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Abstract

Background: Soybean (Glycine max) is an economically important oil and protein crop. Plant height is a key trait
that significantly impacts the yield of soybean; however, research on the molecular mechanisms associated with
soybean plant height is lacking. The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-
associated system 9) system is a recently developed technology for gene editing that has been utilized to edit the
genomes of crop plants.

Results: Here, we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL (LHY) genes in soybean. In
order to test whether the gRNAs could perform properly in transgenic soybean plants, we first tested the CRISPR
construct in transgenic soybean hairy roots using Agrobacterium rhizogenes strain K599. Once confirmed, we
performed stable soybean transformation and obtained 19 independent transgenic soybean plants. Subsequently,
we obtained one T, transgene-free homozygous quadruple mutant of GmLHY by self-crossing. The phenotypes of
the T,-generation transgene-free quadruple mutant plants were observed, and the results showed that the
quadruple mutant of GmLHY displayed reduced plant height and shortened internodes. The levels of endogenous
gibberellic acid (GA3) in Gmlhylalb2a2b was lower than in the wild type (WT), and the shortened internode
phenotype could be rescued by treatment with exogenous GA3. In addition, the relative expression levels of GA
metabolic pathway genes in the quadruple mutant of GmLHY were significantly decreased in comparison to the
WT. These results suggest that GmLHY encodes an MYB transcription factor that affects plant height through
mediating the GA pathway in soybean. We also developed genetic markers for identifying mutants for application
in breeding studies.

Conclusions: Our results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLHY genes reduces
soybean plant height and shortens internodes from 20 to 35 days after emergence (DAE). These findings provide
insight into the mechanisms underlying plant height regulatory networks in soybean.

Keywords: CRISPR/Cas9, Plant height, Soybean, LHY, Transgene-free

* Correspondence: liubh@iga.ac.cn; kongfij@gzhu.edu.cn

Qun Cheng, Lidong Dong, Tong Su and Tingyu Li contributed equally to
this work.

'School of Life Sciences, Guangzhou University, Guangzhou, China

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-019-2145-8&domain=pdf
http://orcid.org/0000-0001-7138-1478
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:liubh@iga.ac.cn
mailto:kongfj@gzhu.edu.cn

Cheng et al. BMC Plant Biology (2019) 19:562

Background

Soybean is one of the most important economic sources
of vegetable oil and protein worldwide, and plant height,
node number, internode length, branch number, and seed
size are significant factors that affect soybean yield [1, 2].
Plant height is a key trait of plant ideotypes, and a rela-
tively shorter stem length contributes to increased yield in
modern breeding programs [3-5]. Some plant height
genes have thus been cloned by map-based cloning in sev-
eral plant species, such as maize [6-8], rice [9-11], tomato
[12], and soybean [13, 14]. For example, GA3 b-
hydroxylase (ZmGA3o0x2) was cloned using candidate gene
association mapping and a genetic assay from the dwarf
mutant d1-6016 and responded for the dwarf mutant in
maize [7]. The Brachytic2 (Br2) gene, which was cloned
from maize by mapping, significantly impacts plant height
[8]. Recent research showed that GmDWI (dwarf mutant)
encodes an ent-kaurene synthase, and the mutant of
GmDW1 displayed reduced plant height and shortened in-
ternodes in soybean [13]. In addition, several transcription
factor (TF) families play important roles in plant height.
For instance, OsNAC2 is a NAC transcription factor, and
the constitutive expression of OsNAC2 resulted in shorter
internodes and shorter spikelets in rice [15].

