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Abstract

Background: Germplasm banks maintain collections representing the most comprehensive catalogue of native
genetic diversity available for crop improvement. Users of germplasm banks are interested in a fixed number of
samples representing as broadly as possible the diversity present in the wider collection. A relevant question is
whether it is necessary to develop completely independent germplasm samples or it is possible to select nested
sets from a pre-defined core set panel not from the whole collection. We used data from 15,384, maize landraces
stored in the CIMMYT germplasm bank to study the impact on 8 diversity criteria and the sample
representativeness of: (1) two core selection strategies, a statistical sampling (DM), or a numerical maximization
method (CH); (2) selecting samples of varying sizes; and (3) selecting samples of different sizes independently of
each other or in a nested manner.

Results: Sample sizes greater than 10% of the whole population size retained more than 75% of the polymorphic
markers for all selection strategies and types of sample; lower sample sizes showed more variability (instability)
among repetitions; the strongest effect of sample size was observed on the CH-independent combination.
Independent and nested samples showed similar performance for all the criteria for the DM method, but there
were differences between them for the CH method. The DM method achieved better approximations to the known
values in the population than the CH method; 2-d multidimensional scaling plots of the collection and samples
highlighted tendency of sample selection towards the extremes of diversity in the CH method, compared with
sampling more representative of the overall genotypic distribution of diversity under the DM method.

Conclusions: The use of core subsets of size greater than or equal to 10% of the whole collection satisfied well the
requirement of representativeness and diversity. Nested samples showed similar diversity and representativeness
characteristics as independent samples offering a cost effective method of sample definition for germplasm banks.
For most criteria assessed the DM method achieved better approximations to the known values in the whole
population than the CH method, that is, it generated more statistically representative samples from collections.
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Background

Germplasm banks globally maintain national and inter-
national collections of the world’s most important food
and forage species for the benefit of humanity. Together
these collections make up the most comprehensive cata-
logue of native genetic diversity offering a valuable
underexplored resource for crop improvement in the
face of challenges of population growth, climate change,
changing diets etc. [1]. In spite of the inherent value of
these collections, many germplasm bank clients face a
daunting task when trying to select appropriate materials
for their particular use case. The sheer number of collec-
tions and the sparse passport and characterization data
often available make selection challenging.

To address some of the challenges of intelligible selec-
tion of accessions from germplasm banks, a number of
initiatives have employed next generation sequencing
and genotyping to more comprehensively characterize
some aspects of the diversity of collections. The maize
and wheat focused “Seeds of Discovery” initiative
(https://seedsofdiscovery.org/) and the rice focused
“3000 genomes” project (http://iric.irri.org/resources/3
000-genomes-project) are two examples aiming to study
the vast diversity stored in maize, wheat and rice germ-
plasm banks. This genomic characterization, either alone
or in combination with other data resources, offers a
new lens on germplasm bank collections, potentially fa-
cilitating more user-relevant germplasm selections to be
made. Despite the immense value of this data resource,
clients typically cannot evaluate or utilize all materials of
interest and some form of sub-setting of either the col-
lection as a whole or components of interest needs to be
conducted. The notion of representativeness is import-
ant in this context and its quantification under different
practical methods is relevant for maintaining the genetic
base of samples taken from the overall germplasm bank
collection. The representativeness being particularly
relevant when selecting materials for evaluation and po-
tential breeding as to avoid bottlenecks that rapidly con-
strain genetic variability. Genetic markers have over the
years been deployed as sources of information which can
be used to assess representativeness of germplasm sam-
ples in genetic conservation activities such as accession
regeneration and collection.

