcriptomic, metabolomic
and physiologic approaches to better understand the
differences in wheat defense mechanisms. Our results
suggest that benzoxazinoids provide a better defense
mechanism than trichomes against R. padi aphids. Com-
parisons of significant gene expression, phenotypic
characterization, and the chemical defense and physical
responses indicated a higher similarity between the do-
mesticated wheat genotypes than between either of them
and the wild emmer. This suggested that under insect
pressure, wheat plants might have undergone evolution-
ary convergence, which resulted in similarities in defense
mechanisms via the biosynthesis of defense metabolites
and, to a lesser extent, trichome formation.

Methods

Wheat genotypes

For this study, three wheat genotypes were selected: two
tetraploids (Triticum turgidum) and a hexaploid (Triti-
cum aestivum). The tetraploid wheat genotypes in-
cluded: wild emmer wheat Zavitan (Triticum turgidum
ssp. dicoccoides) [102, 103] and the durum wheat of
Italian origin, Svevo (Triticum turgidum ssp. durum)
[103, 104]. The hexaploid wheat was genotype Chinese
Spring, which is widely used as a standard for wheat
cytogenetic research [105, 106]. All plant material has
been characterized and provided by Prof. Assaf Distelfeld
(Tel Aviv University, Israel).

Plant growth conditions

Wheat seedlings were grown on moistened HR2 (soil
mix). Wheat seeds were planted 1.5-2 cm deep in 330-
cm?® individual plastic pots and placed in a growth room.
The growth room was maintained under a controlled
light regime of a 16-h-light and 8-h-night photoperiod
at a constant room temperature of 26 °C, a relative hu-
midity of 63%, and a 250—350 umol photon m™?s™ light
intensity from a 3000 Im LED (LG-06A-12-364,000 k) at
a distance of 40cm from the light source (measured
from the top of the plastic pot).
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Aphid bioassays

Bird cherry-oat aphids (Rhopalosiphum padi) were
collected in the field and identified, and the colony was
maintained on two-week-old wheat plants, a Triticum
aestivum variety named Rotem (Agridera Seeds &
Agriculture LTD, Israel). The colony was grown under a
16-h-light/8-h-dark photoperiod at a constant room
temperature of 25°C. For the insect bioassay, ten adult
R. padi aphids (approximately 7—10 days old) were con-
fined to the upper part of the second leaf of a seedling
(11- and 14-day-old wheat) using clip cages (4.5 cm in
diameter). To reduce variation in aphid age (which may

affect reproduction), we applied ten aphids to each cage.
Aphid progeny was calculated by counting the total
number of aphids (adults and nymphs) after 96 h of in-
festation and dividing by ten (the number of adult
aphids used in the experiment).

RNA extraction, transcriptome sequencing, and analysis

Leaf samples were collected from the top of the second
leaf. Tissue samples from two 11-day-old plants were
combined into one experimental replicate, and three
replicates were collected for each genotype. Total RNA
was extracted using an SV Total RNA Isolation Kit with
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on-column DNasel treatment (QIAGEN). The purified
RNA was quantified, and 2.5 pg of each sample was used
for next-generation sequencing using an Illumina HiSeq
4000 instrument with a 150 bp paired-end read length
conducted by the GeneWIZ Company (www.genewiz.
com). Quality control was performed using FASTQC
and adapters, and low-quality sequences were trimmed
and removed using Trimmomatic v0.36. Mapping was
performed using a STAR aligner v2.5.2b against the
Triticum aestivum reference genome v1.1 [38]. Reads
aligning to exons were retrieved using Subread v1.5.2.
For differential gene analysis, DESeq2 v1.22.2 [107] was
used to perform a likelihood ratio test (LRT) to evaluate
multiple genotypes at once (adjusted p-value <0.05).
The IWGSC refseq v1.0 high confidence (HC) functional
annotation was used without sequences from the D gen-
ome, as this genome is not present in the wild and culti-
vated tetraploid wheat, and from the unknown genome.
Next, DESeq2 was performed on the statistically signifi-
cant genes from the LRT, and a regularized log was ap-
plied to the results. MetGenMAP was used to perform a
pathway enrichment analysis [45], using rice ortholog
IDs, which were converted from Phytozome wheat tran-
script IDs. In order to convert between IWGSC and
Phytozome wheat transcript IDs, a reciprocal BLASTp
comparison was performed, and only transcript IDs with
mutual hits were retrieved. The MetGenMAP analysis
allowed us to associate specific biochemical pathways
with the differentially expressed genes found in our
study. AgriGO v2 was used to perform a functional en-
richment analysis of differentially expressed genes. This
analysis identifies enriched gene ontology (GO) terms by
comparing a query list of gene identifiers and their cor-
responding GO terms, with a background population list
from which the query list was derived. The background
list of genes and GO annotations was extracted from the
International Wheat Genome Sequencing Consortium
(IWGSC) database. The IWGSC is an international col-
laboration of 2400 members, which has produced a
high-quality sequencing and annotation of the 7. aesti-
vum genome [108, 109].