Circadian clocks are endogenous 24-h oscillators that
allow organisms to anticipate daily changes in their envir-
onment, playing critical roles in many biological processes
and stress responses by regulating up to 80% of the tran-
scriptome in plants [16—18]. LHY and CCA1 are key com-
ponents of the central oscillator and encode two morning-
expressed MYB TFs in Arabidopsis [19, 20]. AtLHY/
CCAL1 can bind to the evening element (EE; AAATATCT)
of the promoter of TIMING OF CAB EXPRESSION 1
(TOC1I) and act redundantly to repress the transcription
of the AtTOCI gene during the day [21]. AtTOCI1 re-
presses AtCCAI and AtLHY from its induction at dusk
until slightly before dawn [22]. Other functions of LHY/
CCALl in flowering and the stress response have been re-
ported [23, 24]. For example, silencing of NaLHY abol-
ished the vertical movement of flowers under continuous
light conditions in Nicotiana [23]. A recent report showed
that AtLHY can regulate the expression of abscisic acid
(ABA) signaling components and downstream response
genes to potentiate some ABA responses [24]. However,
the potential functions of the LHY/CCA1 family members
in soybean are still unclear.

The CRISPR/Cas9 system was recently engineered for
the genetic manipulation of plants [25-28]. The use of
CRISPR/Cas9 technology has attracted great attention
and has been successfully applied in various crops for
genome editing, such as wheat [29, 30], maize [31, 32],
rice [33], barley [34], tomato [35, 36], and soybean [37-
39]. There are four GmLHY genes in soybean, named
GmLHYla, GmLHY1b, GmLHY2a, and GmLHY2b, but
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the functions of these genes remain unknown. There-
fore, in the current study, the CRISPR/Cas9 system was
used to target four GmLHY genes in soybean. We ob-
served the phenotype of the T,-generation transgene-
free quadruple mutant of GmLHY and found that the
height and internodes of the quadruple mutant were sig-
nificantly shorter than that of the WT. Moreover, the
relative expression levels of GA metabolic pathway genes
in the quadruple mutant of GmLHY were significantly
lower than in WT. These results suggested that GmLHY
directly or indirectly regulates plant height by mediating
key components of the GA pathway. We also developed
genetic markers for the identification of mutants for use
in breeding studies. Our findings suggest that the ma-
nipulation of these genes should facilitate improvements
in plant height and internodes in soybean.

Results

Target site selection, construction, and confirmation of
the target sites in soybean hairy roots

In order to identify the ortholog of AtLHY and AtCCAl in
soybean, we performed protein sequence alignment and iden-
tified four CCA1/LHY orthologs in soybean. Phylogenetic
analysis showed that the four CCA1/LHY orthologs are closer
to AtLHY than AtCCA1. Thus, the four CCA1/LHY ortho-
logs was named GmLHY1a (Glyma.16G017400), GmLHY1b
(Glyma.07G048500), GmLHY2a (Glyma.19G260900), and
GmLHY?2b (Glyma.03G261800) (Additional file 1: Fig. S1).
To study the function of the four GmLHY genes in soybean,
four target adaptors were used, including target 1/2 for target-
ing the GmLHY2a and GmLHY2b genes, and target 3/4 for
targeting the GmLHY1a and GmLHY1b genes (Fig.1a). Target
1 is present in the second and third exon of the GmLHY2b
and GmLHY2a genes, respectively; target 2 is present in the
fifth and sixth exon of the GmLHY2b and GmLHY2a genes,
respectively; target 3 is present in the first exon of GmLHY1a
and GmLHY1b; and target 4 is present in the fifth exon of
GmLHYIa and GmLHY1b in soybean (Fig. 1a). The CRISPR
vector encodes Cas9 and was driven by the CaMV35S pro-
moter and four gRNAs driven by the Arabidopsis U3b, U3d,
U6-1, and U6-29 promoters, respectively (Fig. 1b, c).