Traditionally genetic resources stored in ex-situ germ-
plasm banks have been sampled with the objective of
forming core subsets for conservation purposes and for
studying genetic diversity of accessions stored in germ-
plasm banks. Core subsets (or core samples) can be
formed on the basis of morphological, phenotypic, or
molecular marker data and are assembled to facilitate
the study, evaluation, and utilization of genetic resources
stored in ex-situ germplasm collections [2—4]. Core sub-
sets typically include 5 to 20% of the total number of
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accessions [3—-8] and thus a core subset is expected to
represent a reduction in the genetic and phenotypic di-
versity available compared with that in the original col-
lection. In genetic resource conservation, the formation
of core collections and/or core subsets is of paramount
importance to preserve in the core as much as possible
of the diversity present in the original collection (repre-
sentativeness). Commonly a germplasm bank client with
interests outside of the conservation arena (e.g., a plant
breeder or a molecular geneticist) is not interested in a
fixed proportion of a collection, i.e., a classic core subset;
rather she/he is more interested in a fixed number of
“representative samples” which may possess characteris-
tics of value, for example represent a particular geo-
graphic region, adaptation or originate where a
particular stress is prevalent. These “breeder subsets”,
like core subsets, need to represent as broadly as pos-
sible the diversity present in the wider collection.

Given these needs, a sampling strategy should define
both a sampling method and an allocation method [9]. A
stratified sampling strategy suggests first classifying the ac-
cessions into non-overlapping groups (or clusters) and
then a method for allocating accessions in the cluster into
the sample. In late 90s and early 2000s, intense research
was published on sampling and allocation strategies as
well as methods for forming core subsets [10—14]. These
authors proposed a sequential clustering strategy for
forming core samples using discrete and continuous mor-
phological data simultaneously. The main idea was to ini-
tially form groups (clusters) using a geometric method
such as the Ward method (which minimizes the variance
within a group). Then a “mixture of normal distributions”
statistical method acts on the previous clusters by chan-
ging the shape, direction and volume of the groups, maxi-
mizing the likelihood function and determining the
probability of each accession belonging to each group.
This two-stage classification approach was used by [15]
for forming diverse core subsets of several landraces of
tropical maize (Zea mays L).

In terms of the allocation strategy for sampling the
cluster when using a mixture of continuous and discrete
(categorical) phenotypic traits, sampling could be con-
stant across clusters, proportional to the number of indi-
viduals in the cluster or proportional to the distance
between accessions within a cluster, such Gower’s dis-
tance, the D allocation method [16]. The D allocation
method of sampling can also be applied with molecular
markers so that the sample drawn from each group
should be proportional to the genetic distance or allele
diversity within each cluster [17]. Ergo, a final subset will
represent proportionally more individuals from a genet-
ically diverse cluster than it will from a less genetically
diverse cluster, regardless of the total number of individ-
uals within each cluster. This strategy ensures good
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representativeness of the collection and a high allele
richness in the core sample, while the application of gen-
etic distance provides a Euclidean representation of gen-
etic distance.

In terms of modern genomic-enabled prediction ac-
curacy on germplasm bank accession, [18] studied the
prediction accuracy of core samples obtained from 8416
Mexican wheat landraces and 2403 Iranian wheat land-
races stored in germplasm banks. The authors defined
10 and 20% core samples based on two criteria. One cri-
terion was the reliability measures related to the predic-
tion error variance that was taken as the objective
function to be minimized by applying a method that
used the first 100 principal components of the marker
data [19]; they were called, in the study of [18], predict-
ive core samples. The other criterion for selecting the 10
and 20% core samples was based on the D method of
[16] using the Modified Rogers’ genetic distance between
pairs of accessions. The final analysis of genomic-
enabled prediction accuracy in this study indicated that
the use of 10% or 20% cores did not adversely impact
the prediction accuracy of traits compared with the
whole sample, further supporting that the diverse core
samples formed maintained sufficient diversity and rep-
resentativeness of the population under study.

Several other strategies have been studied and proposed
for maintaining allele richness in core samples. One effect-
ive strategy maximizes the number of alleles at each marker
locus; this is the M strategy [5]. Another strategy maximizes
the number of alleles in the core samples by sampling ac-
cessions from groups in proportion to within cluster gen-
etic diversity. Furthermore, other strategies for forming
core samples attempt to maximize the allele diversity in the
core samples, whereas other methods maximize the repre-
sentativeness of the genetic diversity in the core samples
[20]. On the other hand, other methods avoid selecting
similar accessions at the extreme of the collection thus
maximizing the average distance between each accession
and the closest other accession in the core [21].