Benzoxazinoid extraction, analysis, and identification

Wheat tissue was collected from the top of the second
leaf and ground to a fine powder under liquid nitrogen.
Then, the frozen powder was weighed, and the 1:10 (w:
v) ratio of extraction solvent contained 80% methanol
(0.1% formic acid). The mix was vortexed briefly; then,
the tubes were shaken for 40 min at 4 °C and centrifuged
for 5 min at 14,000 g. Filtration was performed by centri-
fuging the samples on a 0.22-um filter plate (EMD
Millipore Corp., Billerica, MA, USA) at 3000 g for 5 min
[74, 110, 111]. The extracted mixtures were covered with
a WebSeal Mat and kept at 10 °C. Samples were injected
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into a DIONEX UltiMate 3000 high-performance liquid
chromatography (HPLC) system using a C18 reverse-
phase Hypersil GOLD column (3 um pore size, 150 x
4.60 mm; Thermo Fisher Scientific, Germany). The
column oven temperature was 40°C and the UV-VIS
absorbance spectra was at 190-400 nm. For BXD metab-
olite separation, a gradient of water (0.1% formic acid)
(solvent A) and acetonitrile (0.1% formic acid) (solvent
B) with a flow rate of 1mlxmin ' was used. The
following linear gradient was used: 0 to 10 min, gradient
from 5 to 55% B; 10 to 13 min, gradient from 55 to
100% B; 13-14 min, gradient from 100 to 5%; and 14—
18 min, 5% solvent B. Chromeleon software (Thermo
Fisher Scientific Inc.) version 7.2 was used for system
control and data acquisition. For benzoxazinoid quantifi-
cation, we compared the chromatograms with the
authentic standards and plant crude extract. DIMBOA
and DIBOA commercial authentic standards were used
(Toronto Research Chemicals, Toronto, Canada). In
addition, two crude extracts were used: i) a mix of
DIMBOA-GIc:DIM,BOA-GIc in a ratio of 81:19, re-
spectively, and ii) a mix of HDMBOA-GIc:HDM,BOA-
Glc in a ratio of 86:14, respectively. Calibration curves
were calculated by running authentic standards and
crude extracts in different concentrations ranging from
0.5-50 ug/ml. The peak area of each compound was
measured using Chromeleon software, and the final con-
centration was normalized to mg per gram fresh weight.
Only three BXDs were detected in this analysis, namely
DIMBOA, DIM,BOA-Glc, and HDMBOA-Glc. The UV
spectra of the three BXDs are presented in Additional
file 2: Figure S3 and Additional file 1: Table S11.

For accurate mass identification of the BXDs, 5ul of
10 pg/ml authentic standards and crude extracts were
injected onto an ultra-performance liquid chromatography-
quadrupole time-of-flight mass spectrometer (UPLC-
QToF-MS) system equipped with an ESI interface (Waters
MS Technologies, Manchester, UK), ran in negative and
positive ion modes. Chromatographic separation was
carried out on a C18 column (100 mm x 2.1 mm, 1.7 um),
while the column was maintained at 40 °C, and autosampler
was maintained at 10 °C. For lock mass calibration, analyses
were performed using leucine enkephalin at a concentra-
tion of 0.4ng/L, dissolved in 50% acetonitrile and 0.1%
formic acid. The MS conditions were set essentially as de-
scribed previously [112]. The sample ran in a gradient
program including the mobile phase consisted of 95%
water: 5% acetonitrile and 0.1% formic acid (solvent A), and
0.1% formic acid in acetonitrile (solvent B), in a flow rate of
0.5 ml/min, and the scans were repeated for 15 min in a
single run as described previously [113]. For system control
and data acquisition, MassLynx software (Waters) version
4.1 was used. For benzoxazinoid fragmentation patterns, we
compared the chromatograms with the authentic standards
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of DIMBOA (Toronto Research Chemicals, Toronto,
Canada), DIM,BOA-Glc, and HDMBOA-GlIc from a plant
crude extract and with previous publications [73, 74, 114].
The annotations of BXDs, DIMBOA, DIM,BOA-Glc and
HDMBOA-GIc, and their fragmentation patterns are pre-
sented in Additional file 1: Table S10.

