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Abstract

Background: Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique
in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within
Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences,
this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade
diversification in the genus.

Results: All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were
generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum
likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating,
biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid
and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the
morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and
northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of
clade diversification has sharply accelerated since the Miocene/Pliocene boundary.

Conclusions: Our results provide important insights for clarifying some of the long-standing taxonomic debates in
Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The
climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid
uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in
driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that
large genome sizes may limit speciation.
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Background

Paris is a small genus that was once placed in Trilliaceae
[1], but now in Melanthiaceae [2—6]. The genus com-
prises of ca. 29 species of understory perennial herbs
that are continuously distributed across Eurasia [7-9].
With most species (24/29) occurring in China and
Himalayas, Paris may have experienced significant spe-
cies diversification in subtropical East Asia (2134 N)
[7, 9, 10]. Most species of this genus are much-valued
traditional medicinal herbs in China and neighboring
counties due to their various therapeutic properties
[11-13]. Among them, the rhizomes of Paris polyphylla
var. chinensis and P. polyphylla var. yunnanensis (Rhi-
zome Paridis) have been used as traditional medicine
for more than 2000 years in China [14]. To date, more
than 40 commercial drugs and health products have
been developed using Rhizome Paridis as raw materials
[15], with ~ 1.5 billion USD per year in gross sales [16].
In addition, nearly all species with thick rhizomes are
collected for medicinal purposes in Vietnam, Myanmar,
Nepal, Bhutan, and India [13, 14].

Paris is morphologically distinctive in their single
whorl of leaves (> 3) and solitary apical flower that is 4—
15-merous. However, the rhizome, leaf, flower, stamens,
ovary, fruit and seeds, which have been widely used to
construct classifications, are highly divergent among
species [7, 17]. Since the establishment of the genus by
Linneaus [18], it has been subject to numerous critical
revisions. Based on rhizome and fruit morphology,
Franchet [19], who established the first infrageneric
classification system of Paris, placed the species known
at that time into two sections: Euthyra and Paris. Hara
[17] described a third section, Kinugasa. Instead, Takha-
tajan [20] recognized these three sections as genera:
Paris s. s. (= sect. Paris), Daiswa (= sect. Euthyra), and
Kinugasa (= sect. Kinugasa). In the most comprehensive
revision, Li [7] divided the genus into two subgenera,
Daiswa and Paris, and eight sections, Axiparis, Dunnia-
nae, Euthyra, Fargesianae, Kinugasa, Marmoratae, Paris,
and Thibeticae. Based on molecular and morphological
evidence, Ji et al. [21] suggested an updated classification
of Li [7] by combining sections Dunnianae, Fargesianae
and Marmoratae with Euthyra.

Several recent studies attempted to reconstruct phylo-
genetic relationships within Paris based on single or
multiple DNA loci [21-24]. Due to insufficient sequence
variation or limited taxon sampling, these studies did
not provide satisfactory resolution or support for infra-
generic relationships. As such, the absence of a solid
phylogenetic scheme hinders the satisfactory resolution
of the long-standing disagreements over classification of
Paris and limits our understanding of the evolutionary
and biogeographic history of this economically import-
ant genus.

Page 2 of 14

Plant phylogenetics based on limited sequence regions
often suffer from poor resolution and low support, par-
ticularly for clades in which rapid diversification or
hybridization events have occurred [25-29]. Recently,
next-generation sequencing, a technique capable of pro-
ducing orders of magnitude more data than Sanger se-
quencing, has been increasingly used for phylogenetic
reconstruction [30—35]. This has offered new approaches
to resolve recalcitrant relationships in phylogenetically
difficult taxa [36—43]. Huang et al. [44] and Yang et al.
[45] attempted to apply plastid genomes (plastomes) to
resolve phylogenetic relationships within Paris. Although
the plastome data greatly improve phylogenetic reso-
lution and support, limited taxon sampling prevented
them from building a robust overall view of the genus. It
is, therefore, necessary to extend sampling size to cover
all described sections and even all species, and to use
markers with different inheritance patterns to compre-
hensively understand the evolutionary history of Paris.