Authors in [22] studied several formulas for calculat-
ing the specificity of the different marker alleles with ref-
erence to their distribution across accessions; for
assessing the accession rarity based on the specificity of
its alleles; for calculating divergence as defined by the
Kullback-Leibler formula; for estimating the allele rich-
ness in the whole collection; and for computing the lost
alleles (lost alleles that are not in the core sample), as
well as the Shannon diversity index. These formulas as
well as the Modified Roger genetic distance (MR) were
used with the HCore and other strategies for forming
core subsets (REMC, MixRep, MSTRAT, and random
sample) [23]. The above mentioned authors [22] applied
these formulas and methods to a large wheat collection.
For 10% core samples, the Kullback-Leibler criterion was
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slightly superior (0.442) to the MR genetic distance
(0.438) but the MR overcame the divergence for the
other methods. For 20% core samples, the Kullback-
Leibler criterion was the same as the MR genetic dis-
tance (0.434) but superior to the other methods. Useful
approaches using the Kullback-Leibler are (i) determin-
ing accession rarities based on the average specificity of
their alleles, (ii) ranking alleles according to their speci-
ficities, and detecting alleles that are common in only
some accessions, and (3) ranking the accessions by their
rarity and divergence, thus detecting a group of rare and
specific accessions that may have certain potential for
important phenotypic traits.

Another method for forming diverse core samples of
different sizes proposes a pseudo-index for integrating
genetic distance and diversity indices [24], this index
serves as a means of optimizing more than one genetic
measure simultaneously based on weights assigned to
standard measures. The mentioned authors [24] proposed
the Core Hunter (CH) algorithm that uses an advanced
stochastic local search algorithm to maximize the pseudo-
index and show results that are slightly better than the
performance of the D-method for several diversity indices
(see Table 1 of [24]), but only when a single measure is be-
ing optimized. Recently an improvement of the initial
Core Hunter (Core Hunter 1 and 2), Core Hunter 3
(CH3) from [25] included two methods for summarizing
distances, entry-to-nearest-entry and accession-to-nearest
entry proposed by [21]. In addition, CH3 incorporated
two new, improved methods for summarizing distances to
quantify diversity or representativeness of the core collec-
tion and is more effective at maximizing the improved di-
versity metric than Core Hunter 1 and 2.

Given the high dimensionality of the problem of select-
ing the core subsets and the largest possible number of
different core samples, the problem has been approached
in multiple ways and today the solutions and proposals
can be divided into two main methodological approaches:
(1) the statistical approach using the basic concept of
“stratified random sampling selection” with the D alloca-
tion method, and (2) the numerical-algorithmic approach
using the basic concept of “numerical maximization ap-
proach” such as that used by Core Hunter (CH3). Both of
them focus on the same objective: obtain a sample con-
taining most of the genetic diversity present in the collec-
tion, but the former is based on the statistical concept of
the representativeness of a random sample (particularly,
the representativeness of the core genetic diversity, and of
course, their different measures), while the latter is based
on the mathematical concept of the selection of a subset
maximizing some criteria (one or more of the measures
used for describing the genetic diversity).

For both approaches (D-allocation method or Core
Hunter), two principal questions arise when selecting
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samples for germplasm bank managers or germplasm bank
clients. The first question is: what is the minimum sample
size needed to optimally represent the diversity of either
the whole collection or that fraction of the collection of
particular value (e.g., a particular race, species, etc.)? This
question is a shift from the classic 10-20% of the collection
approach for defining germplasm sets. This area of inquiry
is of particular relevance as genome re-sequencing costs
continue to decrease and germplasm bank clients begin to
ask how many and which accessions should be sequenced
to capture the most variation. The second question reflects
a growing demand from germplasm bank clients to obtain
a set number of entries, e.g., 150 accessions that are diverse
and representative. In this case, from the perspective of col-
lection managers, it is relevant to ask if it is necessary to de-
velop completely independent germplasm sets or whether
it is possible to form nested sets in such a way that sam-
pling for a panel is done not from the whole collection but
a large pre-defined panel. In this case, a nested system is
simple maintaining sufficient reserves of seed/clones for
distribution, with the benefit that clients could potentially
crowdsource evaluation data to build a wealth of knowledge
around a common set of accessions.