Metabolic analysis using gas chromatography-mass
spectrometry (GC-MS)

For metabolite extraction, 200 mg of ground frozen plant
tissue was mixed with 1 ml of pre-cooled extraction sol-
vents containing 55% methanol: 23% chloroform: 22%
Milli-Q fileted water (Millipore, Merck), and 200 pul of 1
mg/ml ribitol and D-sorbitol '>Cg as internal standards.
The samples were briefly vortexed, incubated in a ther-
momixer at 1000 rpm for 10 min at 25°C, followed by
10 min of sonication; they were then centrifuged at max-
imum speed for 10 min, and the supernatant was col-
lected. Next, 300 pl of chloroform and 300 pl of Milli-Q
water were added, vigorously mixed, and centrifuged for
5 min at 6800 g. After phase separation, 100 pl of the top
hydrophilic layer was collected and dried in a vacuum.
Samples were derivatized by adding 40 pl of 20 mg/ml
metoxyamine hydrochloride (Sigma-Aldrich) dissolved
in pyridine following incubation for 2h in an orbital
shaker at 1000rpm at 37°C. Next, N-methyl-N-(tri-
methylsilyl) tri-fluoroacetamide (MSTFA), including a
standard mix (Alkanes) in a volume of 77 pl, was added
to each sample followed by incubation for 30 min in an
orbital shaker at 37 °C. Samples were transferred to glass
vials and loaded randomly onto a GC-MS single quadru-
pole mass spectrometer instrument (Agilent Technolo-
gies, Santa Clara, CA, USA). Then, 1pl of the sample
was injected into an inert flow path split/splitless inlet
with glass wool (Restek, USA) in a 15:1 split ratio on a
VE-5ms capillary column (30 m long) with 0.25 mm i.d.
and 0.25pm film thickness + 10m EZ-Guard (Agilent
Technologies, Santa Clara, CA, USA). The Programmed
Temperature Vaporisation (PTV) for injected samples
ranged from 70 to 300 °C at 14.5°C per sec; the transfer
line was at 350°C, and the ion source was adjusted to
250 °C with gain factor 1. Helium was used as a carrier
gas with a constant flow rate of 1.8 ml per min. For pri-
mary metabolite analysis, the temperature program was
as follows: 1 min isothermal heating at 70°C, followed
by a 1°C/min oven temperature ramp to 76 °C, followed
by a 6°C/min oven temperature ramp to 340 °C, and a
final 5min heating at 340°C. Mass spectra were re-
corded at 1.6 scans per second with a mass-to-charge ra-
tio of 70 to 550 scanning range [115]. Data acquisition
was conducted by Mass Hunter software and the NIST
mass spectral library. Additionally, retention index (RI)
libraries (Max-Planck Institute for Plant Physiology in
Golm, (http://gmd.mpimp-golm.mpg.de/) were used for
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validation [113, 116]. Metabolites were normalized to D-
sorbitol **Cg as an internal standard and presented as
the relative abundance of the ion counts.

Trichome density

The upper parts of second leaves (same as those used
for applying clip cages) were collected, and chlorophyll
was bleached by 70% ethanol at 85°C for 8 min, then
rinsed with water. The tissue was placed on glass micro-
scope slides facing to the adaxial side (leaf surface up).
Trichome density images were photographed with a
digital camera (Axiocam 305 color) connected to a Zeiss
Axioplan 2 Upright Light Microscope (Zeiss, Oberko-
chen, Germany). For each leaf, nine photos were taken,
including three from each side (left, right), and three
from the middle (top, medium, and bottom positions).
We counted the number of trichomes on the edges per
mm and the density in mm” using Image] software
(https://imagej.nih.gov/ij/).

Water content in the leaves

The second leaf (10cm of tissue from the leaf tip) of
each 11-day-old wheat seedling was collected. The total
fresh weight was measured, and then the samples were
placed in 2-3ml of 5mM CaCl, solution for 8h
followed by drying in a 60 °C oven for 3—4 days; the dry
weight was then measured. The calculation of the leaf
relative water content was previously described [117].
The leaves’ fresh, turgid, and dry weights are presented
in Additional file 1: Table S6.