The biparentally inherited but generally uniparental
evolution via gene conversion of nuclear ribosomal DNA
sequences (nrDNA) and the non-recombining, mostly
maternally inherited plastomes contain a large number
of evolutionarily informative variation suitable for phylo-
genetic analysis [46—50]. Genome skimming via shotgun
sequencing of total genomic DNA at relatively low
coverage is an efficient approach to recover entire plas-
tomes and nrDNA [47]. Recently, genome skimming has
been widely employed to reconstruct the evolutionary
relationship at lower taxonomic levels and among closely
related species [51-55], as well as to investigate reticu-
late evolution in diverse plant clades [52, 56-58]. In this
study, we generated plastome and nrDNA sequences
from all currently recognized Paris species using genome
skimming method. Based on phylogenomic analyses, we
aimed to (1) clarify evolutionary relationships within
Paris; and (2) explore biogeographic scenarios and his-
torical diversification for the genus.

Results

lllumina sequencing and assembly

Low coverage genome sequencing generated per sam-
ple 8.57-35.73 million paired-end clean reads (150 bp)
(Additional file 1: Table S1). Of these, 7.25x 10* to
2.10 x 10° and 4.81 x 10® to 4.59 x 10* were mapped to
the reference plastome and nuclear nrDNA, respectively.
Based on these data, we assembled complete plastomes
and nrDNA for all samples, with the average sequencing
depth ranging from 68.72-1998.57 times and 75.15-
1136.47 times, respectively.

The de novo assembly produced 33 Paris plastomes,
which exhibited a typical quadripartite structure, with
the size varying from 156,139-158,643 bp (Additional file 2:
Figure S1). Paris plastomes are conserved in gene content
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Table 1 Comparison of sequence characteristics of the aligned plastome and nrDNA datasets in Paris

Variable sites (divergence)

Parsimony informative sites (divergence)

Dataset Aligned length (bp)
Complete plastome 166,726
nrDNA 5862

5899 (3.53%)
443 (7.56%)

3225 (1.93%)
264 (4.50%)

and arrangement. All plastomes contain 114 genes, in-
cluding 80 protein-coding genes, 30 tRNA genes, and four
plastid rRNA genes (Additional file 3: Table S2). Align-
ment of the plastomes yielded a matrix of 166,726 posi-
tions, in which we identified 5899 variable sites (3.53%)
and 3225 (1.93%) were parsimony informative (Table 1).
Also, our de novo nrDNA assembly entirely covered 18S,
ITS1, 5.8S, ITS2 and 26S regions. The sequence length
of Paris ntDNA ranged from 5840 to 5859 bp. Align-
ment of the ntDNA sequences produced 443 variable
sites (7.56%), of which 264 (4.50%) were parsimony in-
formative (Table 1).

Phylogenetic relationships

The standard maximum likelihood (ML) and Bayesian
inference (BI) analyses of complete plastomes generated
identical tree topologies (Fig. 1). Five highly supported
clades (bootstrap percentage, BP = 100; posterior prob-
ability, PP =1.00) within Melanthiaceae were resolved,
which correspond to the five tribes recognized by Zom-
lefer [3]. Their relationships are congruent with those of

previous studies [3, 5, 6, 44, 59]. The monophyly of Paris
was strongly supported (BP =100, PP = 1.00), which was
sister to Trillium (BP = 100, PP = 1.00). Within Paris, five
well-supported clades corresponding to the five sections
circumscribed by Ji et al. [21] were recovered. Our re-
sults support the successive divergence of the P. sections
Paris, Kinugasa, Thibeticae, Axiparis and Euthyra. Most
relationships obtained high support except a few ter-
minal species relationships. For instance, the relation-
ship between P. luquanensis and P. marmorata received
weak branch support (BP =57, PP =0.67) in both ML and
BI trees.