In order to test whether the CRISPR/Cas9 construct
could properly edit these genes in transgenic soybean
plants, we first tested the construct in transgenic soy-
bean hairy roots using A. rhizogenes K599 (Additional
file 1: Fig. S2A). The transgenic soybean hairy roots were
generated by high-efficiency Agrobacterium rhizogenes-
mediated transformation [40]. When the hairy roots
generated at the infection site were approximately 2 cm
long, they were used for genotype detection. The geno-
type of the transgenic hairy roots was detected by PCR
using Cas9 gene-specific primers and GmLHY gene-
specific primers. We detected mobility-shifted bands in
six DNA-bulked samples when the Cas9 gene-specific
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primers were utilized. The result showed that there
were five transgenic lines with the Cas9 gene product
(Cas9 gene-positive) (Additional file 1: Fig. S2B). Se-
quencing analysis of the GmLHY genes showed that
the Cas9 gene-positive lines (R1-R5) produced super-
imposed peaks in the target 1/3 site, while the target
2/4 site was unchanged (Additional file 1: Figure S2C,
Additional file 2: Table S1). Together, these results
indicated that the transgene-encoded Cas9 and
gRNAs were able to efficiently induce double-strand
breaks at the target 1/3 sites in the GmLHY genes.

Transgene-free homozygous quadruple mutant of GmLHY
in soybean

We next performed stable soybean transformation and
obtained 19 independent T, transgenic lines with the
section for the Cas9 gene product (Cas9 gene-positive)
(Additional file 1: Fig. S3A). Sequencing analysis showed
that the T¢—7 line was a heterozygous quadruple mutant
of GmLHY that might possess a 2-bp deletion in
GmLHY2b/2a/1b-targetl/3 and a 1-bp deletion in
GmLHY2a-target3 (Additional file 1: Figure S3B-E; Add-
itional file 3: Table S2). In order to use the mutants in
crop breeding, we sought homozygous quadruple mu-
tants of the GmLHY line without the transgene and
screened the T; plants derived from the T, transgenic
lines. Fortunately, we obtained eight T; plants derived

from To—7 that lacked the Cas9 gene (Fig. 2a, b), and
only one line (T;—15) was a transgene-free homozygous
quadruple mutant of GmLHY (Fig. 2c—f; Additional file
3: Table S2). Sequencing analysis showed that the quad-
ruple mutant of GmLHY had a 2-bp deletion in
GmLHY2b/2a/1b-target1/3 and a 1-bp deletion in
GmLHYla-target3 (Fig. 2c—2f), resulting in frame-shift
mutations in the GmLHY genes (Fig. 2g).

The expression level of GmLHY in the quadruple mutant
and WT

LHY/CCA1 are key components of the circadian clock
and participate in the temporal organization of biological
activities and the regulation of gene expression [16, 17,
21]. Previous studies have shown that the expression
level of LHY/CCAI was much higher in the morning
than in the night [21]. However, the expression pattern
of GmLHY genes in the quadruple mutant of GmLHY is
not known. The diurnal circadian rhythm of GmLHY
gene expression in the quadruple mutant of GmLHY
was analyzed by quantitative real-time PCR (qRT-PCR)
under inductive long-day (LD) conditions. The result
showed that GmLHYla, GmLHY1b, GmLHY2a, and
GmLHY2b were highly up-regulated in WT, and the
highest expression was detected at Oh and 24 h after
dawn (Fig. 3a—d). However, the expression of GmLHY
genes was lower in the quadruple mutant of GmLHY
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than WT (Fig. 3A-D). These results showed that the ex-
pression of the four GmLHY genes was significantly de-
creased in the quadruple mutant of GmLHY.

The quadruple mutant of GmLHY reduces soybean plant
height and shortens internodes

To examine the loss function of GmLHY, the phenotypes
of the T,-generation transgene-free quadruple mutant
and WT plants were observed. We found that the plant
height of the quadruple mutant was significantly lower
than WT under LD conditions for 20 DAE (Fig. 4a, b).
Subsequently, we examined the node number and inter-
nodal length, as these impact plant height [13, 15]. As
indicated in Fig. 4c and d, the node number did not

change, while the internodal length was significantly
shorter in the quadruple mutant than WT. These results
suggested that the dwarfed plant height of the quadruple
mutant was caused by a shorter length. We also analyzed
the plant height of the quadruple mutant and WT from
20 to 35 DAE (Fig. 4e). The result showed that the
height of the quadruple mutant of GmLHY was shorter
from 20 to 35 DAE.

