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Genome-wide association study of
agronomic traits in bread wheat reveals
novel putative alleles for future breeding
programs
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Abstract

Background: Identification of loci for agronomic traits and characterization of their genetic architecture are crucial
in marker-assisted selection (MAS). Genome-wide association studies (GWAS) have increasingly been used as potent
tools in identifying marker-trait associations (MTAs). The introduction of new adaptive alleles in the diverse genetic
backgrounds may help to improve grain yield of old or newly developed varieties of wheat to balance supply and
demand throughout the world. Landraces collected from different climate zones can be an invaluable resource for
such adaptive alleles.

Results: GWAS was performed using a collection of 298 Iranian bread wheat varieties and landraces to explore the
genetic basis of agronomic traits during 2016–2018 cropping seasons under normal (well-watered) and stressed
(rain-fed) conditions. A high-quality genotyping by sequencing (GBS) dataset was obtained using either all original
single nucleotide polymorphism (SNP, 10938 SNPs) or with additional imputation (46,862 SNPs) based on W7984
reference genome. The results confirm that the B genome carries the highest number of significant marker pairs in
both varieties (49,880, 27.37%) and landraces (55,086, 28.99%). The strongest linkage disequilibrium (LD) between
pairs of markers was observed on chromosome 2D (0.296). LD decay was lower in the D genome, compared to the
A and B genomes. Association mapping under two tested environments yielded a total of 313 and 394 significant
(−log10 P >3) MTAs for the original and imputed SNP data sets, respectively. Gene ontology results showed that 27
and 27.5% of MTAs of SNPs in the original set were located in protein-coding regions for well-watered and rain-fed
conditions, respectively. While, for the imputed data set 22.6 and 16.6% of MTAs represented in protein-coding
genes for the well-watered and rain-fed conditions, respectively.

Conclusions: Our finding suggests that Iranian bread wheat landraces harbor valuable alleles that are adaptive
under drought stress conditions. MTAs located within coding genes can be utilized in genome-based breeding of
new wheat varieties. Although imputation of missing data increased the number of MTAs, the fraction of these
MTAs located in coding genes were decreased across the different sub-genomes.
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Background
Bread wheat (Triticum aestivum L.) is a staple crop both
in developing and developed countries and there is a
constant need to balance supply and demand [1]. The
projected increase of human population is expected to
increase the demand of wheat thereby highlighting the
need for plant breeders to utilize all accessible tools to
find new ways to sustainably increase the production of
bread wheat over the coming decades [1, 2]. Wheat pro-
duction increased significantly after green revolution in
the 1960s and 1970s by better farm management prac-
tices and introduction of well-adapted wheat varieties.
However, the global consumption of wheat has also
steadily been increasing due to population boom [1].
The comparison between wheat production and con-
sumption in 1962 and 2012 shows a substantial increase
in demand for wheat, with China, EU, India, and the
USA being the major consumers. However, looking at
the increase in demand over the 50-year period, it be-
comes clear that Asian countries, including Indonesia,
Bangladesh, and Thailand are at the top of the list [1].
There are several factors drastically limiting wheat pro-
duction throughout the world, such as water deficiency,
salt and cold stress, resulting in significant losses in both
grain and biomass [3, 4].
Understanding drought tolerance mechanisms and iden-

tifying loci responsible for mediating drought tolerance
are key steps for any breeding approach aimed at increas-
ing stress tolerance induced by water deficiency in bread
wheat. Recent progress in sequencing technologies have
become genome databases available for model plants, such
as Arabidopsis thaliana [5], Oryza sativa [6], and a num-
ber of important crop species, including Hordeum vulgare
[7] and T. aestivum [8]. The availability of large-scale gen-
omic resources provides an opportunity to discover gen-
etic and molecular mechanisms behind plant responses to
different environmental stresses. As most agronomically
important traits are likely controlled by a large number of
genes, quantitative trait loci (QTL) mapping has been
widely used to dissect the genetic architecture of such
traits [9–11]. However, QTL-mapping has several draw-
backs, such as low resolution and a limited number of al-
leles that can be screened per study. The high-throughput
genotyping technologies providing large number of single
nucleotide polymorphism (SNP) data has drastically im-
proved the resolution of QTL mapping by providing high-
resolution linkage maps [12].
Furthermore, due to the increased availability of large-

scale genomic resources, genome-wide association studies
(GWAS) are now a viable alternative to QTL mapping for
dissecting the genetic architecture of quantitative traits
[13]. In comparison to QTL-mapping, GWAS help accel-
erates the assessment of a more representative set of indi-
viduals in both time and cost-effective way [14]. GWAS

are based on establishing correlations between genotype
and phenotype, with the idea that linkage disequilibrium
(LD) has been formed in a population across generations
so that regions harboring QTLs can be detected even if
the causal mutations aren’t necessarily included among
the set of available genetic markers. Access to high-
density genotyping spanning the entire genome makes
GWAS invaluable tools for identifying genomic regions
underlying the observed phenotypes. Several recent stud-
ies have successfully applied GWAS to identify the genetic
basis of important traits in a number of crop species, in-
cluding rice [15], barley [16], corn [17] and wheat [18].
These studies have also provided information about
MTAs, which can help breeders in marker-assisted selec-
tion. In particular, a number of recent studies have fo-
cused on wheat by identifying QTLs associated with grain
yield and related traits [19–21].
Genotyping by sequencing (GBS) can provide access to

a large number of SNPs in a cost-efficient manner but it is
often plagued by a high fraction of missing data that can
limit the accuracy of any genome-wide association study.
One approach to deal with missing data is through imput-
ation and this has successfully been implemented in many
studies on human and plant genomes [22–26]. Imputation
can increase the number of variants that are included in a
GWAS by relying on linkage information derived from
common haplotypes after considering SNPs which are not
directly genotyped [27]. Low depth sequencing and library
complexity may contribute to missing information in SNP
data and genotype imputation can thus be utilized to
partly compensate for such issues through available refer-
ence genomes without the need for additional expensive
resequencing [28, 29]. The main objective of the current
study was to perform a GWAS experiment using GBS-
SNP data [30] and SNPs imputed based on the W7984
reference genome for bread wheat, which has previously
been demonstrated to yield the highest imputation accur-
acy [31]. A set of three categories of agronomic traits were
measured among Iranian wheat landraces and varieties
and employed in an association study to explore putative
QTLs to identify genes, which may be involved in import-
ant developmental pathways providing drought tolerance.
The second objective of the study was to determine if
there are any differences in the results produced using the
original SNP data compared to the imputed SNP data by
assessing the influence of imputation on MTAs.

Results
Phenotypic evaluation
The datasets for well-watered and rain-fed conditions
were analyzed separately. ANOVA identified significant
differences (P< 0.01) among varieties and landraces for
all studied traits under both environments for two years,
except thousand kernel weight under rain-fed conditions
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(Additional file 2: Tables S2 and 3). Under rain-fed con-
ditions, early emergence was delayed, yet genotypes
completed their lifespan earlier compared to the well-
watered conditions through a 14.9 days reduction in
physiological maturity (Table 1). The grain filling period
was 27.2 and 24.0 days for well-watered and rain-fed
conditions, respectively. The greatest variation under
well-watered conditions was observed for seed number
per spike and thousand kernel weight (std. deviation
7.35 and 7.10, respectively), whereas plant height and
peduncle length were more variable under rain-fed con-
ditions (SD 15.55 and 7.26, respectively). A significant
positive association was observed between grain yield,
spike weight, seed number, thousand kernel weight, leaf
greenness, and grain filling period under well-watered
conditions (P < 0.01), whereas phenology traits and can-
opy temperature were negatively correlated with grain
yield (P < 0.01 and 0.05, Additional file 2: Table S4).
Under rain-fed conditions, grain yield was negatively
correlated with phenological traits, plant height, ped-
uncle length, spike length, and canopy temperature,
whereas significant positive correlations were observed
between grain yield, spike weight, seed number per
spike, and thousand kernel weight (P < 0.01, Additional
file 2: Table S5).