The incongruence length difference (ILD) test revealed
significant discordance (p <0.001) between the nrDNA
and plastome datasets. The phylogenetic analysis of
nrDNA sequences (Fig. 2) divided tribe Paridae (Paris
and Trillium) species into two clades (BP =100, PP =
1.00). Within the first clade (BP =70, PP = 0.50), section
Paris is sister to Trillium (BP =59, PP =0.60) and this
pair is sister to section Kinugasa. Within the second
clade (BP =100, PP = 1.00), section Thibeticae is sister to
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Fig. 1 Phylogenetic relationships and ancestral areas reconstruction of Paris. (I) Phylogenetic tree based on plastome DNA sequences. Numbers
above branches indicate maximum likelihood bootstrap percentages (BP) and Bayesian posterior probabilities (PP). (Il) Reconstruction of ancestral
area of Paris using S-DIVA analysis inferred from plastid tree. (Ill) Paris species assigned to four areas based on their current distributions:
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Fig. 2 Comparison of tree topologies recovered from analyses of nuclear ribosomal DNA sequences (I) and plastome DNA sequences (Il).
Numbers above branches indicated maximum likelihood bootstrap percentages (BP) and Bayesian posterior probabilities (PP)

all species of sections Axiparis and Euthyra, which are
non-monophyletic. In comparing nuclear and plastid
topologies, we observed three instances of cytonuclear
discordance at different taxonomic levels (Fig. 2). The
first is the non-monophyly of Paris in the nuclear data-
set. The second is monophyly of sections Axiparis and
Euthyra: they are paraphyletic in nrDNA tree but mono-
phyletic in the plastid tree. The third instance of cytonuc-
lear discordance concerns the interspecific relationships
within section Euthyra (Fig. 2).

Ancestral area reconstruction, molecular dating, and
historical diversification

The Statistical-Dispersal Vicariance Analysis (S-DIVA)
(Fig. 1) reconstructed northeastern Asia and northern
China (C) as the ancestral area for the most recent com-
mon ancestor (MRCA) of Paris. It may have undergone
a westward or southward dispersal into southwestern
China and Himalayas or eastern, central, southern China
and northern Indochina [AC (0.50/BC (0.50)] to evolve
the MRCA of thick rhizome clade. Then, a vicariance
was inferred to split section Kinugasa (Japanese Islands)
from remaining taxa (sections Thibeticae, Axiparis, and
Euthyra, subtropical East Asia); within the latter, three
dispersal and two vicariance events were inferred. Al-
though the S-DIVA analysis failed to reconstruct the an-
cestral area of the section Paris, a dispersal, an extinction,
and two vicariance events were inferred in the clade.

The BEAST analyses (Fig. 3) indicated that the diver-
gence between the sister genera, Paris and Trillium, oc-
curred at 33.94 Mya (95% HPD: 37.84-29.70 Mya).
Within Paris, the thick and slender rhizome clades di-
verged from their MRCA at 28.66 Mya (95% HPD:

35.17-20.62 Mya), around the early Oligocene. Diversifi-
cation within the thick rhizome clade commenced 16.00
Mya (95% HPD: 22.39-7.04 Mya), around the early Mio-
cene, leading to the divergence of the monotypic section
Kinugasa from the remaining thick-rhizome taxa. Subse-
quently, the monotypic section Thibeticae diverged from
the MRCA of sections Axparis and Euthyra at 10.08
Mya (95% HPD: 13.51-7.46 Mya), in late Miocene. The
split of sections Axparis and Euthyra was dated at 7.07
Mya (95% HPD: 9.38-5.12 Mya), around the Miocene/
Pliocene boundary. Additionally, the diversification of
sections Paris, Axiparis, and Euthyra occurred at 10.93
Mya (95% HPD: 21.14-5.65 Mya), 4.77 Mya (95% HPD:
6.75-2.91 Mya), and 4.59 Mya (95% HPD: 6.27-3.12
Mya), respectively.

