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Abstract

Background: The cultivated peanut is an important oil and cash crop grown worldwide. To meet the growing
demand for peanut production each year, genetic studies and enhanced selection efficiency are essential, including
linkage mapping, genome-wide association study, bulked-segregant analysis and marker-assisted selection. Specific
locus amplified fragment sequencing (SLAF-seq) is a powerful tool for high density genetic map (HDGM)
construction and quantitative trait loci (QTLs) mapping. In this study, a HDGM was constructed using SLAF-seq
leading to identification of QTL for seed weight and size in peanut.

Results: A recombinant inbred line (RIL) population was advanced from a cross between a cultivar ‘Huayu36’ and a
germplasm line ‘6–13’ with contrasting seed weight, size and shape. Based on the cultivated peanut genome, a
HDGM was constructed with 3866 loci consisting of SLAF-seq and simple sequence repeat (SSR) markers distributed
on 20 linkage groups (LGs) covering a total map distance of 1266.87 cM. Phenotypic data of four seed related traits
were obtained in four environments, which mostly displayed normal distribution with varied levels of correlation. A
total of 27 QTLs for 100 seed weight (100SW), seed length (SL), seed width (SW) and length to width ratio (L/W)
were identified on 8 chromosomes, with LOD values of 3.16–31.55 and explaining phenotypic variance (PVE) from
0.74 to 83.23%. Two stable QTL regions were identified on chromosomes 2 and 16, and gene content within these
regions provided valuable information for further functional analysis of yield component traits.

Conclusions: This study represents a new HDGM based on the cultivated peanut genome using SLAF-seq and
SSRs. QTL mapping of four seed related traits revealed two stable QTL regions on chromosomes 2 and 16, which
not only facilitate fine mapping and cloning these genes, but also provide opportunity for molecular breeding of
new peanut cultivars with improved seed weight and size.
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Background
Peanut (Arachis hypogaea L.), an important source of
edible oil and protein, is widely cultivated in more than
100 countries. The annual global peanut production in-
creases rapidly in recent years resulting in a ten Mt ele-
vation in yield from 2007 (37.51Mt) to 2017 (47.10Mt)
(http://faostat.fao.org/) which paralleled to the constant

increase in food demand [1]. Improving peanut yield
through molecular breeding and optimized field man-
agement is amiable to the goals of sustainable agricul-
ture. From the genetics point of view, peanut yield is
influenced by a number of agronomic traits, such as
height of main stem (HMS), total branch number
(TBN), and the pod and seed/kernel traits [2]. Among
these, 100 seed weight (100 SW), 100 pod weight and
shelling percentage are important components of grain
yield [2–4]. 100 SW is mainly determined by seed size
which can be measured by seed length (SL) and seed
width (SW) [2, 4]. Despite their contribution to yield,
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SL, SW and length to width ratio (L/W) are visual traits
subject to selection during domestication and breeding
[2]. In particular, shape of the peanut seeds (oblong or
round) estimated by L/W is a critical factor determining
the application of peanut varieties in the food processing
factories. In China, round peanut is preferred for confec-
tionary whereas oblong-shaped peanut is used for fried
products. Identification of QTL/genes for seed related
traits will advance our knowledge of biological pathways
conditioning yield components and seed morphology.
Up to now, various genetic strategies to define QTLs

or genes associated with seed traits have been con-
ducted, including linkage mapping [2, 4], genome-wide
association studies [5, 6] and bulked-segregant analyses
[7]. High density genetic maps (HDGMs) provide essen-
tial information of linkage of genetic markers and facili-
tate QTL discovery [8, 9]. In the past decade, a number
of genetic maps have been developed based on SSR
markers for peanut. Over time, SSR based maps had in-
creased marker density and map coverage [2, 3, 10–14].
However, genotyping by SSR markers is labor intensive
and low throughput. Allelic SNP markers have the ad-
vantages of high frequency of occurrence in peanut gen-
ome [15, 16]. Combined with the next generation
sequencing (NGS), a number of SNP-based genotyping
technologies, especially SLAF-seq, have been applied to
HDGM construction and QTL analysis in several spe-
cies, such as sesame [17], soybean [18], cucumber [19,
20], cotton [21] and peanut [8, 22, 23]. In this study, a
HDGM for cultivated peanut has been constructed
based on SNP and SSR markers.
Compared with comprehensive studies on seed traits

in rice [24, 25] and oilseed rape [26, 27], biological path-
ways controlling seed weight and size are not well
understood in peanut. Up to now, QTL mapping for 100
seed weight, seed length, seed width and length to width
ratio are still in progress. Using the bulked-segregant
analysis (BSA), Gomez Selvaraj et al. [7] reported five
SSR markers tightly linked to QTL regions for SL and
100SW. Fonceka et al. [28] identified several QTLs for
pod and seed size that differentiated cultivated peanut
from its wild relatives by using an advanced backcross
population. Pandey et al. [5] performed genome wide as-
sociation analysis by using 300 peanut genotypes, and
identified 9 loci associated with SL, 3 with SW and 5
with 100SW. Using a F2 population, Huang et al. [29]
successfully mapped QTLs for SL, SW, and 100SW,
explaining phenotypic variance (PVE) from 1.69 to
17.88%. Chen et al. [4] utilized two F2:3 populations and
detected 10 QTLs for SL and 7 for SW, with the PVE up
to 20.80 and 14.43%, respectively. Chen at al [2]. con-
ducted QTL mapping and meta-analysis with a RIL
population, and reported 83 QTLs for pod- and seed-
related traits. Wang et al. [8] constructed a SLAF-based