Evaluation of SNP markers
A total of 458,363,607 unique reads were identified in
total 566,439,207 reads after sequencing (~ 81% non-
redundant reads). After de-duplication and alignment,
133,039 SNPs were called for which 10,938 had < 10%

missing data, heterozygosity < 10% and a minor allele
frequency (MAF) >1%. These SNPs were selected for
further analysis. Among the 10,938 SNPs identified, the
highest (2835, 25.92%) and lowest (597, 5.46%) number
of markers were observed for MAFs in the range of
0.01–0.1, and 0.45–0.50, respectively (Fig. 1). In addition,
we obtained a set of 46,862 imputed SNPs using the
W7984 reference genome and these SNPs were also
used to estimate genetic diversity.

Linkage disequilibrium (LD)
The analysis of linkage disequilibrium shows that LD
differs between sub-genomes, chromosomes, and across
each chromosome and that LD generally declines with
increasing distance between SNPs. A total of 368,310
marker pairs (MP, according to combinations of SNPs
across different chromosomes) with average squared al-
lele frequency correlations or r2 = 0.132 were observed
in varieties, of which 96,541 (26.2%) had significant link-
age at P< 0.01 (Table 2). Around 93% of all MPs and
94% of significant MPs were located at distances <10
cM. Genomes B and D harbored the highest and lowest
number of MPs (182,271, 49.49% and 50,395, 13.68%),
respectively. Moreover, the strongest LD was observed
between MPs on chromosome 2D (0.296), followed by
chromosome 1D (0.214).
Performing a similar analysis on landraces identified a

total of 405,738 MPs with an average LD of 0.097 which
is considerably lower than in varieties (Table 2). How-
ever, a greater fraction of significant MPs (29.31%) was
observed in the landrace data. Eighty-nine percent and

Table 1 Descriptive statistics for agronomic traits of Iranian wheat accessions under well-watered and rain-fed conditions

well-watered Rain-fed

Trait Range Mean Std. Deviation Range Mean Std. Deviation

DE 19.9–27.5 24.7 1.6 22.9–37.8 28.5 2.4

DH 160.0–188 175.9 9 135.4–179.8 167.1 6.6

DA 167.6–196.6 184.9 5.9 158.7–185.9 173 6.1

DM 194.6–224.7 211.9 6.2 183.2–209.4 197 6.4

GFP 20.5–35.5 27.2 2.5 16.7–31.5 24 2.8

H – – – 53–130 87.1 15.6

PL – – – 19.9–64.2 36.3 7.3

SW 1.1–4 2.5 0.44 0.90–2.6 1.7 0.35

SL 5.7–18.7 10.8 2.1 6.7–13.2 9.9 1.1

GY 0.66–2.8 1.8 0.35 0.47–1.8 1.1 0.24

SN 23.8–72.3 43.4 7.4 23.5–57.9 37.7 7

TKW 14.9–74.5 41.0 7.1 15.6–44.7 29.6 5.7

LG 37.94–66.1 51.3 4.9 33.7–62.5 49.1 5.1

CT 20.1–27.8 23.9 1.4 22.1–33.1 27.6 1.6

DE: Days to emergence, DH: Days to heading, DA: Days to anthesis, DM: Days to physiological maturity, GF: Grain filling period, H: Plant height (cm), PL: Peduncle
length (cm), SW: Spike weight (g), SL: Spike length (cm), GY: Grain yield (g per plant), SN: Seed number per spike, TKW: Thousand kernel weight (g), LG: Leaf
greenness, CT: Canopy temperature (°C)
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Fig. 1 The distribution of SNPs according to different MAF for the original and imputed datasets

Table 2 A summary of observed LD among marker pairs and the number of significant marker pairs per chromosome and genome
using original SNPs

Chromosome varieties Landraces

TNMP r2 Distance
(cM)

SMP TNMP r2 Distance
(cM)

SMP

1A 17,718 0.1106 5.9776 4338 (24.48) 22,647 0.0813 5.1594 5835 (25.77)

1B 24,887 0.1465 3.8458 6559 (26.36) 28,687 0.0963 3.8538 9506 (33.14)

1D 10,568 0.2104 9.3147 3773 (35.70) 13,133 0.1195 10.5104 4337 (33.02)

2A 21,453 0.1341 4.2847 5487 (25.58) 25,306 0.1154 3.9947 8527 (33.70)

2B 36,066 0.1327 3.3614 9728 (26.97) 33,314 0.0925 3.4718 10,666 (32.02)

2D 12,523 0.2959 6.0466 4741 (37.86) 16,319 0.1976 6.1044 5473 (33.54)

3A 21,696 0.1159 7.5667 4831 (22.27) 19,424 0.0748 7.4690 4629 (23.83)

3B 31,120 0.1327 3.8233 8632 (27.74) 33,719 0.0974 3.8089 10,860 (32.21)

3D 4274 0.1117 14.9170 713 (16.68) 7601 0.0994 17.2124 1782 (23.44)

4A 16,982 0.1484 6.6126 4548 (26.78) 17,092 0.1164 7.0726 5002 (29.27)

4B 11,382 0.1679 6.8900 3505 (30.79) 8498 0.0608 8.6884 1554 (18.29)

4D 1918 0.1836 22.8230 492 (25.65) 2329 0.1422 22.8137 1037 (44.53)

5A 15,226 0.1217 6.3518 3614 (23.74) 17,683 0.0867 6.8862 5281 (29.86)

5B 28,463 0.1427 5.4429 8533 (29.98) 29,599 0.0728 5.4563 7454 (25.18)

5D 5524 0.1049 23.4950 848 (15.35) 6152 0.0742 27.2205 1339 (21.77)

6A 16,916 0.1120 6.4506 3578 (21.15) 18,115 0.1161 6.4866 6739 (37.20)

6B 23,696 0.1456 3.5509 7080 (29.88) 28,304 0.0729 3.9161 7225 (25.53)

6D 6899 0.1150 16.5648 1375 (19.93) 8454 0.0828 16.0911 2112 (24.98)

7A 25,653 0.1506 4.8667 6132 (23.90) 30,419 0.1052 4.7313 8988 (29.55)

7B 26,657 0.1136 4.1457 5843 (21.92) 27,880 0.0807 3.9193 7821 (28.05)

7D 8689 0.1822 16.5774 2191 (25.22) 11,063 0.0996 15.7344 2766 (25.00)

A genome 135,644 0.1289 5.9344 32,528 (23.98) 150,686 0.0994 5.9714 45,001 (29.86)

B genome 182,271 0.1372 4.1911 49,880 (27.37) 190,001 0.0819 4.7307 55,086 (28.99)

D genome 50,395 0.1928 13.2910 14,133 (28.04) 65,051 0.1165 16.5267 18,846 (28.97)

Total 368,310 0.1321 6.0783 96,541 (26.21) 405,738 0.0968 6.3498 118,933 (29.31)

TNMP: Total no. of marker pairs, SMP: Significant marker pairs (P<0.01)
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88% of the total and significant MPs had distances < 10
cM. Moreover, the greatest number of MPs was ob-
served in the B genome (190,001). The overall number
of SNPs located in different sub-genomes in landraces
was slightly higher than in varieties. Similarly, LD was
highest in chromosome 2D (0.198). The LD decay is vi-
sualized in Additional file 3: Figs. S2–4. LD on chromo-
somes of the D genome shows a distinct trend, where
LD decay occurred more slowly compared to either A or
B genomes. For most chromosomes of the A and B ge-
nomes, LD declined to 0.1 over distances of < 5 cM,
whereas the corresponding distances were 5–10 cM in
D-genome.