The quadruple mutant of GmLHY is deficient in the GA
biosynthesis pathway

Previous studies showed that GAs is one of the most im-
portant phytohormones determining plant height [41,
42]. To test whether GmLHY affects the GA biosynthesis
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pathway, the Gmlhylalb2a2b mutant and WT were
treated with GA3; and Uni (uniconazole, a GA biosyn-
thesis inhibitor). The results showed that exogenous
GA; could restore the Gmlhylalb2a2b mutant to the
WT, and Uni treatment could reduce the plant height of
the WT and Gmlhylalb2a2b mutant seedlings (Fig. 5a,
b). Endogenous GAj levels from both the WT and
Gmlhylalb2a2b mutant were determined using liquid
chromatography—mass spectrometry (LC-MS). The re-
sults suggested that the levels of endogenous GA3 in
Gmlhylalb2a2b were lower than in WT (Fig. 5c). These
findings indicated that the Gmlhylalb2a2b mutant has
a low active gibberellin level and that it is a GA
biosynthesis-deficient mutant.

Expression analysis of GA metabolic pathway-related
genes in the quadruple mutant of GmLHY and WT plants
Next, qRT-PCR was performed to measure the relative ex-
pression of genes that are known to participate in GA bio-
synthesis, such as GA-20 oxidase (GmGAI,
Glyma.09G149200; GmGA2, Glyma.20G153400), copalyl
pyrophosphate synthase (GmCPS2, Glyma.19G157000),

ent-kaurene synthase (GmDWI, Glyma.08G163900), and
GA-responsive  genes (GmGR2, Glyma.20G230600;
GmGRS8, Glyma.11G216500) [13] in WT and the quadru-
ple mutant of GmLHY. Compared with the WT plants,
these genes showed significantly decreased expression in
the quadruple mutant of GmLHY (Fig. 6a—f). Our findings
suggested that GmLHY might positively regulate the ex-
pression of these GA biosynthesis and GA responsive
genes, thereby limiting soybean plant height.

Development of genetic markers and inheritance of
quadruple mutant alleles

Genetic markers provide a critical and effective means of
identifying mutant alleles for molecular-assisted studies
and could possibly accelerate the genotyping procedure
in future generations [38]. Therefore, we developed three
dCAPs (Derived Cleaved Amplified Polymorphic Se-
quences) markers to identify the Gmlhylalb2a2b mu-
tant alleles (Fig. 7a). For the genotyping of the
Gmlhylalb2a2b mutants, PCR amplifications were per-
formed using GmLHY-specific and dCAPs-specific pri-
mer pairs. The amplified products of GmLHY2b,
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GmLHY2a, and GmLHY1b on the mutant genomic
DNA templates, but not on the WT genomic DNA tem-
plates, could be cleaved by the restriction endonuclease
Mspl (Fig. 7b). Additionally, the amplified products of
GmLHYIa on the mutant genomic DNA templates, but
not on the WT genomic DNA templates, could be
cleaved by restriction endonuclease RspRSII (Fig. 7b).
These results confirmed that the three dCAPs markers
of GmLHY could be used for the genotyping of
Gmlhylalb2a2b mutants and have further prospect in
molecular breeding studies.

Discussion

The CRISPR/Cas9 system is a recent development that
has been rapidly and widely used to edit the genomes of
various crops, such as soybean [37-39]. For example,
Bao et al. obtained GmSPL9 gene mutants using
CRISPR/Cas9 and stable soybean transformation and
found that the mutant of GmSPL9s demonstrated in-
creased node number on the main stem and branch
number, resulting in increased total node number per
plants [38]. The CRISPR-edited soybean plants of both
the GmFAD2-1A and GwmFAD2-1B genes showed