HDGM from a RIL population and discovered two stable
QTL regions for pod and seed related traits. Seed size
QTL on chromosomes A05 and A07 were reported from
two RIL populations [30, 31].
Due to the sequence similarity between the peanut

diploid progenitors (A. duranensis, AA; A. ipaensis, BB)
and cultivated tetraploid peanut (AABB), the genome se-
quences of the two peanut progenitors were informative
in providing physical positions of genetic markers [12,
22, 32, 33]. However, homeologous recombination was
identified in the newly released genome assemblies of
cultivated peanut [34] suggesting erroneous assignment
of QTL positions could occur by using the diploid ge-
nomes. Therefore, physical positions of QTL regions dis-
covered in this manuscript were reported based on the
cultivated peanut genome [34]. To further elucidate gen-
omic regions conditioning seed related traits in peanut,
we developed a recombinant inbred line (RIL) popula-
tion for QTL mapping. The parental genotypes, a large-
seeded cultivar ‘Huayu36’ and a small-seeded germplasm
line ‘6–13’, were characterized by contrasting pheno-
types in seed weight, seed size and shape. SLAF-seq and
SSR analysis were conducted to generate sufficient
markers for HDGM construction. QTL mapping of four
seed related traits collected from four environments re-
vealed two stable QTL regions on chromosomes 2 and
16, which may facilitate the peanut breeding with im-
proved seed characteristics.

Results
Phenotyping of the parents and RIL individuals.
To identify novel QTL/genes modulating seed traits in
peanut, a RIL population consisting of 181 individuals
was created from a cross between ‘Huayu36’ and ‘6–13’.
The maternal parent ‘Huayu36’ was a large-seeded culti-
var (Fig. 1a), with 100SW, SL, SW and L/W up to
119.30 ± 7.17 g, 20.15 ± 3.12 mm, 11.83 ± 1.13 mm and
1.72 ± 0.10, respectively (Fig. 1b). The paternal parent
‘6–13’ was a germplasm line with significantly smaller
seed weight and size (Fig. 1a). The corresponding mea-
surements for ‘6–13’ were 61.83 ± 7.28 g, 13.89 ± 0.63
mm, 9.80 ± 0.30 mm and 1.44 ± 0.03 (Fig. 1b). The RIL
population and its parents were planted in four environ-
ments (Laixi, 2017; Sanya, 2017; Dongying, 2018; Laixi,
2018) and phenotypic data for the four seed related traits
(100SW, SL, SW and L/W) demonstrated normal distri-
bution among the population (Fig. 2; Table 1). Trans-
gressive segregation was observed in most environments
(Fig. 2), indicating polygenic inheritance of the measured
traits. ANOVA (analysis of variance) results indicated
that the effects of genotypes (G), environments (E), and
interaction of G and E (G × E) were all significant for all
measured traits except for G × E for SL (Table 2). All
four seed traits exhibited relatively high broad-sense
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heritability (h2), ranging from 0.77 to 0.89 (Table 2),
which suggested genetics plays a major role in control-
ling seed size and weight, yet the environmental influ-
ence should not be ignored. Pairwise correlation analysis
indicated significant positive correlation between 100SW
and SL (r = 0.793) as well as between 100SW and SW
(r = 0.722). A positive correlation was found between SL
and SW (r = 0.537). L/W was positively correlated with
both 100SW (r = 0.435) and SL (r = 0.809), yet no signifi-
cant correlation was found between with SW and L/W
(Table 3).

SLAF sequencing, SNP and SSR genotyping.
A total of 327.08 Gb raw sequencing data containing
1635.75M reads was obtained after sequencing both
parents and 181 RIL lines, of which 9.70 Gb data with
48.51M reads was from the maternal line ‘Huayu36’,
and 7.56 Gb data with 37.82M reads was from the pa-
ternal line ‘6–13’, respectively (Table 4; Additional file 2:
Table S5). The GC (percentage of guanine and cytosine
in all four bases) content was 37.66%, and Q30 ratio
(bases with a quality score of 30, indicating 99% confi-
dence) was 94.66% on average (Additional file 2: Table
S5). After discarding the low quality reads, 1,614,182
SLAF tags containing 510,204 SNPs were mined based

on the Tifrunner reference genome, of which 733,610
and 693,570 SLAFs were identified from maternal and
paternal parents with the sequencing depth of 50.91-
and 52.33-fold, respectively (Table 4; Additional file 2:
Table S6). The number of SLAFs in the F6 progenies
was 506,417, with an average coverage of 16.13-fold, cor-
responding to 8,207,746 reads (Additional file 2: Table
S6).
A total of 510,204 SNPs were obtained in the SLAF

tags, and 12,950 were successfully encoded as poly-
morphic with a polymorphism rate of 2.54% (Table 4).
According to the genotype encoding rule, the poly-
morphic SNPs were grouped in different segregation
patterns (ef × eg, hk × hk, lm × ll, nn × np, aa×bb, ab×cc,
cc × ab, ab×cd). Since the RIL population was derived
from a cross between two homozygous genotypes, a total
of 6124 SNPs belonging to aa×bb pattern were extracted
(Additional file 2: Figure S1). After filtering the low-
quality SNPs, 3829 were available for linkage analysis
(Table 4).