The semi-logarithmic lineage through time (LTT)
plots analysis (Fig. 4) suggested that the origin of Paris
was followed by a relatively stable diversification rate,
which, however, sharply increased around Miocene/Plio-
cene boundary. This upward trend was maintained dur-
ing the Pliocene and the Pleistocene. The Bayesian
Analysis of Macroevolutionary Mixtures (BAMM) de-
tected a rate shift in net species diversification in Paris,
which occurred with the divergence between sect.
Euthyra and Axiparis (Fig. 4).

Discussion

Phylogenetic inferences and taxonomic implications
Previous phylogenetic analyses based on a small number
of DNA loci or limited taxon sampling failed to robustly
reconstruct the backbone of the Paris tree [21-24, 44,
45]. Including all currently recognized species, the plas-
tome analysis fully resolved interspecific relationships of
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Paris with strong support at most nodes. Our study fur- The plastome-based phylogenies strongly support the
ther confirms that phylogenetic analysis based on more  monophyly of Paris and recovered five strongly sup-
DNA loci with greatly increased number of phylogenet-  ported major clades that correspond to the previously
ically informative characters can significantly improve proposed sections by Ji et al. [21]. Within Paris, succes-
resolution at low taxonomic levels [36, 43, 52, 53, 60]. sive divergence along the spine of the tree of sections
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Paris, Kinugasa, Axiparis, Thibeticae, Axiparis, and
Euthyra was inferred. This divergence pattern can be
supported by some morphological characters (Fig. 5).
Briefly, the slender rhizome and round more berry-like
fruit distinguish section Paris from the rest of the sec-
tions. Nevertheless, seeds without an enveloping sarco-
testa (or aril, presumably a plesiomorphic character)

separate sections Paris and Kinugasa from the rest. Al-
though species of the thick rhizome clade (including
sections Kinugasa, Thibeticae, Axiparis, and Euthyra)
commonly have angular fruits, section Kinugasa is dis-
tinctive among these in possessing showy white sepals.
The third diverging section Thibetica is similar to Euthyra
in having dehiscent capsules, but its seed morphology
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Fig. 5 Comparison of morphological features among five Paris sections and Trillium
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(with an incomplete aril) is analogous to that of Axiparis.
Therefore, the plastid tree is highly congruent with the
morphologically based classification of Ji et al. [21].

The plastid tree provides valuable insights for resolv-
ing the long-standing disagreements in classification of
Paris. All Paris species share the morphological synapo-
morphies of flowers and leaves being 4—15-merous com-
pared with the trimerous condition of Trillium (Fig. 5),
and monophyly of both genera was fully supported,
making it reasonable to recognize Paris as a single
genus [7, 17, 21] rather than dividing it into three gen-
era (Daiswa, Kinugasa, and Paris s. s.) [20]. Also, the
new tree further supports the taxonomic treatment of Ji
et al. [21] by combining sections Dunnianae, Fargesia-
nae and Marmoratae with Euthyra. Given its economic
importance, resolution of the long-standing taxonomic
disputes will be conducive to exploration and protec-
tion of Paris species.

The current taxonomy of P. polyphylla with five var-
ieties is not supported by either the plastid or nrDNA
results. The varieties should be probably recognized as
distinct species, but it is also likely, given the cytonuclear
discordance observed for these accessions (Fig. 2) that
hybridization may be involved in their origins. Further
study of this group with more appropriate population
genetic and cytological techniques is warranted.

Cytonuclear discordance

Similar to the previous study of Ji et al. [21], we detected
discordance between the nrDNA and plastid trees for
Paris at both deep and shallow nodes. Cytonuclear in-
congruence is a fairly common phenomenon in plant
phylogenetics [25, 56, 61-68]. In most cases, the nuclear
tree is more congruent with morphological taxonomy
[43, 56, 61, 62, 64, 67-70], and such incongruence can
be mainly attributed to incomplete sorting of cytoplas-
mic polymorphisms or introgression of the cytoplasmic
genome from one species into the nuclear background
of another by hybridization [25, 63, 68, 71, 72]. However,
in our study the plastid tree of Paris is largely consistent
with morphological evidence, suggesting nrDNA intro-
gression without cytoplasmic gene flow could be respon-
sible for the discordance detected [68, 71-74].