Detection of hydrogen peroxide

To examine the basal level of hydrogen peroxide in
wheat leaves, a 3,3'-diaminobenzidine (DAB) staining
was used for in situ detection [118]. In accordance with
the aforementioned protocol, the second leaves of 11-
day-old wheat seedlings were gently vacuum-infiltrated
with DAB solution. As a control treatment, 10 mM of
sodium phosphate was applied to replicate leaves.
Following vacuuming, samples were incubated in a DAB
solution for 4 h, which was then replaced with a bleach-
ing solution (ethanol: acetic acid: glycerol 3:1:1) to re-
move the chlorophyll and to visualize the precipitate
formed by hydrogen peroxide (which renders precipi-
tates in dark brown).

Chlorophyll content

Fresh leaf tissues (50 mg) were incubated in 5 ml of ice-
cold 80% acetone for 48 h, centrifuged at 5000xg for 5
min, and absorbance was recorded at 663 and 645 nm
wavelenghts. The amount of chlorophyll was calculated
following the procedure of Arnon (1949) and expressed
in mg g~ ' FW [51].
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Statistical analysis

For the principal component analysis (PCA) plot, the data
were normalized using regularized log transformation,
and the graph was plotted using the ggplot2 package in R.
The one- and two-way ANOVAs (analysis of variance)
used JMP software (SAS; www.jmp.com). In the two-way
ANOVA, the inferior numbers for each F value indicated
the degree of freedom and the total number of samples
used for the test. Microsoft Excel was used for figure rep-
resentation. In order to test the three genotype groups, a
LRT was performed using DESeq2. LRT is a statistical
test, similar to ANOVA, which allows the comparison of
all levels of a factor at once. The number of clusters (k)
was estimated using clusGap [44], and k-means clustering
was performed with the k-means base function in R. The
resulting gene clusters were evaluated for over- and
under-representation with agriGO v2 [46].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-019-2214-z.

Additional file 1: Table S1. Mapping sequence reads to the Chinese
Spring reference genome. Table S2. Total RNA-seq values after rlog
normalization. Annotations to the D subgenome or an unidentified sub-
genome (U) were eliminated. Table S3. Distribution of wheat genes into
the eight clusters. Table S4. Gene annotation including the International
Wheat Genome Sequencing Consortium database (IWGSC) and Phyto-
zome gene ID. Table S5. Biological processes from the Singular Enrich-
ment Analysis with agriGO v2 for significantly differentially expressed
genes between each pair of genotypes. The data was divided into the
eight k-means clusters. Only statistically significant GO terms are shown
(FDR < 0.05). Queryitem: the number of genes containing the GO annota-
tion; Querytotal: the total number of genes with GO annotations; bg item:
the number of genes in wheat with this GO annotation; and bg total: the
total number of genes in wheat with GO annotations. Table S6. Metabo-
lites identified in leaves of 11-day-old wheat seedlings analyzed by GC-
MS. The metabolites were normalized to the internal standard and pre-
sented as the relative abundance of the ion counts. Table S7. Weights of
wheat leaf tissue used for water content calculation. The fresh, turgid and
dry weights are measured in mg. Table S8. A full list of the Bx genes in
bread wheat. The data include genes from Subgenome A, B, D, and U
(not classified). Table S9. A full list of the trichome formation and regula-
tion genes in bread wheat. The data include genes from Subgenome A,
B, D, and U (not classified). Table S10. Benzoxazinoid annotation and
fragment patterns detected and identified in wheat leaves by UPLC-
QToF-MS analysis. Table S11. Levels of DIMBOA, DIM,BOA-GIc, and
HDMBOA-GIc metabolites detected by HPLC-UV. Calibration curves were
calculated by running authentic standards and crude extracts in different
concentrations ranging from 0.5-50 pg/ml. The peak area of each com-
pound was measured using Chromeleon software, and the final concen-
tration was normalized to mg per gram fresh weight.

Additional file 2: Figure S1. Photos of the wheat genotypes used for
this research over 11-18 days after germination. The plants possessed a
similar phenology. Figure S2. Heatmap of differentially expressed genes
from a likelihood ratio test (LRT) with the DESeq2 R package. The analytic
output was subjected to rlog transformation. The heatmap presents
hierarchical clustering of the different genotypes (horizontal axis) against
hierarchical clustering of the differentially expressed genes (DEGs; vertical
axis). The resulting heatmap clearly divided the overall transcriptional
profiles of the two domesticated genotypes (Svevo and Chinese Spring)
from the wild emmer (Zavitan). Figure S3. The UV spectra of known
benzoxazinoids detected in wheat leaves using high-performance liquid
chromatography (HPLC-UV).
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