Based on the above consideration, the objective of this
paper is to evaluate, using data from over 15,000 maize
landraces stored in the CIMMYT maize germplasm
bank, the impact on diversity and representativeness of
(1) selecting samples of sizes 5, 10, 20, 30, 40 and 50%
from the whole collection (the sample size effect), (2)
the influence of independent versus nested sampling of a
collection (the sample method effect), and (3) the rela-
tive merits of employing either a statistical sampling
strategy represented by the D-method with MR genetic
distance or a numerical maximization method repre-
sented by CH3 and MR distance (the strategy method).

Results

Definition of sampling in the D-method (DM)

As already described, the DM-method is a 3-stage
method: first a classification (clustering) is done, then

Table 1 Assignation of sample size following the DM-method
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the proportion of accessions to be selected from each
cluster is defined proportionally to the cluster diversity
(measured by the group mrd average value), and finally,
the best (most diverse) sample out of a thousand candi-
date samples generated by stratified random sampling
process is selected (Table 1).

Diversity analysis

The eight criteria we used in this study to evaluate the
different approaches to panel definition showed different
performance with respect to sample size (5 to 50% of the
collection size), the type of sampling (independent or
nested), and the method for building the core (statistical
stratified sampling versus numerical maximization based
sampling). Because all the criteria (except for the num-
ber of retained variants and diagnostic markers) have a
range of possible values between 0 and 1, we also used
the ratio of sample value to population value to compare
the approaches (red line in Figs. 1 and 2) and evaluate
the representativeness of the approaches considering the
overall population (Tables 2 and 3).

Below we summarize how the sampling processes
under study influenced each of the different criteria and
by comparing to population level metrics. It should be
pointed out that no statistical tests for comparison are
presented because the standard errors were too small in
comparison with the average values; thus almost all
comparison produces very low p-values (Tables 2 and 3),
even using Generalized Linear Models assuming Beta,
Poisson or Binomial distributions for the indices.

Modified Rogers’ distance (mrd)

As the basis for the determination of samples across all ap-
proaches, mrd is a key evaluation metric. The mean mrd
for all the samples formed is higher than that of the popula-
tion (Table 3). This is to be expected given that the process
of forming samples maximizes mrd through the omission
of redundant information produced by similar individuals
in the overall population. Mean mrd values decrease as the
sample size increases, producing similar values between the

Cluster N mrdMean p nD s50° s40 s30 s20 s10 s05
1 3042 0.1104 0.1710 1316 1328 1053 789 526 263 132
2 4144 0.1100 0.1703 1310 1322 1048 786 524 262 131
3 2956 0.1066 0.1651 1270 1270 1016 762 508 254 127
4 1408 0.1189 0.1842 1417 1407 1134 850 567 283 142
5 2772 0.1094 0.1695 1304 1304 1043 782 522 261 130
6 1062 0.0902 0.1397 1075 1061 860 645 430 215 107
Sum 15,384 0.6457 1.0000 7692 7692 6154 4614 3077 1538 769

Cluster, population cluster size (N), average of Modified Rogers’ distance per cluster (mrdMean), proportion of mrd per cluster (p), number assigned (nD), correction
of the assigned number due to the small groups (s50), assigned sample size for 40, 30, 20, 10, and 5% of the population (s40 to s05)
After the correction, due to nD > N, the complementary sample size was reassigned on the other groups proportionally to mrdMean
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independent and nested samples within the DM and CH
sampling approach (Fig. 1a). The sampling approach had
strong influence on the mean mrd, with CH generating
higher values than DM. This is an expected result illustrat-
ing CH’s effectiveness in finding a maximum of the object-
ive function (we are looking for samples maximizing the
mrd average value by reducing redundancies present in
population). On the other hand, the DM-method showed
values closer to the population values than the CH-method.
For CH independent (CHi) and CH nested (CHn) samples,
the estimated mrd values are close to the population value
(within an interval of 5% of the distance from the collection
value, blue line) only when the sample size is greater than
or equal to s40, while all sample sizes and types of samples
are within this interval of distances for the DM-method
(Fig. 1a).