Population structure and kinship matrix
We evaluated population structure using the variance-
covariance matrix of individuals (Kinship matrix) ob-
tained from both original and imputed SNPs. For both
datasets, the analyses identified three main groups with
varying degrees of admixture. For the original dataset,
the first two principal components explained 17.2% of
the genetic variance (Fig. 2a), whereas the variance was
23.2% for the imputed SNPs (Fig. 2b). Moreover, analysis
of population structure showed the highest value of ΔK
for K = 3.
Group I contains 69 accessions with 66 varieties and 3

landraces; Group II contains 120 accessions with 102
landraces and 18 varieties, and Group III contains 103
landraces and 6 varieties (Fig. 3a). Accessions also clus-
tered into three main groups when we used the imputed
SNPs, where Group I contains 113 accessions with 108
landraces and 5 varieties, Group II contains 74 studies

with 70 varieties and 4 landraces; Group III contains 110
accessions with 97 landraces and 13 varieties (Fig. 3b).
According to the original SNP data, twenty-four varieties
appear to be admixed with the two landrace groups,
while for the imputed SNP data, only 19 such admixed
varieties were identified. The admixed varieties origi-
nated from Iranian landraces and varieties including
Shahi, 4820, Mahdavi, Azadi, Ghods, Neishabour and
Sivand derived from other materials.
A neighbor-joining tree of all varieties also clearly

showed the clustering into three subgroups for both data-
sets (Fig. 4), with the exception of the varieties Khazar1,
Akova, Frontana, and Alborz which shifted into two series
of 12 and 25 varieties of two neighbor’s groups (Fig. 4b).
Even though landraces clustered into three groups based
on the two SNPs datasets, their differentiation was more
clearly distinguished using imputed SNPs (Fig. 5). Acces-
sions PI627236 and PI625433 were grouped into the same
group using original SNPs, while accession PI625433
shifted into the largest group of landraces and the distri-
bution of the two small groups changed when the imputed
SNPs were used for clustering.

MTAs for agronomic and physiological traits
A total of 313 MTAs were identified using the original
SNP dataset at a significance value of –log10 P >3 for
both well-watered and rain-fed conditions. A total of
394 MTAs were detected for the imputed data (Table 3).
The highest number of MTAs was located on chromo-
somes from the B genome for both the original and im-
puted SNPs whereas D genome showed the smallest
number of MTAs. Among the traits that were studied

Fig. 2 Principal component analysis of Iranian accessions using original SNPs (A), and imputed SNPs (B)
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Fig. 3 Cluster analysis using Kinship matrix of original data (A) and imputed data (B) for Iranian wheat accessions
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under well-watered conditions, grain filling period and
spike length showed the highest number of associated
MTAs for both original and imputed SNPs, respectively.
Moreover, 13 and 4 MTAs were observed for grain yield
per plant under well-watered conditions using original
and imputed datasets, respectively. For drought stress

conditions, 23 MTAs were observed for grain filling
period and peduncle length based on non-imputed
SNPs, whereas 10 and 18 MTAs showed significant asso-
ciation with these traits using imputed SNPs. However,
the highest number of imputed MTAs was obtained for
seed number per spike (25 MTAs).

Fig. 4 The dendrogram of Neighbor-Joining clustering constructed using 10,938 (A) and 46,862 (B) SNPs and 90 Iranian hexaploid wheat varieties

Fig. 5 The dendrogram of Neighbor-Joining clustering constructed using 10,938 (A) and 46,862 (B) SNPs and 208 Iranian hexaploid wheat
landraces collected from different zones
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For the original SNP data, the highest number of sig-
nificant markers under well-watered conditions was ob-
served on chromosomes 2B and 7B with 12 and 11 SNPs
respectively, followed by chromosomes 2A, 3A, and 6B
with 8 markers per chromosome. Under rain-fed condi-
tions, a total of 29 and 15 associated SNPs were identi-
fied on chromosome 5B and 6B. For the imputed
dataset, 47, 32, and 26 significant markers were identi-
fied on chromosomes 4B, 1A, and 5B under well-
watered conditions, whereas 85, 40, and 28 markers were
identified on chromosomes 5B, 4A, and 1A while using
the imputed-SNPs under rain-fed conditions. A number
of markers on chromosomes A and B showed pleiotropic
effects among different traits.

Gene annotation
The gene ontology of the 313 MTAs that we identified
using the original SNP dataset shows that 27 and 27.5%
of the MTAs were located within protein-coding genes
under well-watered and rain-fed conditions, respectively
(Additional file 4: Tables S6, and 7). In contrast, among
394 MTAs identified using the imputed SNP data set,
22.6 and 16.6% were located within coding genes under
well-watered and rain-fed conditions, respectively (Add-
itional file 4: Tables S8, and 9). The genes with MTAs
mostly encode proteins involved in ubiquitination,
oxidation-reduction, protein phosphorylation, histone
deubiquitination, negative regulation of transcription, re-
sponse to abscisic acid, catabolic process, multicellular
organism development, xanthophyll biosynthetic, re-
sponse to UV, ion transportation, cytokinin biosynthetic,
DNA methylation, DNA replication, cellular response to
DNA damage stimulus, response to oxidative stress, cel-
lular protein modification process, and carbohydrate
metabolic process.
We have summarized the results of the SNPs showing

the strongest association in Tables 4 to 7. Under well-
watered conditions, 5 and 7 markers within coding genes
were located on chromosomes 1A, 4B, 4D, 5A, 5B, 6B
and 7B for original and imputed SNPs, respectively (Ta-
bles 4 and 5). These markers were associated with can-
opy temperature, seed number per spike, thousand
kernel weight, grain filling period, grain yield, spike

weight and length, leaf greenness and days to emer-
gence. Most of these SNPs are located on the B genome,
followed by the A genome and finally the D genome
(Tables 4 and 5). Under rain-fed conditions, 14 and 11
SNPs were associated with genes involved in regulating
spike weight and length, thousand kernel weight, plant
height, peduncle length, leaf greenness, grain filling
period, seed number, grain yield, canopy temperature,
days to emergence, heading and physiological maturity
(Tables 6 and 7). All these markers were located on the
B and A genomes and there was no significantly associ-
ated marker located on the D genome under rain-fed
conditions. Overall, the B genome contains a consider-
able portion of all highly significant SNPs for agronomic
traits. Markers rs36032 on chromosome 1A and rs56337
on chromosome 7A were linked to genes that are in-
volved in providing grain yield under well-watered and
rain-fed environments, respectively.