Construction of the high-density genetic map
For the HDGM construction, 3866 markers (3829 SNPs
and 37 SSRs) were assigned to 20 linkage groups (LGs)
(Fig. 3; Table 5). This map covered a total of 1266.87 cM

Fig. 1 Phenotypic characterization of seeds from ‘Huayu36’ and ‘6-13', (a), Seed morphology of two parents ‘Huayu36’ and ‘6-13’. Scale bar: 2 cm.
(b), Comparisons of 100 seed weight, seed length, seed width and length to width ratio between ‘Huayu36’ and ‘6–13′. Data shown as mean ±
s.e.m. (n = 9). Student’s t-test was used to generate the P values
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genetic distance ranging from 9.61–125.63 cM for
each linkage group with average marker interval of
0.33 cM (Table 5). LG 7 was the longest group cover-
ing a distance of 125.63 cM with 153 loci, while LG 2
was the shortest group spanning 9.61 cM with 39 loci.
LG 3 hosted 421 loci which was the highest among
all linkage groups, whereas LG 20 had only 22 loci,
the least among the linkage groups (Table 5). In
addition, the 37 SSRs were distributed across 16 LGs,
with no SSRs assigned on LG 6, LG 11, LG 12 and
LG 20 (Table 5). Subsequently, the degree of the map
uniformity and inter-marker linkage were evaluated
by the percentage of ‘Gaps≤5 cM’, which ranged from
85.71 to 100% with an averaged value of 97.04%. The

largest gap existed on LG 7, which was 17.05 cM
(Table 5).
To assess the quality of the HDGM, we conducted co-

linearity analysis by comparing the genetic positions of
markers on each LG to their physical positions. Despite
three obvious inverted segments on LG 8 and LG 17, a
relative high colinearity between the genetic and gen-
omic positions was displayed (Additional file 2: Figure
S2), confirming a well ordered marker assignment.

QTL identification for seed related traits
QTL mapping resulted in identification of 27 QTLs for
all 4 seed related traits, with the LOD values of 3.16–

Fig. 2 Phenotypic distribution of seed traits for the RIL population, The x-axis shows the range of seed traits, including 100 seed weight(100SW),
seed length(SL), seed width (SW) and length-width ratio (L/W) in four environments (2017 Laixi, 2017 Sanya, 2018 Dongying and 2018 Laixi). The
y-axis shows the number of individuals of the RIL population. P1 and P2 represent the parents ‘Huayu36’ and ‘6–13’, respectively
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31.55 and explaining phenotypic variation (PVE) from
0.74 to 83.23% (Fig. 4; Table 6).
For 100SW, a total of 4 QTLs were detected on two

chromosomal regions (Fig. 4), explaining phenotypic
variation of 24.69–35.39% (Table 6). One consistent
QTL region was detected in more than one environ-
ment, and located in the marker interval Marker9375–
Marker9395 on LG 16 spanning 2.77Mb which was de-
tected in Laixi 2017 and Laixi 2018 with the PVE of
29.81 and 30.47%, respectively (Table 6). Although
q100SW16b (PVE = 35.39%) was also identified on LG
16, the QTL position was shifted lower than the first
consistent QTL region. Q100SW2 was identified in only
one environment, with a PVE of 24.69% (Fig. 4; Table 6).
For SL, a total of 10 QTLs were mapped on LGs 2, 5,

7, 9 and 10 (Fig. 4). QSL2 was a major consistent QTL
region (Marker938–Marker893) spanning 7.06Mb on
LG 2 with the PVE up to 61.47% (Table 6). This QTL

Table 1 Phenotypic variation of seed traits among the RIL population in four environments

Trait Environment Mean ± SDa Minb Max.c Skew Kurt Sig. of K-S testd

100SW 2017 Laixi 89.86 ± 20.22 43.12 139.08 −0.171 −0.491 0.200

2017 Sanya 112.81 ± 28.89 46.46 174.20 −0.032 − 0.614 0.200

2018 Dongying 72.65 ± 19.20 30.09 125.98 −0.011 −0.349 0.200

2018 Laixi 94.93 ± 23.96 39.80 148.30 0.043 −0.468 0.200

SL 2017 Laixi 18.74 ± 2.41 12.62 23.17 −0.538 −0.209 0.035*

2017 Sanya 19.03 ± 3.08 12.27 25.98 −0.085 − 0.332 0.096

2018 Dongying 17.08 ± 2.43 10.47 21.37 −0.556 − 0.287 0.001**

2018 Laixi 19.06 ± 2.82 11.11 25.12 −0.461 −0.065 0.078

SW 2017 Laixi 10.27 ± 0.91 7.99 12.55 0.042 −0.387 0.200

2017 Sanya 11.35 ± 1.14 8.11 14.99 0.247 0.370 0.200

2018 Dongying 998 ± 1.00 7.13 12.81 0.052 0.251 0.200

2018 Laixi 10.60 ± 1.15 7.80 13.46 0.036 −0.443 0.200

L/W 2017 Laixi 1.84 ± 0.22 1.29 2.30 −0.506 0.412 0.000**

2017 Sanya 1.69 ± 0.23 1.20 2.19 −0.300 − 0.467 0.200

2018 Dongying 1.72 ± 0.18 1.25 2.18 −0.461 −0.065 0.000**

2018 Laixi 1.82 ± 0.25 1.25 2.38 −0.236 − 0.331 0.002
aSD, standard deviation;
bMin, minimum value;
cMax, maximum value;
dSig of K-S test, significance for normality test by Kolmogorov-Smirnov;
* and ** mean significant at P < 0.05 and P < 0.01, respectively