Given that the discordance observed in Paris was likely
due to phenomena affecting the nrtDNA tree, which in-
volved rapid gene conversion of one parental copy [75—
80], the phylogenetic relationships recovered by this
dataset may not be representative of that obtained with
other parts of the nuclear genome not subject to gene
conversion. Nonetheless, these results may provide use-
ful information about past hybridization events that
otherwise may not be the majority pattern in the nuclear
genome. Failure to recover Paris as a monophyletic in
the nrDNA tree (Fig. 2) suggests there could have been
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hybridization between section Paris and Trillium after
section Paris split form the rest of the genus. It is note-
worthy that the largest eukaryotic genome, that P. japon-
ica [81, 82], was supposed to be an allo-octaploid between
Paris and Trillium according to previous cytological inves-
tigations [83]. This hybrid hypothesis is supported by its
position as sister to section Paris and Trillium in the
nrDNA tree. Likewise, the non-monophyly of sections
Axiparis and Euthyra observed in the ntDNA tree (Fig. 2)
can also be attributed to ancient hybridization. The sister
relationship of P. luquanensis/P. mairei (section Euthyra)
and the clade of four species of section Axiparis (P. dulon-
gensis, P. forrestii, P. rugosa and P. tengchongensis) suggest
that hybridization could have occurred between the an-
cestors of these taxa. Additionally, extensive discord-
ance among species of section Euthyra (Fig. 2) supports
the conclusions of the previous study that natural
hybridization between species of section Euthyra is
likely if the pollinators are the same, but little is known
about this aspect of the biology of Paris. Experimental
manual outcrossing has been effective between most of
these species [84]. Interspecific hybridization is the likely
cause of the cytonuclear discordance observed between
species in the section. Additionally, as mentioned above,
there is discordance for the positions of the varieties of P.
polyphylla, suggesting that hybridization may also have
played a role in their origins.

It is notable that the cytonuclear discordance detected
in this study merely reflects conflict between plastomes
and nrDNA datasets, which are substantially two linkage
groups of plastid and ribosomal genes and only represent
at best two large single-locus DNA regions. Whether there
is nuclear genome-wide and plastome discordance is a gi-
gantic leap with such a limited dataset. To further verify
this, large numbers of unlinked nuclear loci generated by
restricted site-associated DNA sequencing (RAD-seq) or
even whole nuclear genome sequencing are likely to be
required.

Biogeography and lineage diversification

Because strong cytonuclear discordance was detected in
Paris and the plastid tree agrees well with morphologic-
ally based classification, we address the biogeography
and historical diversification of Paris based on the plas-
tid dataset. The S-DIVA analysis recovered northeastern
Asia and northern China as the ancestral area of Paris.
Associated with a dispersal and a vicariance event (Fig. 1),
the crown node of Paris was dated at 28.66 Mya (Fig. 3),
in the early Oligocene, when the global climatic deterior-
ation [85] led to the expansion of vegetation adapted to
drier and colder climates in large parts of Eurasia [86].
Therefore, early divergence of Paris may have been driven
by these events. Also, S-DIVA analysis revealed that the
divergence of the Japanese endemic species, P. japonica
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and P. tetraphylla was triggered by two independent vic-
ariance events (Fig. 1). Their divergence times of 16.00
Mya (P. japonica) and 10.93 Mya (P. tetraphylla), in the
Miocene corresponds to the opening of the Japan Sea,
which separated the Japan islands from the continental
East Asia [87].