Mining of highly associated favorable alleles
In the current study, SNPs with positive effects, causing
an increase in grain yield, seed number, thousand kernel
weight, grain filling period, spike weight, leaf greenness
and the reduction in the days to emergence, days to
heading, days to anthesis, days to physiological maturity,
canopy temperature, plant height, peduncle length and
spike length were defined as favorable alleles. The
phenotypic effect of strongly associated SNPs under
well-watered conditions using both original and imputed
dataset was quantified using ai, where a reduction was
observed for rs62576 by 0.72 in canopy temperature,
rs34314 by 1.09, rs40819 by 0.70, rs36808 by 0.50 in
spike length, and rs57386 by 0.11 in days to emergence
(Table 8). The positive increasing effect of rs48893 and
rs10316 on seed number per spike was 0.96 and 1.20, re-
spectively. Moreover, thousand kernel weight, grain fill-
ing period, grain yield and leaf greenness were increased
by 0.77 g, 0.90d, 0.01 g, and 1.82, respectively. Spike
weight was associated with two markers, rs36032, and
rs736, which increased the trait by 0.02 g and 0.33 g, re-
spectively. The phenotypic variance explained (PVE) by
the associated SNPs ranged from 7 to 40% (Table 8).

Table 3 A summary of marker-trait associations for agronomic traits of Iranian wheat accessions under well-watered and rain-fed
conditions

Genome Well-watered Rain-fed

Original data Imputed data Original data Imputed data

MTA 117 177 196 217

Genome A 36 89 60 85

Genome B 51 83 92 110

Genome D 12 5 28 22

Unassembled Chromosomes 18 – 16 –
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Table 4 Description of expected MTAs using original SNPs for agronomic traits of Iranian wheat accessions exposed to the well-
watered conditions

Row Marker sequence Trait Chromosome Position
(bp)

Molecular process Biological
process

1 rs62576 TGCAGTTACGGATGGCAGTCATCTGGTCCATGAA
TCATGACAGAGGCACCTGCTCCATAAACAG_47

Canopy
temperature

1A 570,131,
664-570,
140,605

oxidoreductase activity, oxidation-
reduction
process

2 rs48893 TGCAGGCTCCGCTAAACCCTAGACTTGACGGCGA
GGGTGCGTCGGGTGGGGAAAGGGGGAGAAA_11

Seed
number

4D 318,493,
437-318,
496,592

GTPase activity –

3 rs4772 TGCAGACTCACACACAAGCTGCTACAACTA
AGCGCTGGGCAGATACATCCACCCGAGA
TCGGAA_44

Thousand
kernel
weight

5B 435,156,
029-435,
159,077

protein kinase activity
ATP binding

protein
phosphorylation

4 rs46504 TGCAGGCATATGCTCGCCCCACATGTTCGTAGAC
AGGCTATCCTGCCGTTACGCATTGTGGTAC_30

Grain filling
period

6B 534,921,
073-534,
927,092

guanyl-nucleotide
exchange factor
activity
Rho guanyl-nucleotide
exchange factor
activity

–

5 rs10316 TGCAGATTGGGCTTGAGGAAATCTAACAAAACTT
GGTGGATCGGCAAAGCCTGGATGAAATTCA_6

Seed
number

7B 675,187,
632-675,
190,824

DNA binding –

Table 5 Description of expected MTAs using imputed SNPs for agronomic traits of Iranian wheat accessions exposed to the well-
watered conditions

Row Marker sequence Trait Chromosome Position
(bp)

Molecular process Biological process

1 rs36032 TGCAGCTCATCACTAGTCTCGCGCTC
GGGCAGCAGGACCGAGCTCGTCTC
GCGCCCG_25

Grain yield
and spike
weight

1A 206,792,
054-206,
805,538

nucleotide binding
DNA binding
damaged DNA binding
ATP binding
mismatched DNA
binding

DNA repair
pyrimidine dimer repair
cellular response to DNA
damage stimulus
negative regulation of
reciprocal meiotic
recombination

2 rs34075 TGCAGCGTTCGACCAGCTCATCACCC
GCTTCCGAGATCGGAAGAGCGGGA
TCACCGACTGCCCA_19

Leaf
greenness

1A 60,954,
701-60,
956,424

peroxidase activity
oxidoreductase activity
heme bindingmetal ion
binding

response to oxidative
stresshydrogen peroxide
catabolic process
oxidation-reduction
process
cellular oxidant
detoxification

3 rs34314 TGCAGCTAACTAGCCTGAGATAATGC
CAGCAACTCTGCTCGGTAGCTTTC
TTAAGAAGGCCTTA_45

Spike
length

4B 386,744,
409-386,
747,753

catalytic activity tRNA-
specific adenosine de-
aminase activity
zinc ion binding
hydrolase activity

tRNA modification

4 rs736 TGCAGAAAGGTACCACTCATTCGTAC
ATCACTCCAACTGATGTATGAAGGTTGT
TCATGGCGAC_18

Spike
weight

4B 481,233,
765-481,
237,258

hydrolase activity phosphatidylinositol
dephosphorylation

5 rs40819 TGCAGCTTCCATTTCATTCCTTCCTG
CGCCATGGGTAACAAAAATTCAACTTCT
TCAGTTAACA_32

Spike
length

4B 667,563,
369-667,
564,460

protein binding –

6 rs57386 TGCAGTATCGCAAGAGTAAAATGAAG
TAGACAAAAACCTTGTATCATTAAAAGA
GGCAGTCACC_18

Days to
emergence

5A 467,397,
067-467,
403,109

serine-type
endopeptidase activity
serine-type peptidase
activity
serine-type
exopeptidase activity

proteolysis

7 rs36808 TGCAGCTCCGTGTCAGTGGTGTCGCG
GGTGAGGCTCTTCTGCTCATCGGC
GCGGATCGGAACTT_44

Spike
length

5B 287,752,
969-287,
780,293

ATP binding
ATPase activity

–
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Table 6 Description of expected MTAs using original SNPs for agronomic traits of Iranian wheat accessions exposed to the rain-fed
conditions

Row Marker sequence Trait Chromosome Position
(bp)

Molecular process Biological process

1 rs63808 TGCAGTTGAAGTCGCGGTGGATGACG
GCGGGGGAGGTGTGCTCGTGCAGAAACT
CCAGCGCGCG_49

Spike
weight

1B 457,750,
965-457,
756,510

protein kinase activity
ATP binding

protein
phosphorylation

2 rs2237 TGCAGAAGGGGACGCCTCGGAATCTA
CGGCAGAGGACCGCCTCAGCGGCCTTCC
CGACGGCGTC_30

Spike
length

1B 26,855,
662-26,
857,170

protein binding
(F-box domain)

–

3 rs26577 TGCAGCCTCCAATCGTGTACACACCTCCGT
AAACAGATCTCGATTCTTCACTCCCTGT
AGAGAG_5

Thousand
kernel
weight

2B 134,240,
300-134,
249,722

protein binding
(Armadillo)
Involved in
membrane

–

4 rs15903 TGCAGCAGAGAATAATAGATGGAGGG
AGGGGTGGTGCAAGTATAGCACCCGAGA
TCGGAAGAGC_41

Spike
weight

2B 47,175,
539-47,
181,332

ADP binding
(NB-ARC)