Number of retained polymorphic markers (poly)

The number of polymorphic markers, an important
measure of diversity, performs differently to the other
diversity criteria we evaluated. For the largest sample
sizes, s50, poly reaches approximately 95% of the popula-
tion value, while for the smaller sample size, such as s5,
poly is around 70% of that found in the population (Fig.
1b). The relationship between sample size and the reten-
tion of polymorphic loci is not linear. At s10 and above,
samples retain close to or more than 80% of the loci
found in the population, and the increase in retention
diminishes as the sample size increases. The patterns of
retained polymorphic markers for all four combination
of methods (CH and DM) and type of sample (inde-
pendent or nested) (Chi, CHn, DMi, and DMn are very
similar for all sample sizes (Fig. 1b).
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Fig. 2 Response of (a) Observed Heterozygosity (ho), b difference of expected minus observed heterozygosity (he - ho), € number of Diagnostic
Markers (markers fixed only for a small number of genotypes in the sample, ndiag), and d. proportion of missing values in the sample (pmiss), for
six sample sizes (0, 5, 10, 20, 30, 40 and 50% of the size of the whole collection), two types of samples (independent: i, and nested: n), and two
strategies for selecting the best sample (Core Hunter: CH and D-method: DM). The response is expressed as the quotient (sample value) /
(collection value) (red horizontal line). Blue lines represent different sized intervals of the distance from the collection value

Expected heterozygosity (he) and the Shannon index (Shan)
The distribution of values for both /e and shan was
similar for any one selected approach (Fig. 1c and d).
Method CHi reached the highest values of ke and shan
for all the sample sizes, while CHn had the lowest values
both above and below the population mean. Methods
DMi and DMn performed in a similar manner, with
values closer to the known population mean. These re-
sults are important, as ke and shan are considered very
useful measures of genetic diversity; indeed, /e is often
called “genetic diversity” [26, 27]. From the statistical
point of view, we could say that the DM-method esti-
mates the population values with more precision than
the CH-method, as the former obtains values that are
closer to the known population values for both types of
samples and for all sample sizes. That is, DM gets a

better sampling representation of the population diver-
sity as measured by he or shan, while the CH method
produces samples that overrepresented (CHi) or under-
represent (CHn) the known population values.

Observed heterozygosity (ho) and he-ho measures

Observed heterozygosity shows a different pattern than
that shown by ke and shan: all but one (s10) of the
values of the selected sets are under the population
value. CHn, DMi and DMn are closer to the population
value for all sample sizes, while CHi values are lower
than the above-mentioned values, particularly for sample
sizes lower than or equal to s30. The underestimation of
ho increases when the sample size decreases for all
methods except CHn, showing a non-expected perform-
ance (Fig. 2a). Again, the DM seems to be always closer
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Table 2 Average values for 7 diversity measures characterizing the markers

Method® Sample Size (%) pmiss he ho shan mrd Npoly ndiag
Pop 0.0466 0.0400 0.0655 0.0962 0.1333 161,104 525
CHi 5 0.0989 0.0466 0.0485 0.0984 0.1533 112,843 2004
CHn 5 0.0458 0.0393 0.0649 0.0944 0.1532 112,136 644
DMi 5 0.0532 0.0400 0.0627 0.0958 0.1364 113,974 751
DMn 5 0.0560 0.0401 0.0617 0.0960 0.1353 113,550 797
CHi 10 0.0859 0.0407 0.0519 0.0981 0.1492 128,160 1606
CHn 10 0.0425 0.0395 0.0669 0.0951 0.1493 127,227 600
DMi 10 0.0522 0.0400 0.0630 0.0958 0.1360 128,184 719
DMn 10 0.0540 0.0400 0.0623 0.0959 0.1379 128,252 774
CHi 20 0.0727 0.0405 0.0557 0.0976 0.1443 141,212 1173
CHn 20 0.0459 0.0395 0.0651 0.0950 0.1444 138439 603
DMi 20 0.0515 0.0400 0.0632 0.0958 0.1357 140,265 687
DMn 20 0.0526 0.0400 0.0628 0.0959 0.1369 140,189 696
CHi 30 0.0649 0.0405 0.0585 0.0976 0.1414 147,391 960
CHn 30 0.0472 0.0393 0.0641 0.0947 0.1416 144,521 634
DMi 30 0.0512 0.0400 0.0633 0.0958 0.1356 146,291 656
DMn 30 0.0518 0.0400 0.0631 0.0959 0.1362 146,273 660
CHi 40 0.0595 0.0406 0.0608 0.0976 0.1392 151,177 825
CHn 40 0.0499 0.0394 0.0630 0.0948 0.1393 148,610 595
DMi 40 0.0511 0.0400 0.0634 0.0958 0.1355 150,016 626
DMn 40 0.0513 0.0400 0.0633 0.0958 0.1358 150,062 623
CHi 50 0.0553 0.0406 0.0626 0.0976 0.1374 153,933 720
CHn 50 0.0553 0.0406 0.0626 0.0976 0.1374 153,933 720
DMi 50 0.0507 0.0400 0.0635 0.0958 0.1356 152,828 587
DMn 50 0.0507 0.0400 0.0635 0.0958 0.1356 152,828 587
SEmin 0.000022 0.000002 0.000011 0.000006 0.000006 1.5 23
SEmax 0.000194 0.000017 0.000064 0.000040 0.000039 292.8 126