In the thick rhizome clade, the S-DIVA analysis in-
ferred three dispersal events (Fig. 1), which were dated
at 10.08, 7.07 and 4.59 Mya (Fig. 3), respectively. Neo-
cene climatic change might play an essential role in trig-
gering these events. The onset of the Asian monsoon
around the Oligocene/Miocene transition created a con-
nection between forests from low to high latitudes of
East Asia [88]. The enhancement of Asian summer mon-
soon since the late Miocene established a humid climate
in subtropical East Asia [89-91], and caused a significant
expansion of forests in East Asia [88, 92]. These climatic
and environmental shifts would create favorable habitats
that facilitated the dispersal and divergence of sections
Thibeticae, Axiparis and Euthyra in subtropical East
Asia. Also, along with the expansion of forests in high
latitudes of East Asia, the MRCA of P. quadrifolia and P.
incompleta may have migrated into Europe.

Both LTT and BAMM analyses revealed that clade di-
versification within Paris abruptly accelerated around
the Miocene/Pliocene boundary, which could be driven
by the further strengthening of monsoonal climate in
the summer and the initiation of the two distinct mon-
soon regimes that have gradually become established in
subtropical East Asia since the late Miocene [88, 92, 93].
From then on, eastern, central and southern China and
northern Indochina have been primarily governed by Pa-
cific monsoon, whereas southwestern China and the
Himalayas have been mainly affected by Indian monsoon
[92-95]. The S-DIVA analysis (Fig. 1) and molecular
dating (Fig. 3) showed that vicariance events occurred in-
dependently in sections Axiparis (4.77 Mya) and Euthyra
(4.28 Mya) in the two regions mentioned above. This im-
plies profound ecological heterogeneity resulting from cli-
mate differentiation may have driven significant allopatric
speciation in the two regions [96-98]. In addition, the
LTT and BAMM analyses (Fig. 4) revealed that most ex-
tensive divergence in Paris, which was responsible for ap-
pearance of more than half of the extant taxa, took place
in the Pliocene and the Pleistocene. It is believed that the
Qinghai-Tibet Plateau (QTP) rose dramatically from the
Late Miocene (ca. 10~8 Ma) to the early Pliocene (ca. 3.6
Ma) [99, 100], which dramatically modified global climate
[94, 101] and thereby profoundly influenced biological
processes, such as species range expansion/contraction
and vicariance, in East Asia [102]. During the Pleistocene,
there were at least four major glaciations in East Asia
[103], and these probably created significant isolation and
diverse habitats in East Asia [104, 105]. Such complex
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geological, ecological, and environmental heterogeneity is
expected to have driven diversification of a wide spectrum
of plant clade [104, 106—109] and would also have trig-
gered vicariance and facilitated a species radiative in Paris.

A negative correlation between genus-level diversity
and the genus-average genome size was observed in
plants [110, 111]. Knight et al. [111] proposed the large
genome constraint hypothesis, which states that plant
taxa with large size genomes diversify more slowly. Sub-
sequently, Suda et al. [112] found that many island
clades of Macaronesian angiosperms that underwent
adaptive radiations have small genome sizes, and as-
sumed that rapid diversification is more likely to happen
in angiosperms with small genomes size. It is note-
worthy that Paris is fairly distinctive in angiosperms in
possessing large genomes. The minimum documented
genome size in the genus (P. verticillata, 1C = 30.52 Gb)
is much larger than the mean genome size (1C =5.7 Gb)
of angiosperms [113, 114]. Moreover, the known largest
eukaryotic genome, that of P. japonica, 1 C =148.88 Gb,
belongs to Paris [81, 82]. In this study, we found that
Paris may have undergone a species radiation since the
Miocene/Pliocene boundary (Fig. 4), which is not con-
sistent with prediction that large genome size could limit
speciation [111, 112]. It also has to be admitted that al-
though there is sharp rise in the lineage diversification,
the total number of species involved is not large in com-
parison to other radiations, for instance, Dianthus in the
Mediterannean [115], and Aizoaceae in South Africa
[116]. The generality of the large genome constraint hy-
pothesis needs to be further evaluated, although the in-
creased lineage diversification detected here in Paris
does not pose a major contradiction to it.