–

5 rs46075 TGCAGGCACGACCGCATGACCTTCTCGAAC
TTGGCGTCCTTGGCATGGGCGAGCGCAG
ACTCGA_25

Peduncle
length

3B 44,856,
819-44,
857,576

enzyme inhibitor
activity
(Pectinesterase inhibitor
domain)

negative regulation of
catalytic activity

6 rs61706 TGCAGTGGGTCGTCGGAGCATCCAAT
CAGATCTCCACTACACGAACGAGACTAG
CAGCAAGAGG_43

Thousand
kernel
weight

3B 783,413,
489-783,
414,580

GTPase activity
GTP binding
(Small GTPase AND
Small GTP-binding pro-
tein domain)

7 rs25700 TGCAGCCGCTCTTCGGCGGCTCTTGCATCG
ATGAGCTCGCGGGTGCGGGTAAGGGGCA
AGTCGT_35

Plant
height

5B 513,646,
921-513,
649,139

catalytic activity
D-arabinono-1,4-lactone
oxidase activity
oxidoreductase activity
flavin adenine
dinucleotide binding
FAD binding

oxidation-reduction
process

9 rs57846 TGCAGTCAGAGATGATCAAGTTAAGGTCGT
CGAACCCGTCATGGCAGCCGCCGCCGAG
ATCGGA_17

Seed
number

5B 637,387,
009-637,
389,605

protein binding
(BTB/POZ domain)

10 rs46504 TGCAGGCATATGCTCGCCCCACATGTTCGT
AGACAGGCTATCCTGCCGTTACGCATTG
TGGTAC_30

Grain
filling
period

6B 534,921,
073-534,
927,092

guanyl-nucleotide
exchange factor activity
Rho guanyl-nucleotide
exchange factor activity
(PRONE domain AND
protein binding

11 rs30520 TGCAGCGCGACCCCTCTGCTGGCGAG
CTGGGTTGGCCCATATATGTCTGCTTAT
TTTATAAAAA_57

Days to
emergence

6B 532,043,
561-532,
045,921

anaphase-promoting
complex binding
ubiquitin-protein
transferase activator
activity

positive regulation of
ubiquitin protein ligase
activity

12 rs51526 TGCAGGGTACGTGAGTGATTAAACTGGCTG
AGTTAATTGTGATCGGCATTTGATGGTT
ATGGCC_47

Grain yield 6B 664,500,
180-664,
501,715

– asymmetric cell
division

13 rs56337 TGCAGTACCGCTCTTCCCGAGCTGGCACTA
CTGTTCCACCCGTCCAACGATCTGTTGG
GGCATC_32

Grain yield 7A 80,142,
837-80,
144,941

galactoside 2-alpha-L-
fucosyltransferase
activity
(Xyloglucan
fucosyltransferase

fucosylation
cell wall biogenesis

14 rs53016 TGCAGGTCCCATGGCCTCTACCATAGTCGA
ACGGAGGTGGATGCGCTTTGAGGTGGAT
GCCTGA_35

Grain
filling
period

7B 15,713,
548-15,
714,633

DNA binding
DNA-binding
transcription factor
activity
(NA-binding domain
superfamily, AP2/ERF
domain)

regulation of
transcription, DNA-
templated
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Table 7 Description of expected MTAs using imputed SNPs for agronomic traits of Iranian wheat accessions exposed to the rain-fed
conditions

Row Marker sequence Trait Chromosome Position
(bp)

Molecular process Biological process

1 rs64750 TGCAGTTTATGTACGAACTTTGAGAA
TTCTCATCAGTGGCCAAACGCCCAAACT
AACAATTGAA_34

Canopy temperature 4A 630,897,
051-630,
899,273

DNA binding
(3 DNA binding
domain)

transcription, DNA-
templated
regulation of
transcription, DNA-
templated

2 rs11116 TGCAGCAAATTAATCTAGCTTTTAGT
TTCCTTCAGGTATTTTGGATATGCCAGC
AAATCGAAAG_29

Peduncle length 4A 739,791,
132-739,
802,785

ADP binding
(NB-ARC)

–

3 rs736 TGCAGAAAGGTACCACTCATTCGTAC
ATCACTCCAACTGATGTATGAAGGTTGT
TCATGGCGAC_18

Spike weight 4B 481,233,
765-481,
237,258

hydrolase activity phosphatidylinositol
dephosphorylation

4 rs55557 TGCAGGTTTTGCCTAAGAAAAACTCA
GAATTCACTCAAAAAAATCAGATTGCTG
TAAACTGCAC_15

Canopy temperature 4B 613,031,
990-613,
041,407

drug transmembrane
transporter activity
antiporter activity
(Multi antimicrobial
extrusion protein)

drug
transmembrane
transport
transmembrane
transport

5 rs50187 TGCAGGGCAGTCGAAGCAGTTGCTGG
GTCAGAGGCGTGGAGTTGCACTGG
AGCAACAGGAGTCG_54

Spike length 4B 222,603,
782-222,
615,097

transmembrane
transporter activity
(Major facilitator,
sugar transporter-like)

transmembrane
transport

6 rs41689 TGCAGCTTGTCGGTCCTCTCCGACAT
GGCGTCGAGCACCCGCCGAGTCTG
GGCCGAGGGTTTGG_15

Leaf greenness 5B 334,871,
156-334,
874,981

catalytic activity
ATP binding
zinc ion binding
pyridoxal phosphate
binding
cysteine desulfurase
activity
(Cysteine desulfurase
IscS)

iron-sulfur cluster
assembly
[2Fe-2S] cluster
assembly

7 rs59282 TGCAGTCGTGGATAATGCACCTTGCG
GTGTCAGGGGGTGACGTCAGCGAT
GAGTCCACCG_39

Days to heading 5B 11,550,
484-11,
556,238

catalytic activity
hydrolase activity,
hydrolyzing O-
glycosyl compounds
alpha-galactosidase
activity
hydrolase activity
hydrolase activity,
acting on glycosyl
bonds
raffinose alpha-
galactosidase activity
(Glycoside hydrolase,
family 27)

carbohydrate
metabolic process
metabolic process

8 rs44154 TGCAGGAGCACCAGCGCGGCAGCGGT
GGCGACGACGGGGCTACCAGCTGC
CCGCCGAGATCGGA_20

Spike length 5B 363,662,
473-363,
670,095

catalytic activity
hydrolase activity,
hydrolyzing O-
glycosyl compounds
cellulase activity
hydrolase activity
hydrolase activity,
acting on glycosyl
bonds

polysaccharide
catabolic process
carbohydrate
metabolic process
metabolic process
cellulose catabolic
process

9 rs17806 TGCAGCAGGCAAGGTATCTCCAGGCG
AACTATATCATCGCAATATACGAGCTTC
AGGTGCTCCA_61

Days to heading,
anthsis and
physiological
maturity

5B 457,966,
329-457,
970,659

protein binding
(F-box-like domain
superfamily)

–

10 rs25700 TGCAGCCGCTCTTCGGCGGCTCTTGC
ATCGATGAGCTCGCGGGTGCGGGT
AAGGGGCAAGTCGT_35

Peduncle length 5B 513,646,
921-513,
649,139

catalytic activity
D-arabinono-1,4-
lactone oxidase
activity
oxidoreductase

oxidation-reduction
process
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The SNPs rs48893, rs10316, and rs36032 all show rela-
tively high variance explained for the associated traits.
As illustrated in Table 9, under rain-fed conditions, 3,