Table 2 Analysis of the broad-sense of heritability of four seed
related traits

Traits Source DFa SSb MSc F value P h2

100SW G 178 525,776.44 2953.80 1326.45 < 0.01 0.89

E 3 248,989.34 82,996.45 37,270.95 < 0.01

G × E 454 161,141.02 354.94 159.39 < 0.01

Error 632 1407.36 2.2268

SL G 180 8045.98 44.70 12.34 < 0.01 0.83

E 3 1116.56 372.19 102.77 < 0.01

G × E 495 4029.50 8.14 2.25 > 0.05

Error 675 2444.63 3.62

SW G 180 1186.23 6.59 7.58 < 0.01 0.77

E 3 348.60 116.20 133.59 < 0.01

G × E 495 843.57 1.70 1.96 < 0.05

Error 675 587.11 0.87

L/W G 180 58.82 0.33 6.96 < 0.01 0.81

E 3 4.31 1.46 30.58 < 0.01

G × E 495 33.52 0.07 1.44 < 0.01

Error 675 31.68 0.05
aDF degree of freedom;
bSS sum of square;
cMS mean of square

Table 3 Pearson’s correlation analysis among the measured
traits of the RIL population

Traits 100SW SL SW L/W

100SW – b b b

SL 0.793 – b b

SW 0.722 0.537 – n.s.a

L/W 0.435 0.809 −0.055 –
a n.s not significant at P < 0.05;
b indicated significant at P < 0.01
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region was identified in all four environments. Two
major QTLs (qSL5.1 and qSL5.2) were tightly linked on
LG 5 and identified in the same season, with PVE of
40.25 and 36.91%, respectively. Another QTL, qSL9, was
identified in the Sanya_2017 and Laixi_2018 datasets
with PVE of 4.05 and 9.62%, respectively (Fig. 4; Table 6).
Both qSL7 and qSL10 were identified in only one season.

Except for qSL9, all the alleles from ‘Huayu36’ increased
measurements of seed traits (Table 6).
For SW, 5 QTLs were identified, accounting for

12.12–21.58% PVE (Fig. 4; Table 6). Three major QTLs
(qSW16.1a, qSW16.2a, qSW16b) were mapped on LG 16
(Fig. 4), with the ‘Huyu36’ allele contributing to in-
creased SW (Table 6). QSW16.1a (PVE 13.68%) and
qSW16.2a (PVE 12.64%) were detected in the same en-
vironment, while qSW16b (PVE 21.58%) was identified
in a different season (Table 6). The position of
qSW16.1a and qSW16b overlapped with the consistent
QTL region detected for 100SW. Another two major
QTLs for SW (qSW5 and qSW13) were detected on LGs
5 and 13 and accounted for PVE of 15.07 and 12.12%,
respectively (Table 6). These QTLs were detected in only
one environment.
For the L/W, 8 associated QTLs were mapped on

LGs 2, 3, 5 and 9 (Fig. 4; Table 6). Among these, the
consistent QTL region on LG 2 was detected in all
four environments (PVE = 65.77 to 83.23%), and co-
localized with the QTL region identified for SL.
Donor alleles for increased trait measurements came
from ‘Huayu36’. Another consistent QTL region
(qLW5a and qLW5b) was detected on LG 5, account-
ing for 43.66 and 45.83% PVE, respectively (Table 6).
Two minor QTLs, qLW3 (PVE 4.85%) and qLW9
(PVE 4.47%) were identified, with the ‘6–13’ allele
contributing to the L/W trait (Table 5). Additionally,
qLW9 overlapped with the region detected for qSL9b
(Fig. 4).

Table 4 Summary of SLAF-seq data for the RIL population

Total reads

Number of reads 1635.75Ma

Number of reads in high quality 1541.04 M

SLAFb tags

Number of SLAFs 1,614,182

Average depth of SLAFs in parents 51.62

Average depth of SLAFs in individuals 16.13

SNPc markers detected in SLAF tags

Number of SNPs 510,204

Average number of SNPs in parents 363,559

Average number of SNPs in individuals 293,244

Number of polymorphic SNPs 12,950

High-quality SNP markers

Number of high-quality SNP markers 3829

Average depth in parents 95.18

Average depth in individuals 23.30
a M million;
b SLAF specific locus amplified fragment;
c SNP single nucleotide polymorphism

Fig. 3 High density genetic map of the RIL population using SNP and SSR markers, The markers were indicated by black bars. The x-axis
represents 20 linkage groups and y-axis represents genetic distance
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Functional annotation of two stable and pleiotropic QTL
regions.
In order to reveal genes/genetic pathways potentially
conditioning seed size, genes within the two consistent
QTL regions on chromosomes 2 and 16 were extracted
from the Tifrunner reference genome for annotation.
The first QTL region (defined as the region I) on
chromosome 2, with flanking markers Marker938–
Marker893, spanned a genomic distance of 7.06Mb, and
contained 514 candidate genes by Nr database (Add-
itional file 3: Table S7). GO annotation showed that the
majority of genes had specific functional assignment: the
cell (114), cell part (114) and organelle (88) in the cellu-
lar component category; catalytic activity (195), binding
(148) and electron carrier activity (23) in the molecular
function category; metabolic process (230), cellular
process (157) and single-organism process (136) in the
biological process category (Fig. 5). The other QTL re-
gion (defined as the region II) on chromosome 16, with
flanking markers Marker9360–Marker9483 covered a
genomic distance of 12.21Mb. A total of 684 candidate
genes were obtained within this region (Additional file 3:
Table S8), among which the majority terms were cell
(199), cell part (197) and organelle (142) for cellular