Conclusions

This study represents a comprehensive phylogenetic in-
vestigation of Paris, an economically important but taxo-
nomically difficult genus, by sampling all currently
recognized species in the genus. The analyses of
complete plastome and nrDNA sequences reconstructed
a robust phylogeny, and provided implications for clari-
fying some of the long-standing taxonomic debates in
Paris. We also identified significant conflicts between
plastid and nuclear datasets. This cytonuclear discord-
ance observed in Paris may have been caused by ancient
and recent hybridizations. Ancestral area reconstruction
indicated that Paris may have originated in northeastern
Asia and northern China, and has experienced multiple
dispersal and vicariance events during its diversification.
Based on phylogenetic framework and molecular dating,
we propose that the climatic and geological changes
since the Miocene played essential roles in triggering
range formation and clade diversification in Paris. Our
findings provide important insights for elucidating the
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evolutionary history of Paris, and will be conducive to
exploration and protection of Paris species.

Methods

Plant sampling, DNA extraction and lllumina sequencing
We sampled 33 accessions to represent all 29 species
and five varieties recognized by Li [7] and those de-
scribed since then [9, 84, 117-119]. The original sources
of the plant materials used in this study and voucher in-
formation are presented in Additional file 4: Table S3.
The voucher specimens were identified by Dr. Yunheng
Ji. Genomic DNA was extracted from ca. 20 mg silica gel
dried leaves using the CTAB (cetyltrimethylammonium
bromide) method [120]. Approximately 5 pg of purified
genomic DNA was sheared by sonication. Paired-end li-
braries with an average insert size 350 bp were prepared
using a TruSeq DNA Sample Prep Kit (Illumina, Inc.,
USA) according to the manufacturer’s protocol. The li-
braries were paired-end sequenced on the Illumina
HiSeq 2000 platform. Raw reads were filtered to remove
adaptors and low quality reads using NGS QC Toolkit
[121], by setting the cut-off value for percentage of read
length to 80 and PHRED quality scores at 30.

Assembly and gene annotation

The complete plastome sequence of Paris quadrifolia
(GenBank Accession: KM067394) was used as the refer-
ence for assembling the newly sequenced Paris plas-
tomes. The plastid contigs were organized according to
the references and connected with overlapping terminal
sequences to yield the complete plastomes in Bowtie
v2.2.6 [122] using the default parameters. Plastomes
were annotated with the Dual Organellar Genome An-
notator database [123]. Start and stop codons and in-
tron/exon boundaries for protein-coding genes were
checked manually. Annotated tRNA genes were further
verified by tRNAscan-SE 1.21 [124] with the default pa-
rameters. The boundary of the large-single copy (LSC),
small-single copy (SSC), and inverted-repeat (IR) regions
for each plastome were visually examined and manually
adjusted according to those of the reference plastome in
Geneious V10.2 [125].

For ntDNA sequence assembly, we first excluded all
plastid-like reads. Based on remaining reads, de novo as-
semblies were performed using the complete nrDNA se-
quence (including 26S, 18S and 5.8S ribosomal RNA
genes and the internal transcribed spacers) of Lillium
tsingtauense (GenBank Accession: KM117263) as refer-
ence. The external transcribed spacers in Paris species
possesses too many repeat sequences and inversions that
may make the assembly inaccurate, we therefore did not
assemble the region. Contigs mapping to reference
nrDNA were assembled using the processes described
above. The nuclear ribosomal RNA genes and their
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boundaries with ITS regions were annotated and de-
fined by comparison with the reference in Geneious
V10.2 [125].