2, 2, 2, 1, and 1 of the original SNPs were positively as-
sociated to spike weight (by 0.02, 0.03, and 0.03 g),
thousand kernel weight (by 1.59, and 1.90 g), grain yield
(by 0.03 and 0.03 g), and grain filling period (by 1.31,
and 1.57 d), seed number per spike (by 0.58), and leaf
greenness (by 1.69). In contrast, rs2234, rs25700,
rs46075, and rs30520 had positive effects on spike
length (by 0.53 cm), plant height (by 11.06 cm), ped-
uncle length (by 1.76 cm), and days to emergence (by
0.28 d). However, the number of favorable alleles for
spike length, spike weight, peduncle length, days to
heading, days to anthesis, days to physiological matur-
ity, canopy temperature and leaf greenness were 2, 1, 2,
2, 1, 1, 2, and 1, respectively. Rs11116 and rs25700 de-
creased peduncle length by 2.66 and 4.56 cm, rs59282
and rs17806 also decreased days to heading, anthesis,
and maturity by 4.24, 7.59, 7.04, and 6.78 d and
rs64750 caused a decline in canopy temperature by
2.61 °C. Under rain-fed conditions, PVE ranged from 7
to 38%. SNPs associated with grain yield, spike weight
and seed number all explained a considerable propor-
tion of the phenotypic variance. Moreover, the SNP
rs17806 adjusted days to anthesis and physiological ma-
turity by about 36 and 38%, respectively. Manhattan

and QQ-plots of highly associated haplotypes for agro-
nomic traits are shown in Fig. 6.

Discussion
Improving wheat grain yield is a high priority of wheat
breeders in order to meet increasing demands world-
wide. In the current study, we have explored the diver-
sity of the Iranian hexaploid wheat population and
performed association mapping studies for a number of
important agronomic traits. These traits influence grain
yield either directly or indirectly under well-watered or
rain-fed conditions. Significant positive or negative rela-
tionships were observed among these traits, which can
be used to gauge their impact on target traits like grain
yield and grain yield-related attributes. Given that most
agronomic traits are polygenic and drought tolerance is
a complex mechanism involving many pathways, we fo-
cused on three categories of agronomic traits employing
a large diversity panel. Furthermore, using a diverse gene
pool help increase the resolution of association mapping.
We, therefore, tested both historical and modern var-
ieties as well as representative landraces from different
climate zones in order to include sufficient genetic vari-
ation to be able to map trait-relevant variation.
Most Iranian varieties originate from International

Maize and Wheat Improvement Center (CIMMYT)

Table 7 Description of expected MTAs using imputed SNPs for agronomic traits of Iranian wheat accessions exposed to the rain-fed
conditions (Continued)

Row Marker sequence Trait Chromosome Position
(bp)

Molecular process Biological process

activity
flavin adenine
dinucleotide binding
FAD binding

Table 8 The effect of favorable alleles on agronomic traits of Iranian wheat accessions exposed to the well-watered conditions

SNPs Trait Marker ai Typical accession Allele Favorable allele MAF p(−log10) R2

Original CT rs62576 −0.72 623,266 A/G A 0.14 3.68 0.40

SN rs48893
rs10316

0.96
1.20

624,251 C/T
C/T

T
C

0.32
0.14

3.51
3.59

0.24
0.20

TKW rs4772 0.77 623,345 A/C C 0.43 3.23 0.11

GFP rs46504 0.90 626,158 A/C C 0.19 4.30 0.13

Imputed GY rs36032 0.01 622,098 C/T C 0.10 3.16 0.21

SW rs36032
rs736

0.02
0.33

622,098
Neishabour

C/T
A/G

C
G

0.10
0.11

3.16
3.56

0.21
0.10

SL rs34314
rs40819
rs36808

−1.09
−0.70
−0.50

Neishabour
Chamran
621,650

C/T
G/A
A/G

T
A
G

0.04
0.06
0.39

4.71
4.29
3.41

0.12
0.12
0.10

DE rs57386 −0.11 625,081 A/C A 0.22 3.61 0.07

LG rs34075 1.82 627,852 A/C A 0.26 3.88 0.15
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materials with twenty-four varieties in advanced and seg-
regating lines, originating from this center. At least, forty
varieties were obtained through a cross-breeding pro-
gram where one of the CIMMYT advanced lines was
one of the parents (Additional file 1: Table S1). A large
number of these varieties were released after green revo-
lution. A previous study on historical wheat varieties
from Pakistan illustrated the considerable contribution
of CIMMYT germplasm, which has been used in the de-
velopment of Iranian varieties as well [21]. We identified
three clusters of varieties with mixed genetic back-
grounds with no clear relation to the release year. The
relatively small number of the varieties derived from Iran
suggests a relatively narrow utilization of Iranian land-
races among the current and old varieties, which could
be a substantial genetic bottleneck.
In line with earlier studies, we identified most SNPs in

the B and A genomes whereas the younger D genome
showed a lower number of SNPs [32, 33]. We observed
the same trend also for the number of marker pairs in

LD, where SNPs mapping to the B genome were ap-
proximately three times more common than those map-
ping to the D genome. The most significant marker
pairs were observed on chromosomes 2B and 3B in both,
varieties and landraces (Table 2). The higher diversity
seen in the A and B genomes could be the result of their
older evolutionary background and due to gene flow
from T. turgidum as opposed to lack of gene flow from
Ae. tauschii to bread wheat [34, 35]. Moreover, a bottle-
neck effect likely occurred due to strong selection
among ancestral hexaploid landraces in modern varieties
breeding programs and this may have further effects on
the D genome. Such a bottleneck would result in a re-
duction in the effective population size, which increases
the rate of loss of low-frequency alleles in the A and B
genomes, and on the other hand, a higher proportion of
rare alleles in the D genome indicate a reduction in the
allelic variant for younger genome [36]. Our results
show that most markers that are in significant LD are lo-
cated at distances < 10 cM. However, LD and marker

Table 9 The effect of favorable alleles on agronomic traits of Iranian wheat accessions exposed to the rain-fed conditions