Sampling method (method) and sample size: proportion of missing values (pmiss), expected and observed heterozygosity (he, ho), entropy Shannon index (shan),
Modified Rogers’ distance (mrd), number of retained markers (npoly), and number of markers fixed for only a few accessions (ndiag). Minimum and maximum

values of standard errors of the means (SEmin, SEmax)

2Pop Population, CHi Core Hunter, independent sample, CHn Core Hunter, nested sample, DMi D-method, independent sample, DMn D-method, nested sample, SE

minimum and maximum standard error of mean

(and within the 5% interval) to the observed heterozy-
gosity of the entire collection.

The he — ho difference is a measure of inbreeding (inb
= 1—%), resulting in a positive value when there are
more homozygous accessions than expected based on
the he values, that is, more inbreeding than expected,
and a negative value when there are less homozygous ac-
cessions than expected, that is, less inbreeding than ex-
pected. The whole population showed an inbreeding
value of 1-0.0655/0.0400 = — 0.64: (Table 2). The he-ho
measure performs similarly to observed heterozygosity,
indicating that there is more variability for /o than the
he variability. Again, he-ho is better estimated for CHn,
DMi and DMn, and underestimated (suggesting more
inbreeding) for CHi, particularly when the sample sizes

are less than or equal to s30 (Fig. 2b). In summary, for
criteria o and he-ho, DMi and DMn are more stable
around the values of the entire collection and always
within the 5% interval around the population mean than
the CHi and CHn sample method.

Diagnostic markers (ndiag)

Diagnostic markers are those variants present in only a
few accessions in the population or sample, their pres-
ence being indicative or diagnostic for those accessions.
When studying genetic differences among accessions, a
reduction in sample size should produce an increase in
this criterion due to the reduction in the total number
of genotypes in the sample. Performance for CHn is
similar to DMn and DMj, as they show values close to
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Table 3 Sample/population ratio for 7 diversity measures characterizing the markers