Phylogenetic analysis
To investigate phylogenetic placement of Paris within
Melanthiaceae, 15 other plastomes representing the five
tribes recognized in Melanthiaceae (Additional file 5:
Table S4) were integrated with the 33 newly sequenced
Paris plastomes in the final analysis. Furthermore, 33
Paris nrtDNA and five rDNA sequences from Veratrum
(1 accession), Ypsilandra (1 accession) and Trillium (3
accessions) of Melanthiaceae were incorporated into a
nuclear dataset (Additional file 4: Table S3). Campy-
nema lineare and Veratrum taliense were used to root
the plastid and nuclear trees, respectively, according to
previous studies [3, 5, 6, 59]. Alignment of plastid and
nrDNA sequences were performed using MAFFT [126]
integrated in Geneious v.10.2 [125], and manually edited
if necessary. The most appropriated model of sequence
substitution for plastomes (GTR+ G) and nrDNA se-
quences (GTR + I + G) was selected using Modeltest v3.7
[127] with the Akaike information criterion [128]. We
considered the whole plastome as a single inherited unit.
Next, we confirmed the same model for both the small
and large single copy regions and the inverted repeats
using PartitionFinder v. 2.1.1 [129]. Conflict between
plastid and nuclear datasets was examined using the in-
congruence length difference (ILD) test [130] imple-
mented in PAUP* 4.0b10 [131] for 1000 replicates.
Phylogenetic analyses were carried out using both ML
and BI methods. ML analyses were conducted using
RAxXML-HPC BlackBox v8.1.24 [132] with 1000 repli-
cates of rapid bootstrapping. The BI analyses were per-
formed using MRBAYES v.3.1.2 [133]. Runs for each
dataset began with a random starting tree for one mil-
lion generations with sampling at every 100 generations.
An initial 25% of the sampled trees were discarded. The
posterior probability values were determined from the
remaining trees. Stationarity was considered to be reached
when the average standard deviation of the split frequen-
cies was < 0.01.

Molecular dating and diversification rate estimate

It is notable that no fossils have been identified for
Melanthiaceae and its close relatives. A previous study
that used 17 fossils across the monocots and major
clades of angiosperms suggested that the crown age of
Melanthiaceae was approximately 84.8 Mya, while the
clades Parideae-Xerophyllideae and Chionographideae-
Heloniadeae diverged approximately 74 Mya, and the
tribes Parideae and Xerophyllideae split approximately
52.3 Mya [134]. We used these times to calibrate the
phylogenetic tree (Fig. 3). Molecular dating was performed
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in BEAST v.2.4.7 [135]. The BEAST analyses were run
under the uncorrelated lognormal relaxed clock approach
with a Yule tree prior. Markov Chain Monte Carlo
chains were run for 10,000,000 were run with sampling
every 1000 generations. The stationarity of the chains
and convergence of BEAST analyses was monitored by
Tracer v. 1.5.

The diversification rate change over time was inferred
using the semi-logarithmic lineage through time (LTT)
plot approach. The consensus chronogram inferred from
the results of molecular dating was computed by APE
v.5.3 [136] within an R environment [137]. We further
examined potential shifts in net diversification rate in
Paris based on the time calibrated maximum clade cred-
ibility tree (with the highest posterior probability) from
BEAST using the Bayesian Analysis of Macroevolution-
ary Mixtures (BAMM) [138].

Ancestral area reconstruction

For biogeographic reconstructions, Paris species were
assigned to four areas based on their current distribu-
tions: A) southwestern China and Himalayas, B) eastern,
central, southern China and northern Indochina, C)
northeastern Asia and northern China, and D) Europe
and the Caucasus. Ancestral distributions of Paris were
reconstructed by statistical dispersal-vicariance analysis
(S-DIVA) [139] implemented in RASP 4.0 [140]. The
condensed tree and 4000 post burn-in Bayesian trees
from BI analysis were used as input trees. The random
tree was defined as 1000 and other parameters were set
to their defaults.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-019-2147-6.

Additional file 1: Table S1. Summary of lllumina sequencing.
Additional file 2: Figure S1. Plastome map of Paris species.
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