SNPs Trait Marker ai Typical accession Allele Favorable allele MAF p(−log10) R2

Original SW rs63808
rs15903
rs51526

0.02
0.03
0.03

623,125
BAHAR
623,125

A/G
A/G
A/G

G
A
A

0.15
0.32
0.19

3.60
3.47
3.26

0.32
0.32
0.32

SL rs2237 −0.53 627,057 A/G G 0.17 4.62 0.13

TKW rs26577
rs61706

1.57
1.90

625,123
623,909

C/T
A/G

T
G

0.48
0.21

3.57
3.82

0.09
0.09

SN rs57846 0.58 Bahar A/T T 0.22 3.43 0.37

GY rs51526
rs56337

0.03
0.03

627,410
625,047

A/G
G/T

A
G

0.19
0.25

3.44
3.91

0.21
0.22

PH rs25700 −11.06 623,318 C/G G 0.14 3.93 0.24

PL rs46075 −1.76 623,139 C/T C 0.19 3.51 0.09

GFP rs46504
rs53016

1.31
1.57

626,360
623,905

A/C
G/T

C
T

0.19
0.16

3.63
5.21

0.09
0.11

DE rs30520 −0.28 626,825 A/G G 0.13 3.41 0.07

LG rs33549 1.69 Gascogne A/G G 0.19 3.65 0.10

Imputed SL rs50187
rs44154

−0.39
− 0.14

626,924
627,057

A/G
A/G

A
G

0.22
0.21

4.04
3.42

0.14
0.13

SW rs736 0.29 Alvand A/G G 0.11 3.81 0.32

PL rs11116
rs25700

−2.66
−4.56

627,410
623,344

C/T
C/G

C
G

0.12
0.11

3.55
3.65

0.08
0.08

DH rs59282
rs17806

−4.24
−7.59

Dastjerdi
Kavir
624,818

A/C
C/T

C
T

0.23
0.11

3.45
3.69

0.36
0.36

DA rs17806 −7.04 Shanghai7
Kavir

C/T T 0.11 3.30 0.38

DM rs17806 −6.78 Frontana
624,818

C/T T 0.11 3.44 0.32

CT rs64750
rs55557

−2.61
−0.39

624,315
622,105

A/G
A/T

G
T

0.03
0.49

4.32
3.58

0.11
0.09

LG rs41689 0.82 Roshan
623,344

C/G C 0.24 3.83 0.12
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distances across the D genome were much higher than
in the other two sub-genomes. The greater extent of
linkage across all genomes in varieties clearly indicates
the effect of selection during the history of those acces-
sions (Table 2). Selection, recombination, mutation, gen-
etic drift, mating systems and population relatedness are
all major factors, which influence linkage disequilibrium
[37–39]. The fact that varieties show significantly overall
higher LD compared to landraces, in particular in the D
genome, is likely the result of selection during breeding
for important agronomic traits [40, 41].

While mapping traits with low heritability may not re-
sult in a desirable gain, utilizing highly correlated traits
can increase power and therefore help with the rapid ad-
vancement of breeding programs. Although grain yield
is the most reliable selection criterion in different target
environments, particularly for water deficit conditions,
the complex genetic architecture of this trait has thus far
limited direct genome-based selection. However, the
pleiotropic effect of genes controlling this trait and the
close connection between grain yield and drought toler-
ance mechanisms highlights the role that other

Fig. 6 Manhattan and QQ-plots of highly associated haplotypes for agronomic traits under well-watered and rain-fed conditions. A) seed number
per spike, B) spike length, C) thousand kernel weight, D) peduncle length. X axis represents chromosomes: 1)1A, 2) 1B, 3) 1D, 4) 2A, 5) 2B, 6) 2D,
7) 3A, 8) 3B, 9) 3D, 10) 4A, 11) 4B, 12) 4D, 13) 5A, 14) 5B, 15) 5D, 16) 6A, 17) 6B, 18) 6D, 19) 7A, 20) 7B, 21)7D
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morphological, phenological and physiological traits play
and which should be considered in any selection
strategy.
Among 313 and 394 identified MTAs for the original

and imputed SNPs, respectively, 86 and 76 falls within
coding genes with P-values < 0.001. To eliminate pos-
sible false-positive associations, we selected the most
strongly associated markers which yielded 19 and 17
markers located across all chromosomes and were iden-
tified in both environments using the two SNP datasets.
Using the original SNPs under well-watered conditions,
we identified QTLs for canopy temperature (1A), seed
number (4D, and 7B), thousand kernel weight (5B), and
grain filling period (6B). Using the imputed SNPs, we
observed QTLs for grain yield and spike weight on chro-
mosomes 1A and 4B, for leaf greenness on chromosome
1A, three QTLs on 4B and 5B for spike length and one
QTL on 5A for days to emergence. These results are in
line with previously detected QTLs for spike length [42],
grain yield [42], seed number per spike [43] and thou-
sand kernel weight [44].
For rain-fed conditions, we identified QTLs on chro-

mosomes 1B, 2B for spike weight, 6B and 7A for grain
yield, 1B for spike length, 2B and 3B for thousand ker-
nel weight, 3B for peduncle length, 5B for plant height,
5B for leaf greenness, 5B for seed number per spike, 6B
and 7B for grain filling period and 6B for days to emer-
gence. These results are in line with findings by Ain
et al. [21] for plant height, thousand kernel weight and
grain yield. Bossolini et al. [45] and Acuna-Galindo
et al. [46] identified stable QTLs on chromosomes 6B
and 5B for grain yield and plant height, respectively.
MTAs for seed number per spike on chromosome 5B
have been previously reported [47, 48]. Neumann et al.
[14] reported a QTL on chromosome 2B for spike
weight. Using imputed SNPs and phenotypic data
under rain-fed conditions, all identified MTAs were lo-
cated on chromosomes 4A, 4B and 5B, with QTLs for
canopy temperature (4A and 4B), peduncle length (4A,
and 5B), spike weight (4B), spike length (4B and 5B),
leaf greenness (5B) and days to heading, anthesis, ma-
turity (5B). These results are in agreement with previ-
ously reported QTLs for these traits [14, 33, 47, 48]. In
addition, we also identified a number of novel chromo-
somal regions that harbored MTAs for physiological
parameters and phenological growth stages. For in-
stance, under well-watered conditions, rs62576 (1A),
rs34075 (1A) and rs57386 (5A) were associated with
canopy temperature, leaf greenness and days to emer-
gence. Under rain-fed conditions, markers rs64750 (4A)
and rs55557 (4B) were associated with canopy
temperature whereas rs4607 (3B) and rs41689 (5B)
were associated with peduncle length and leaf green-
ness, respectively. Moreover, marker rs17806 (5B) has

pleiotropic effects on days to heading, anthesis, and
physiological maturity.
Although imputation of missing data significantly in-

creased the potential number of MTAs, mainly on the A
and B genomes, the fraction of SNPs presents within
coding genes declined, from about 27% in the original
SNP data set to 19.6% for the imputed dataset. This sug-
gests that most SNPs with missing data are located in
noncoding DNA regions where read mapping and SNP
calling are known to be more problematic in most plant
genomes. Dissecting strongly associated chromosomal
regions through, for instance, positional cloning to iden-
tify putative causal genes is the next logical step follow-
ing association mapping studies. Apart from using
comparative genomics approaches to identify the func-
tion of associated genes, independent functional valid-
ation is also required to guarantee the success of either
positional cloning or transgenic experiments [21, 49–
51]. We obtained the flanking sequence of putative SNPs
and aligned them against the IWGSC RefSeq v1.0. This
information showed that most genes identified through
the association study are involved in important biosyn-
thesis pathways such as oxidation-reduction, carbohy-
drate metabolism, ion transportation and cell wall
biogenesis. The protein encoded by these genes are
mostly involved in DNA-binding, ATP-binding, peroxid-
ase activity, protein kinase activity, metal ion binding,
enzyme inhibitor activity, serine-type endopeptidase ac-
tivity, hydrolase activity, antiporter activity and trans-
membrane activity. Such associations have also been
reported in earlier research [52–58]. These genes are all
located in chromosomal regions, which show a strong
association with important agronomic traits and they
can thus be considered as suitable target genes for future
breeding programs. We calculated the phenotypic effect
of favorable alleles, as described by Dong et al. [59] to
show that they affected grain yield only slightly but had
much larger effect on thousand kernel weight, spike
length and leaf greenness. On the other hand, alleles that
contribute to an improvement in thousand kernel weight
and leaf greenness also have pleiotropic effects thereby
decreasing plant height, peduncle length and canopy
temperature under stressful conditions. Most identified
MTAs exist across genes which are involved in multi-
layer processes and complex networks, therefore their
minor impact on agronomic traits is not too far-fetched.