Page 8 of 17

Method® Sample size (%) pmiss he ho shan mrd npoly ndiag
CHi 5 2.124 1.021 0.741 1.023 1.150 0.700 3818
CHn 5 0.984 0.981 0.991 0.981 1.149 0.696 1227
DMi 5 1.143 0.999 0957 0.995 1.023 0.708 1430
DMn 5 1.202 1.001 0.942 0.997 1.015 0.705 1518
CHi 10 1.846 1.018 0.792 1.020 1.119 0.796 3.060
CHn 10 0912 0.987 1.021 0.989 1.119 0.790 1.143
DMi 10 1.121 0.999 0.963 0.996 1.020 0.796 1.370
DMn 10 1.159 1.000 0952 0.997 1.034 0.796 1475
CHi 20 1.562 1012 0.850 1014 1.083 0.877 2234
CHn 20 0.986 0.985 0.995 0.988 1.083 0.859 1.149
DMIi 20 1.106 0.999 0.966 0.996 1.018 0.871 1.309
DMn 20 1.129 0.999 0.959 0.997 1.027 0.870 1326
CHi 30 1.394 1.012 0.894 1.014 1.060 0915 1.828
CHn 30 1.013 0.981 0.979 0.984 1.062 0.897 1.209
DM 30 1.100 0.998 0.966 0.996 1.017 0.908 1.249
DMn 30 1.112 0.999 0.964 0.996 1.022 0.908 1.257
CHi 40 1.279 1.013 0.928 1.015 1.044 0.938 1.571
CHn 40 1.071 0.984 0.962 0.985 1.045 0922 1.134
DMi 40 1.097 0.998 0.968 0.996 1.016 0.931 1.192
DMn 40 1.101 0.998 0.966 0.996 1.019 0.932 1.187
CHi 50 1.188 1013 0.956 1015 1.031 0.956 1371
CHn 50 1.188 1.013 0.956 1.015 1.031 0.956 1.371
DM 50 1.090 0.998 0970 0.996 1.017 0.949 1.119
DMn 50 1.090 0.998 0970 0.996 1.017 0.949 1.119
SEmin 0.0005 0.00010 0.00020 0.00010 0.00001 0.00010 0.00430
SEmax 0.0042 0.00040 0.00100 0.00040 0.00030 0.00180 0.02410

Sampling method (method) and sample size: proportion of missing values (pmiss), expected and observed heterozygosity (he, ho), entropy Shannon index (shan),
Modified Rogers’ distance (mrd), number of retained markers (npoly), and number of markers fixed for only a few accessions (ndiag). Ratio is equal to 1.0 if sample

measure is equal to population measure

@CHi Core Hunter, independent sample, CHn Core Hunter, nested sample, DMi D-method, independent sample, DMn D-method, nested sample, SE minimum and

maximum standard error of mean

or higher than (less than twice) the population values;
however, while CHn does not show a clear change
across sample sizes, DMn and DMi decrease when sam-
ple size increases (Fig. 2c). In contrast, CHi shows values
higher than twice the population value when the sample
size is less than s30, indicating strong selection for con-
trasting allelic germplasm.

Proportion of missing values (pmiss)

The proportion of missing values is an important meas-
ure, not for diversity per se, but for the quality (com-
pleteness) of information represented by a sample.
Nearly all samples have higher proportions of missing
values than the population (Fig. 2d, see red line). A pro-
portion higher than 1.25 times the value of missing
values in the population is obtained for the CHi method
when the sample size is less than s30. For the other

methods and sample sizes, the proportion of missing
values is not greater than 1.25 times the population
value. The proportions of missing values in CHn sam-
ples increase as sample sizes increase from s10. In con-
trast, both DM methods show the inverse relationship,
that is, the pmiss values decrease when sample size in-
creases (Fig. 2d), however the influence of sample size is
less marked with values more closely tracking the pmiss
of the entire collection.

How the samples are selected: multidimensional scaling 2D
graphical representation for the entire collection

The observed differences between the CH and DM
methods with respect to diversity measures and sampling
representativeness, could be better understood by observing
the accessions being selected by the CH and DM methods
for different sample sizes in the multidimensional scaling
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representation of the mrd in two dimensions. Figure 3
shows the best independent s10, s20 and s50 samples se-
lected from the collection by both methods; it illustrates
that the s10 sample from CH captured more the diversity
from the borders of the entire collection, while the sample
from DM captured genotypes distributed across the popu-
lation (blue dots). The same behavior of the sample is ob-
served for the other sample sizes, s20 and s50. Method CH
maximizes diversity by sampling the extreme accessions of
the entire collection, whereas DM method uniformly sam-
ples all parts of the entire collection. Similar results are
found for s20 and s50 (Fig. 3) where samples from the DM
method gave a more uniform representation of the distribu-
tion of accession in the entire collection of 15,384 maize
accessions.