component category; catalytic activity (195), binding
(148) and transporter activity (27) for molecular function
category; metabolic process (340), cellular process (267)
and single-organism process (218) for the biological
process category (Fig. 5).
A total of 66 SNPs were detected in these two QTL re-

gions (16 SNPs in the region I and 50 SNPs in the region
II), which were mostly located in intergenic regions or re-
sulted in synonymous mutation (Additional file 3: Table
S9). Phytohormones such as brassinosteroid (BR) were
known to play crucial roles in seed development [35]. De-
ficiency in BR synthesis and signal transduction pathway
leads to off-type exhibitions in seed size and mass [36–
39]. In the region I, three candidate genes arahy.T43K8I.1,
arahy.T43K8I.2 and arahy.T43K8I.3 were all homologous
to the BSU1 (BRI1 suppressor 1) (Additional file 2: Figure
S3; Additional file 3: Table S7), which was reported to
function in brassinosteroid (BR) signaling and affect plant
growth [40, 41]. Meanwhile, a candidate gene ara-
hy.BC5R4P.1 encoding the putative auxin response factor
2 (ARF2)–like protein was highlighted in the region II
(Additional file 2: Figure S3; Additional file 3: Table S8),
of which the homolog acted downstream of BZR1 and BR
signal in regulating seed size in Arabidopsis [42].

Table 5 Summary of the high-density genetic map

LGa Total marker Total distance(cM) Average distance of adjacent markers (cM) Largest gap (cM) Gaps≤5 cM
(%)

SSRb

1 280 99.88 0.36 16.6 98.57 6

2 39 9.61 0.25 2.33 100.00 1

3 421 47.58 0.11 7.33 99.52 4

4 352 57.73 0.16 12.67 99.15 2

5 289 87.81 0.30 6.36 99.31 3

6 68 27.05 0.40 7.70 99.51 0

7 153 125.63 0.82 17.05 94.74 2

8 47 51.13 1.09 6.82 95.65 1

9 317 84.58 0.27 9.66 98.73 2

10 64 79.02 1.23 9.13 90.48 1

11 34 33.24 0.98 8.12 93.94 0

12 74 110.01 1.49 12.37 93.15 0

13 313 68.96 0.22 6.36 99.68 2

14 261 16.24 0.06 4.86 100.00 2

15 259 71.35 0.28 8.05 99.22 2

16 369 58.75 0.16 8.64 99.46 1

17 100 66.17 0.66 6.16 97.78 2

18 270 97.74 0.36 8.70 98.51 3

19 134 39.15 0.29 7.75 98.50 3

20 22 35.24 1.60 16.12 85.71 0

Total 3866 1266.87 0.33 17.05 97.04 37
aLG linkage group;
bSSR simple sequence repeat

Zhang et al. BMC Plant Biology          (2019) 19:537 Page 7 of 15



Discussion
A SLAF based HDGM for cultivated peanut.
In this study, two parental genotypes with contrasting
seed characteristic were selected to develop a RIL popu-
lation. High levels of phenotypic variation among the
RIL lines allowed for the detection of QTL using the
HDGM. Previously, the narrow genetic basis of culti-
vated peanut resulted in an extremely low degree of
polymorphism in various forms of molecular markers,
which restrains the construction of HDGM in peanut
[13, 43, 44]. The SLAF-seq strategy, a combination of
locus-specific amplification and next generation se-
quencing has been successfully applied in large-scale
SNP mining in various species, revealing its mature
pipelines and advantages in HDGM construction and
favorable QTL identification [17, 18, 21, 45]. Cur-
rently, three HDGMs based on SLAF-seq have been
published in cultivated peanut, all of which consisted
of more than 2000 high-quality SNP markers, and

resulted in yield and oil quality related QTL detection
in cultivated peanut [8, 22, 23]. In this study, close to
4000 markers were placed on the linkage map allow-
ing for fine genetic mapping of traits of interest
(Table 5). Meanwhile, colinearity analysis validated
the high quality of this map. The present SLAF-based
HDGM was constructed based on the newly pub-
lished genome of tetraploid cultivated peanut (A.
hypogaea cv. Tifrunner) [34], rather than the refer-
ence genomes of two ancestral diploid species (A.
duranensis, AA; A. ipaensis, BB) [32, 33]. Although
sequence conservation between the diploid and tetra-
ploid species was high, tetrasomic events and
chromosome inversions occurred after the polyploidi-
zation event forming the cultivated peanut species
[34, 46–49]. Thus, using the cultivated peanut refer-
ence genome reduced the risk of incorrect assignment
of marker positions and improved the accuracy of
QTL/genes identification.