Conclusions
In the present study, GWAS was performed for import-
ant agronomic traits of bread wheat in a diverse panel of
298 varieties and landraces of Iran collection. The high-
est number of marker pairs in both varieties and land-
races was observed on B genome. In total, 313 and 394
MTAs were identified for 14 phenological, agronomic
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and physiological traits using original and imputed
SNPs, respectively. The identified association between
markers and traits generally lied in a range of 10− 3 and
10− 4. It seems that complex inheritance of such quanti-
tative traits and high number of controlling genes ex-
clude greater association. However, a major part of
found MTAs explained more than 20% of total pheno-
typic variation for relevant traits. Although, further stud-
ies are required to validate the detected markers in this
study using other populations and environments. Gene
ontology of identified markers in original and imputed
SNPs showed approximately 27% of these markers rep-
resent within coding genes, thereby have potential to be
used in genome-based breeding of new varieties. Al-
though imputation of missing data could increase the
number of associated markers, the percentage of MTAs
located in coding regions was decreased across different
sub-genomes. The identified markers in this study could
provide useful genetic resources to initiate marker-
assisted selection, fine mapping and cloning of the
underlying genes and QTLs.

Methods
Plant material and experiment conditions
A set of 320 Iranian wheat accession, including 102 var-
ieties released between 1942 and 2014, and 218 land-
races collected between 1931 and 1968 (Additional file
1: Table S1) were tested under a well-watered system
and rain-fed conditions using an alpha-lattice design
with two replicates at the agricultural research lands of
the Department of Agronomy and Plant Breeding, Uni-
versity of Tehran. Plant materials were kindly provided
by the University of Tehran and Seed and Plant Im-
provement Institute (SPII), Karaj, Iran. Both phenotypic
and genotypic data were available for 298 accessions (90
varieties and 208 landraces). The field site is located at
N 35′.80° and E 50′.95° in Karaj, Iran, and experiments
were conducted during the cropping seasons of 2016–17
and 2017–18 (weather conditions are given in Additional
file 3: Fig. S1).

Field trial
Plant development was scored according to the Zadoks
scale and included i) days to emergence (Zadoks 12), ii)
days to heading (Zadoks 50), iii) days to anthesis
(Zadoks 65), iv) days to physiological maturity (Zadoks
91), and v) grain filling period when half of each plot
had reached to corresponding stages. The Soil Plant
Analysis Development (SPAD, Minolta Camera Co.,
Osaka, Japan, SPAD502 Plus Chlorophyll Meter) and
LIHERO Infrared thermometer were used to measure
leaf greenness and canopy temperature at Zadoks 60, re-
spectively. Grain yield and related traits including spike
weight, spike length, seed number per spike and

thousand kernel weight were measured after harvesting
for both years.

Genotyping by sequencing and imputation method
The development and sequencing of a GBS library for
the Iranian wheat have previously been described by Ali-
pour et al. [30]. Briefly, after trimming sequencing reads
to 64 bp and grouping them into sequence tags, SNPs
were identified using internal alignment allowing for
mismatch up to 3 bp. The UNEAK (Universal Network-
Enabled Analysis Kit) GBS pipeline was used for SNPs
calling, where reads with a low-quality score (<15) and
SNPs with low minor allele frequency <1% were re-
moved to avoid false-positive markers arising from se-
quencing errors. The data was also subjected to
imputation using BEAGLE v3.3.2 [60] based on available
allele frequencies obtained after specifying the haplotype
phase for all individuals. Four different reference ge-
nomes were assessed during imputation and W7984 ref-
erence genome was shown to have the greatest
imputation accuracy [31]. The LD decay of different
chromosomes was obtained using the ggplot2 package in
RStudio [61] based on LOESS regression.

Population structure and kinship matrix
Population structure in the sample was estimated using
STRUCTURE v.2.3.4 [62] with an admixture model and
with a burn-in and simulation phase consisting of 10,000
steps for values of K = 1 to 10. ΔK was plotted for con-
secutive K values and used to determine the most likely
number of subpopulations. The values of observed and
expected allele frequencies were used to calculate LD
among markers in TASSEL v.5 [63]. A structure matrix
(Q-matrix) was then obtained for all accessions used for
association studies. To determine the relationship be-
tween varieties and landraces, a neighbor-joining tree
was constructed based on a pairwise distance matrix cal-
culated in TASSEL v.5 [63] and visualized using Archae-
opteryx (https://sites.google.com/site/cmzmasek/home/
software/archaeopteryx).

Genome-wide association study
We used both general linear model (GLM) and mixed lin-
ear model (MLM) to obtain the unbiased estimation of
marker effects. The MLM approach resulted in the most
accurate association of marker-traits and different versions
of the MLM model, including Q, K or Q + K, were used to
control both effects of population structure (Q) and more
diffused relationships (K) among accessions using TAS-
SEL v.5 [63]. The GAPIT package [64] was used to per-
form association mapping for the MLM model in RStudio
[61]. Results from both TASSEL [63] and GAPIT [64]
evaluated based on the significance of associated loci using
t-tests. In general, GAPIT [64] provided a stronger control
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of confounding effects. We, therefore, only reported re-
sults from GAPIT [64]. In the MLM model, individuals
are considered as random effects and the relatedness
among individuals is conveyed through a kinship matrix.
To perform cluster analysis, kinship matrix elements were
used as similarity measures and clusters visualized using
unweighted pair group method with arithmetic mean
(UPGMA) through the heat map plot. A Manhattan plot
is a visualized form of associations between phenotype
and genotype, in which SNPs are ordered based on their
chromosome and base-pair positions. In a Manhattan plot,
the x-axis thus represents the genomic position of each
SNP and y-axis represents the negative logarithm of the
P-value generated from the F-test for testing H0. Here,
both heat map and Manhattan plots were obtained from
an enhanced comparison scenario using the GAPIT pack-
age [64].

Gene annotation
Sequences surrounding all significantly associated SNPs
were obtained from the wheat 90 K SNP database [65]
used for assessing gene annotation using Gramene
(http://www.gramene.org/) by aligning them to the
IWGSC RefSeq v1.0 annotation (https://wheat-urgi.ver-
sailles.inra.fr/Seq-Repository/Annotations). The function
of putative genes was explored by investigating the path-
ways which the encoded enzymes were involved in. After
aligning SNPs sequences to the reference genome, over-
lapping genes with the highest identity percentage and
blast score were selected for further processing. The
gene ontology of each selected gene, including molecular
function and biological process, were extracted from the
ensemble-gramene database (http://ensembl.gramene.
org).

Phenotyping data analysis and calculation of favorable
allele effect
Phenotypic data were analyzed using SAS v.9.4 [66] sep-
arately for the two environments. The adjusted means
were then obtained from the alpha-lattice design used
for advanced linear analysis. Adjusted means were esti-
mated using GLM and Mixed procedures. The pheno-
typic effect of favorable alleles (ai) was estimated using
the following formula:

ai ¼ Σxij
ni

� �
−

ΣNK

nK

� �

where, xij is the phenotypic value of the jth individual
for the ith allele, ni is the number of individuals carrying
the jth allele, NK is the nth individual phenotypic value
for all entries, and nK is the number of individuals. Posi-
tive and negative effects of all alleles are represented by
ai >0, and ai <0, respectively.
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