dramatic increases of over 80% in oleic acid content,
whereas linoleic acid content decreased to 1.3-1.7% [39].
LHY and CCAI are important circadian clock genes that
encode two morning-expressed MYB TFs in Arabidopsis
[19, 20]. However, the functions of LHY/CCA1 family
members in soybean are still unknown. In this study, we
designed four target adaptors (target 1, target 2, target 3,
and target 4) to edit four GmLHY genes (Fig. 1 a—c). In
order to test whether the targets could perform properly
in transgenic soybean plants, we first tested the CRISPR
construct in transgenic soybean hairy roots using Agro-
bacterium rhizogenes strain K599. We confirmed that
target 1 and target 3 could perform, while target 2 and
target 4 might not work properly (Additional file 1: Fig.
S2). We then performed stable soybean transformation
and obtained 19 T events. In previous CRISPR/Cas9 re-
search, chimeric mutations reduced the heritable trans-
mission of mutant alleles in soybean [43, 44]. Therefore,
in this study, we sought homozygous quadruple mutants
of the GmLHY lines without transgenes and screened T,
plants derived from the T, transgenic lines. Fortunately,
we obtained one (T;—15) transgene-free homozygous
quadruple mutant of GmLHY (Fig. 2Fc—f; Additional file
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three biological replicates, each with three technical replicates, and
differences were statistically analyzed using Student's t-test (**P <
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3: Table S2). Our findings demonstrated that the
CRISPR/Cas9 system offers great potential in soybean
breeding.

The circadian clock plays a critical role in the timing of
multiple biological processes and stress responses in some
model crops [16—18]. As key components of the circadian
clock, LHY/CCA1 TFs have ability to initiate and set the
phase of clock-controlled rhythms to produce a certain
phenotype [16, 23, 24, 45, 46]. For example, the overex-
pression of NaLHY resulted in elongated hypocotyls and
late flowering compared with WT plants in Nicotiana
attenuata [23]. The same phenotypes were observed in
Arabidopsis AtLHY-overexpressing lines [45, 46]. Al-
though the functions of LHY/CCA1 were shown to be in-
volved in flowering and stress responses in model crops,
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little is known regarding the biological functions of LHY/
CCA1 family members in soybean. To explore the mo-
lecular function of genes in soybean, we examined the
phenotype of the loss-of-function of GmLHY in the T,
transgene-free mutant. We found that the plant height in
the Gmlhylalb2a2b mutant was shortened in soybean at
20 to 35 DAE (Fig. 4A-E). Our data demonstrated that
the clock gene GmLHY4, as an MYB TF, functions in
regulating plant height in soybean.

Plant height is generally considered to be a central
yield trait for breeding in various crops [3-5]. GAs is a
large group of tetracyclic diterpenoid plant hormones
that regulate diverse biological processes in plant growth
and development, such as embryogenesis, leaf primordia,
flowering, and plant height [47-49]. In recent years, a
few GA metabolic pathway-related genes associated with
plant height have been reported in plants [13, 14]. For
example, SDI encodes a gibberellin 20-oxidase gene
(GA200xs), and the reduced endogenous GA levels in
the sd1 mutant led to the short stature of rice variety
IR8 [49, 50]. However, research on the molecular mech-
anisms of plant height regulation by TFs in soybean is
lacking. In this study, the levels of endogenous GA3 in
Gmlhylalb2a2b were lower than in WT, and the short-
ened internode phenotype could be rescued by treat-
ment with exogenous GA3 (Fig. 5a-c). In addition, we
tested the expression levels of GA synthetic genes
(GmDWI1, GmGAI, GmGA2, and GmCPS2) and GA
response-related genes (GmGR2 and GmGRS8) in the
quadruple mutant of GmLHY and WT soybean plants
(Fig. 6a—f). We found that these genes had substantially
decreased expression in the quadruple mutant of
GmLHY. Overall, we speculated that GmLHY might
positively regulate the expression of these GA metabolic
pathway-related genes to reduce soybean plant height.

Conclusions

The CRISPR/Cas9 system can be used for multiplex
gene editing to advance crop plant breeding. In the
present study, we used CRISPR/Cas9-based multiple
genome editing to successfully obtain a quadruple mu-
tant of GmLHY in soybean. Further, our results sug-
gested that GmLHY directly or indirectly improves the
expression level of GA synthetic genes and GA
response-related genes to regulate soybean plant height.
Our findings offer a case study for the use of gene edit-
ing to generate non-transgenic soybean genotypes and
provide insight into the mechanisms underlying plant
height regulatory networks in crop plant species.