Fig. 4 Seed related QTLs detected in four environments
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QTL identification for seed weight and size.
The complex genetic basis of seed weight and size has
been well characterized in crops, which were controlled
by a number of genes involved in different pathways [25,
27, 50, 51]. However, the underlying genetic mechanism
for peanut seed related traits is poorly understood and
needs further investigation. Currently, several seed re-
lated QTLs have been identified with variable PVE and
chromosomal positions from different parental geno-
types [2, 4, 8, 28, 29]. And the previously identified QTL
for 100SW, SL and SW were widely distributed on vari-
ous LGs, indicating complex polygenic inheritance of
such traits. Similarly, in the present study, a total of 27
QTLs for 4 seed related traits were detected on chromo-
somes 2, 3, 5, 7, 9, 10, 13 and 16, explaining phenotypic

variation from 0.74 to 83.23% (Fig. 4; Table 6). Among
these, qSL2, qLW2 and q100SW16 with more than
29.81% PVE were consistently detected in at least three
environments, indicating stable genetic effects across en-
vironments. There were 5 and 3 QTLs covering two
genomic regions on chromosomes 5 and 9, which con-
tained three transposable element markers (AhTE0523,
AhTE0278 and AhTE0437) previously associated with
pod size [6]. Meanwhile, the QTL region covering 29.7
Mb on chromosome 5 agreed with the location of QTL
for pod weight detected by Hake et al. [54].
The co-localization of qSL2 and qLW2 on chromo-

some 2 and q100SW16 and qSW16 on chromosome 16
was in agreement with the high positive correlation
within each pair of traits. It was often observed that yield

Table 6 QTL analysis for four seed related traits

Trait Enva QTL LGb CIc Flanking Markers Physical position (Mb) LODd ADD e PVE f (%)

100SW 2017LX q100SW16a 16 9.8–10.7 Marker9375–Marker9395 8.84–11.61 3.34 −11.43 29.81

2017SY q100SW2 2 0–0.5 Marker938–Marker893 92.75–99.81 6.27 −14.87 24.69

2018DY q100SW16b 16 13.6–14.1 Marker9444–Marker9463 15.96–18.31 7.60 −11.83 35.39

2018LX q100SW16c 16 9.9–10.7 Marker9372–Marker9395 8.49–11.61 5.96 −13.70 30.47

SL 2017LX qSL2a 2 0–0.7 Marker938–Marker893 92.75–99.81 17.62 −1.96 61.74

2017LX qSL7 7 0.6–2.6 Marker4618–Marker4664 74.27–76.91 3.16 0.21 0.74

2017SY qSL2b 2 0–0.8 Marker938–Marker893 92.75–99.81 15.88 −2.08 42.43

2017SY qSL9a 9 50.3–53.2 Marker5024–Marker5026 19.18–19.29 3.55 0.64 4.05

2018DY qSL2c 2 0–0.8 Marker938–Marker893 92.75–99.81 8.38 −1.80 51.20

2018DY qSL5.1 5 21.6–22.1 Marker3540–Marker3535 93.27–94.03 3.21 −1.60 40.25

2018DY qSL5.2 5 26.7–30.8 Marker3455–Marker3523 85.42–91.99 3.41 −1.53 36.91

2018DY qSL10 10 57.4–73.3 Marker5972–Marker6000 108.15–115.70 3.61 −1.32 27.48

2018LX qSL2d 2 0–0.7 Marker938–Marker893 92.75–99.81 20.19 −2.13 53.60

2018LX qSL9b 9 55.2–56.2 Marker5044–Marker5514 22.03–90.20 3.75 0.95 9.62

SW 2017LX qSW13 13 60.3–64.7 Marker7532–Marker7533 138.32–138.50 3.45 −0.32 12.12

2017 LX qSW16.1a 16 7.7–14.8 Marker9360–Marker9483 7.33–19.54 4.17 −0.35 13.68

2017LX qSW16.2a 16 16.1–18.6 Marker9525–Marker9662 25.49–53.24 3.62 −0.33 12.64

2018DY qSW5 5 38.5–40.0 Marker3468–Marker3409 77.32–86.33 3.92 −0.40 15.07

2018DY qSW16b 16 14.8–15.8 Marker9464–Marker9503 18.81–22.71 4.47 −0.48 21.58

L/W 2017LX qLW2a 2 0–0.7 Marker938–Marker893 92.75–99.81 27.47 −0.21 83.23

2017LX qLW5a 5 12.9–14.0 Marker3612–Marker3590 102.71–106.10 4.18 −0.15 43.66

2017SY qLW2b 2 0–0.6 Marker938–Marker893 92.75–99.81 15.41 −0.19 65.77

2017SY qLW5b 5 11.7–12.9 Marker3622–Marker3604 105.45–107.08 4.3 −0.15 45.83

2018DY qLW2c 2 0–0.7 Marker938–Marker893 92.75–99.81 24.52 −0.15 69.07

2018DY qLW3 3 41.5–45.8 Marker1886–Marker1906 140.53–143.23 4.9 0.04 4.85

2018LX qLW2d 2 0–0.7 Marker938–Marker893 92.75–99.81 31.55 −0.21 70.64

2018LX qLW9 9 55.3–56.0 Marker5041–Marker5511 21.40–89.29 4.39 0.09 4.47
a Env environment;
b LG linkage group;
c CI confidence interval;
d LOD logarithm of the odds;
e ADD additive effect;
f PVE phenotypic variation explained
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related QTLs exhibited pleiotropic effects on more than
one trait [2, 53, 55]. Application of genetic markers
within these QTL regions in breeding programs could
potentially optimize the selection of multiple seed re-
lated traits. Previous studies have reported several yield

related QTLs on B06 [2, 8, 28]. Among these, Wang
et al. [8] identified one QTL region on B06 with physical
coverage of 119.8Mb–128.8Mb, which was distant from
QTL regions reported here (physical coverage: 7.33Mb–
21.71Mb and 25.49Mb–53.24Mb). Chen et al. [2]

Fig. 5 GO annotation of genes within the region I and II on chromosome 2 and 16 respectively
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reported three QTL regions for both 100SW and SW on
B06, among which two (physical coverage: 10.6 Mb–
21.6Mb and 12.2Mb–74.9Mb) overlapped with our re-
sults, suggesting a possibly similar genetic basis within
these regions. Fonceka et al. [28] identified one marker
(TC3H07_B) on B06, associated with seed weight only
under water-limited condition. Since the physical pos-
ition of TC3H07_B is unknown, we are unable to deter-
mine whether this marker locates in our detected QTL
regions. Nevertheless, to our knowledge, the region I on
chromosome 2 is novel (Fig. 4), since no related QTL
has been reported on this chromosome yet.