Methods

Plasmid construction

The nucleotide sequences of the four GmLHY genes
were downloaded from Phytozome (https://phytozome.
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Fig. 6 The relative expression of GA metabolic pathway-related genes in the quadruple mutant of GmHY and WT soybean plants. a-d. The expression
level of GA biosynthesisrelated genes; e—f The expression level of GA response-related genes. Soybean GmTUB was used as an internal control to
normalize all data. The experiment was performed using three biological replicates, and differences were statistically analyzed using Student’s t-test
(**P < 0.07). Bars indicate the se.m.

jgi.doe.gov/pz/portal.html). The target sequences of the
GmLHY genes were designed using the web tool
CRISPR-P  (http://cbi.hzau.edu.cn/crispr/). The pYL-
CRISPR/ Cas9P35S-B vector was a gift from Ma et al.
[51]. The target sequences were subcloned into the dif-
ferent single guide RNA (sgRNA) expression cassettes
and built into the pYLCRISPR/ Cas9P35S-B vector ac-
cording to the protocol reported by Ma et al. [51]. The
positive plasmids were introduced into Agrobacterium
tumefaciens strain EHA101 for soybean stable trans-
formation and into Agrobacterium rhizogenes strain
K599 for soybean hairy roots transformation.

Stable soybean transformation

The transformation procedure was according to a previ-
ous protocol [52, 53]. Putative transgenic soybean plants
were screened by herbicide leaf-painting of T, gener-
ation leaves at three vegetative stages (V3, V4, and V5)
by wiping 100 mg/L™" glufosinate-ammonium solution
onto the upper leaf surface. Genomic DNA was ex-
tracted from the leaves of herbicide-resistant plants
using a NuClean Plant Genomic DNA Kit (CWBIO,
China). To confirm the presence of the Cas9 gene, PCR
analysis was performed using Cas9 gene-specific primers

(Additional file 4: Table S3). The PCR amplifications
were performed once for each DNA sample.

Agrobacterium rhizogenes-mediated transformation of
soybean hairy roots

Transgenic soybean hairy roots were generated by A.
rhizogenes-mediated transformation as described by Ker-
eszt et al. [40] and Cheng et al. [54] with some modifica-
tions. The cotyledons were cut into rough triangles and
immediately placed into Petri dishes containing 0.8%
agar medium to keep them moist. The cut surface was
treated with 20 uL. A. rhizogenes suspension. The dishes
were sealed with Parafilm and placed in an incubator at
25°C. Transformed hairy roots were abundant along a
callus ridge on the inoculated cotyledons after approxi-
mately 2 weeks. The transgenic hairy roots were tested
via PCR sequencing analysis.

Identification of induced mutations using PCR and
sequencing analyses

DNA was isolated from the transgenic soybean hairy
roots and transgenic plants using a NuClean Plant Gen-
omic DNA Kit (CWBIO, China). The regions spanning
the targets of the GmLHY genes were amplified using
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KOD DNA Polymerase (Toyobo, Japan) with the differ-
ent primer pairs in Additional file 4: Table S3. The se-
quences of the Ty and T generation plants and soybean
hairy roots were analyzed using BioEdit to characterize
the mutations induced by CRISPR/Cas9.

Plant material, growth conditions, and primers

The soybean cultivar ‘Harosoy’ was used for soybean
hairy root and stable transformations. To investigate the
plant height of the transgenic plants, the T, transgene-
free mutants and WT control plants were grown in a
growth chamber maintained at 25°C and 70% relative
humidity with a 16h light/8 h dark cycle for 20-35
DAE. The node number on the main stem and inter-
nodal length were recorded at 20 DAE. The expression
of GA biosynthesis genes and GA response-related genes
was detected in the mutant and WT leaves at 20 DAE.
All primers used for vector construction, PCR, and qRT-
PCR assays for all target genes are listed in Additional
file 4: Table S3.