Functional annotation in two stable pleiotropic QTL
regions.
Functional annotation was provided for 514 and 684
genes within the QTL regions I and II, facilitating the
understanding of their putative biological functions. A
total of 66 SNPs were detected in the region I and II,
none of which led to alteration in protein coding se-
quences (Additional file 3: Table S9). The insufficient
marker density limited the prediction of target genes.
However, these SNPs might be used to design KASP
(kompetitive allele-specific polymerase chain reaction)
markers for fine mapping and facilitating molecular
breeding [56].
Previous studies on other species provided useful in-

formation to understand the putative mechanisms for
peanut seed size regulation [25–27, 50–53]. Hormones
have been widely demonstrated to function in seed de-
velopment, among which BR plays key roles in seed size
regulation [36–39]. In the region I, three genes ara-
hy.T43K8I.1, arahy.T43K8I.2 and arahy.T43K8I.3
encoded proteins homologous to the BSU1 (Additional
file 2: Figure S3; Additional file 3: Tables S7, S8), a key
factor in fine tuning the BR responses, of which mutants
can affect organ size and shape [40, 41]. Arahy.
BC5R4P.1, was identified in the region II and is homolo-
gous to ARF2, which was reported to act as a target of
BZR1 and negatively regulate seed size in Arabidopsis
[42]. These four candidate genes together with other
possible ones are worthy of further investigation to de-
fine their roles in peanut seed development.

Conclusions
A new high density genetic map with 3866 SLAF and
SSR loci was constructed based on the released culti-
vated peanut genome. Our findings demonstrated that
this SLAF-based map was of high quality, and applicable
for QTL mapping. A total of 27 QTLs regulating seed
size and weight were identified in 4 environments, in-
cluding two stable pleiotropic QTL regions, of which the
QTL region on chromosome 2 was novel. These findings
will facilitate the fine mapping and cloning of genes

conditioning yield components and seed morphology
traits. Genetic markers associated with these traits can
be designed for molecular breeding of peanut with im-
proved seed characteristics.

Methods
Plant materials and phenotyping
An F2:6–8 population of 181 RIL lines was derived from a
cross between ‘Huayu36’ and ‘6–13’. The plant materials
(including the parents and the RILs) used in this study
were originally created by our laboratory and we have all
the relevant rights to the materials. All materials were
grown in the field in accordance with the local legisla-
tion. The ‘Huayu36’ cultivar is large-seeded with light
red testa. The germplasm ‘6–13’ is small-seeded with
light brown testa. The RIL population and its parental
lines were planted in the experimental fields in Laixi (at
N 36.86°, E 120.53°), Shandong Province (planted in May
and harvested in September of 2017 and 2018); in Sanya
(at N 18.65°, E 109.80°), Hainan Province (planted in No-
vember of 2017 and harvested in March of 2018); in
Dongying (at N 37.46°, E 118.49°), Shandong Province
(planted in May and harvested in September of 2018).
The field experiments followed a randomized block de-
sign with three replications according to a previous
study with a few modifications [57]. For each plot, 10
plants from each RIL line were grown 15-cm apart
within a row, and an 85-cm gap was given between RILs.
The parental lines were planted after every 20 rows as
controls. Standard agricultural practices were applied for
field management. Each plant was harvested individually
at its maturity to prevent loss from over-ripening. Only
eight plants in the middle of each row were used for trait
measurement. Mature seeds determined by full size pods
with dark inner carp color from each plant were mea-
sured for 100 seed weight, seed length, seed width and
length to width ratio. The seed length and seed width
were measured by using a parallel rule. The seed weight
was taken on an electrical scale. The length to width ra-
tio was calculated by dividing seed length by seed width.
The mean values of each measured trait were used for
phenotypic characterization. The phenotypic datasets of
four seed traits in four environments are shown in an
additional supporting file (Additional file 1:Table S1).

Statistical analysis of phenotypic data
The mean value and standard deviation of each seed re-
lated trait for the parents and each RIL line were ana-
lyzed, and the Student’s t-test was conducted by SPSS
statistics (IBM® SPSS® statistics 19). The normality of the
population data was analyzed by the Kolmogorov-
Smirnov test. According to the equation h2 = σg

2/(σg
2 +

σge
2/n + σe

2/nr), the broad-sense of heritability (h2) for
seed related traits was calculated by ANOVA analysis
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with QTL IciMapping V4.1 (http://www.isbreeding.net/
software/?type=detail&id=18). The σg

2, σe
2, and σge

2 rep-
resented the variances of genotypes (G), environments
(E) and interaction of genotypes and environments (G ×
E). The Pearson’s correlation coefficient between each
two traits was obtained utilizing the SPSS statistics
(IBM® SPSS® statistics 19).

DNA extraction and SSR marker analysis
Young healthy leaves from the two parents and 181 RIL
lines (F2:6) were collected at the seedling stage, frozen in
liquid nitrogen, and stored at − 70 °C. Total genomic
DNA was extracted by Plant Genomic DNA Kit (TIAN-
GEN Biotech Beijing Co., Ltd). The concentration and
quality of DNA were examined using electrophoresis on
a 0.8% agarose gel and an ND–1000 spectrophotometer
(NanoDrop, Wilmington, DE, USA). PCR reaction con-
ditions for SSR analysis were: 3 min denaturation at
94 °C; 35 cycles of 1 min at 94 °C, 30 s at 55 °C, and 90 s
at 72 °C; and then a final extension of 10 min at 72 °C,
and storage at 4 °C. The PCR products were then sepa-
rated on a 6% PAGE gel. 37 polymorphic SSR primers
(Additional file 1: Table S2) were used to genotype the
RIL population. SSR genotyping was performed as previ-
ously described [22].

High-throughput sequencing and genotyping
After scanning the reference genome of peanut, the RsaI
and EcoRV-HF® (NEB, Ipswich, MA) enzymes were se-
lected to digest the genomic DNA. The protocol of the
SLAF-library construction has been previously described
[19, 58]. The DNA fragments with indices and adaptors
(SLAFs) of 314–414 bp were excised and diluted for
pair-end sequencing using the Illumina HighSeq 2500
platform according to the Illumina sample preparation
guide (Illumina, Inc., San Diego, CA) at the Biomarker
Technologies Corporation (Beijing, China).
Low quality reads (quality score < 30, indicating a 0.1%

chance of error) were discarded based on sequence simi-
larity, and the SLAF paired-end reads were clustered by
BLAT (−tileSize = 10 -stepSize = 5) [58]. Sequences with
over 90% identity were grouped in one SLAF locus [59].
The SLAF in this study were classified into three types,
non-polymorphic SLAF, polymorphic SLAF, and repeti-
tive SLAF. Using the minor allele frequency (MAF)
evaluation, alleles were defined in each SLAF. SNP call-
ing was achieved according to GATK Best Practices
(https://www.broadinstitute.org/gatk/guide/best-practi-
ces?bpm=DNAseq#variant-discovery-ovw). Polymorphic
SNP markers were classified into eight segregation pat-
terns (ab × cd, ef × eg, hk × hk, lm × ll, nn × np, aa × bb,
ab × cc and cc × ab). The RIL population is obtained by a
cross between two homozygous parents with genotype
aa or bb. Thus, SNP markers fitting the aa × bb

segregation pattern were used for genetic map construc-
tion. To ensure the quality of the genetic map, low qual-
ity SNPs were filtered out by the following rules [22]:
SNPs with sequencing depth in parents ≤10-fold;
complete degree ≤70%; SLAF with highly distorted seg-
regation ratio from the expected 1:1 by Chi square (χ2)
test; SLAF with more than 8 SNPs. The aa and bb repre-
sents the genotypes of ‘6–13’ and ‘Huayu36’, and related
genotyping results of each RIL line by high quality
markers are shown in an additional supporting file (Add-
itional file 1: Table S3).

High density genetic map construction
A linkage map was constructed [60] and the physical po-
sitions of markers were assigned in reference to the cv.
Tifrunner genome sequence [34]. The high quality SLAF
markers were grouped based on a pair-wise modified
logarithm of odds (MLOD) scores. To ensure efficient
construction of the high-density and high-quality map,
High Map Strategy was used for ordering the SLAF and
SSR markers and correcting genotyping errors within
the chromosomes [61]. MSTMap was applied to obtain
the marker orders of each group [62]. The SMOOTH al-
gorithm was used for error correction [63], and a k-
nearest neighbor algorithm was applied to the missing
genotype imputation [64]. The Kosambi mapping func-
tion was applied to estimate the map distances [65]. The
genetic positions of markers on each LG were displayed
in an additional supporting file (Additional file 1: Table
S4). In addition, a co-linearity map was generated to
evaluate the map quality. Linkage group number corre-
sponds to the chromosome number assigned by the
Tifrunner reference genome.

QTL mapping
The R/qtl package [66] was used to detect QTL and con-
firm the relationship between different markers around
each QTL with the composite interval mapping method
(CIM). The permutation test was repeated 1000 times
with the LOD scores larger than 5% cutoff value. A loga-
rithm of the odds (LOD) threshold value of 3.0 was ap-
plied to declare the presence of a QTL at 95%
significance level. The positive and negative additive ef-
fect represented the favorable alleles were from ‘6–13’
and ‘Huayu36’, respectively.

Functional annotation
Markers flanking the confidence intervals of the co-
localized QTLs in 4 environments were selected to iden-
tify the candidate genes based on the genome sequences
of the cultivated peanut (https://peanutbase.org/data/
public/Arachis_hypogaea/Tifrunner.esm.TVDM/). For
the functional annotation, gene content within the major
QTL regions was compared with the Nr (nonredundent)
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protein sequences available at the UniProt database
using the BLASTX algorithm. The associated hits
were then searched for their respective Gene Ontol-
ogy (GO) terms at www.geneontology.org [67]. Hom-
ologous protein sequences of putative candidate genes
were obtained by the BLASTP algorithm against the
Arabidopsis information resources (https://www.arabi-
dopsis.org/index.jsp).
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