gRT-PCR analysis

Total RNA was isolated from the WT and T, mutant
soybean leaves using TRIzol reagent (Invitrogen,
Shanghai, China). The ¢cDNA synthesis was conducted

using an M-MLV reverse transcriptase kit (Takara,
Dalian, China) according to the manufacturer’s in-
structions. The qRT-PCR analysis was used to meas-
ure the transcript levels of the GmLHY genes, namely
GmGA1, GmGA2, GmCPS2, GmGR2, GmGRS, and
GmDWI, on a Roche LightCycler480 system (Roche,
Germany) using a real-time PCR kit (Roche,
Germany). The soybean housekeeping gene GmTubl-
lin (Glyma.05G157300) was used as an internal refer-
ence to normalize all data. The relative transcript
level of the target gene was calculated using the
272%CT method. Three biological replications per line
were performed in each test.

Molecular marker development

GmLHY sequences of the Harosoy and mutant genome
were obtained by sequencing. Primers were designed
using Primer Premier 5.0, with a product size <200 bp.
Three dCAPs markers were developed on the basis of
the variations in the target 1/3 site of the GmLHY genes.
GmLHY2a and GmLHY2b shared a pair of markers, and
GmLHYIa and GmLHY1b each shared a pair of markers.
Additional file 4: Table S3 lists the dCAPs markers that
were used in this study.
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GA;3 and Uni treatment, and endogenous GA
determination

The Gmlhylalb2a2b mutant and WT were grown in a
growth chamber at 25°C under LD (16 h light/8 h dark)
conditions, and 75% humidity. At approximately 20
DAE, 1g (fresh weight) leaves tissue from the mutant or
WT seedlings was harvested, weighed, immediately fro-
zen in liquid nitrogen, and then stored at — 80°C. The
quantitative profiling of GA; was determined using LC-
MS. These analyses were conducted by the Suzhou
Comin Biotechnology (Suzhou, China).

To assess the response of the Gmlhylalb2a2b mutant
to GA3, 1.0 mg/L of GA3 was applied two times to seed-
lings with fully-open true leaves. The Uni (1.0 mg/L)
treatment was carried out at the same time. The soybean
growth condition was set as mentioned above. Three re-
peats were prepared for each treatment, and the effect of
the hormone on stem expansion was evaluated 4 d later
by measuring seedling length.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-019-2145-8.

Additional file 1: Figure S1. Phylogenetic tree of LHY and CCA1 from
Arabidopsis and soybean. The phylogenetic tree was inferred using the
neighbor-joining method. The bootstrap consensus tree generated from
1000 replicates was used to represent the history of the different LHY/
CCA1 proteins analyzed. Figure S2. CRISPR/Cas9-induced mutations of
the four GmLHY genes in transgenic soybean hairy roots. A. Growth of
transgenic hairy roots in the culture medium for 14 d. The typical lines
were selected. B. Gel electrophoresis of PCR amplicons using specific
primers for the CRISPR/Cas9 vector. C. Detailed sequence of the targets
site in the transgenic soybean hairy roots. The red frames indicate the lo-
cation of the targets. Figure S3. Sequencing of the CRISPR/Cas9-edited
sites of GmLHY in the To—7 line. A. Gel electrophoresis of the PCR ampli-
cons using specific primers for CRISPR/Cas9 vector. B-E. The fragments
containing the edited sites were amplified by PCR and directly se-
quenced. The sequencing chromatograms with superimposed peaks de-
rived from biallelic mutations of the targeted sites were decoded by the
DSD ecode program [51]. The red frames indicate the location of the
targets.

Additional file 2: Table S1. CRISPR/Cas9-meditated targeted
mutagenesis of four GmLHY genes in transgenic soybean hairy roots.
Additional file 3: Table S2. CRISPR/Cas9-meditated targeted
mutagenesis of four GmLHY genes in transgenic soybean plants.

Additional file 4: Table S3. Primers used for PCR and gRT-PCR in this
study.
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