The two dimensional representation of the multidi-
mensional scaling of the mrd for the accessions selected

Page 9 of 17

for independent samples s10, s20, s50 by CH and DM
for the maize race Conico is shown in Fig. 4. Similar to
results already described for the case considering the en-
tire collection (Fig. 3), the DM method gave a much
more complete representation of the total variability
existing in the Conico maize race than the CH method
that concentrates the sampling at the extreme of the dis-
tribution of Conico accessions for the three independent
samples sizes (s10, s20 and s50).

Furthermore, when examining the two dimensional
representations of the multidimensional scaling of the
mrd for accessions of maize selected in the highland
adaptation zone (Fig. 5), using independent samples of
sizes S1, S20 and S50, we observed again that samples
from DM methods are more representative than those
maize accessions selected by the CH methods that con-
centrate the selection of samples more at the borders of

dimension 2

dimension 1

Fig. 3 Multidimensional Scaling graphical representation in two dimensions of the Modified Rogers’ genetic distance (mrd) between pairs of
genotypes in the best independent samples of sizes 10, 20, and 50% of the entire collection. The red points correspond to the whole collection,
the blue points denote genotypes selected for the two strategies Core Hunter =CH and D-method = DM

in sample
= no
*+ yes
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Fig. 4 Multidimensional Scaling graphical representation in two dimensions of the Modified Rogers’ genetic distance (mrd) between pairs of
genotypes in the best independent sample sizes of 10, 20, and 50% of the Conico maize race collection. The red points correspond to the whole
collection, the blue points denote genotypes selected for the two strategies Core Hunter = CH and D-method = DM

the distribution. In summary, for the entire maize collec-
tion and for samples based o race and adaptation, the
Conico maize and highland maize samples respectiveyl,
CH basically selects at the extreme borders of diversity
distributions, whereas the DM selects accessions across
the whole spectrum of diversity.

Stability: variability among repetitions of the same process

Table 4 shows changes in the variability among repeti-
tions (20 repetitions) within each method, type of sam-
ple and sample size; to be clear we present the ratio of
standard deviations: stdev_sample / stdev_s50. The most
important result is that low sample sizes imply more
variability among repetitions, that is, the probability of
obtaining a “bad” (or a “very good”) sample increases in-
versely to the sample size. A second observation is that
CHi generates more similar repetitions than other

methods and types of samples (independent or nested)
for pmiss, shan, polymorphic markers and specific
markers, while DMi generates more similar repetitions
for he, ho, and mrd criteria; a third observation is that
the most unstable criteria, that is, the criteria showing
more different repetitions, are poly and ndiag.

Recovery of external information (races and adaptation
areas)

Tables 5 and 6 show the classification of accessions in
the collection for 23 races and for the 8 adaptation areas
where the accessions were collected. A good sample
from that population should select, for each race and
area, proportions similar to the proportion in the collec-
tion. The last two columns in Tables 5 and 6 show the
discrepancies in the proportion of each race and area in
the collection vs. the samples obtained by the CH and
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dimension 2

CH and D-method = DM

dimension 1

Fig. 5 Multidimensional Scaling graphical representation in two dimensions of the Modified Rogers’ genetic distance (mrd) between pairs of
genotypes in the best independent samples sized 10, 20, and 50% of the accession collected in the Adaptation Area HIGHLANDS of the
collection. The red points correspond to the whole collection, the blue points denote genotypes selected for the two strategies Core Hunter =

in sample
no

yes

DM methods. For race recovery, the maximum values of
discrepancy were 2.63 and 1.76% for the CH and DM
methods, respectively, while for the adaptation areas, the
maximum values were 4.62 and 3.70%, respectively. The
DM method showed a slight advantage, but overall both
approaches selected appropriate proportions of both ex-
ternal (to the analysis) variables.

Finally, Table 7 shows the most used genetic diversity
measures and the Wright (1951) statistics for race and
adaptation based samples. The table also shows the col-
lection (population) values and their estimation by CH
and DM methods (best s20 samples). Sample estimated
values are similar to the collection values; this is an in-
teresting point particularly for the Fgr statistic measur-
ing the proportion of expected heterozygosity explained
by the differences among groups (AMOVA Fst): the dif-
ferences among adaptation areas (2.67% for population,

2.89% for the DM sample and 1.92% for the CH sample)
and races (7.89, 8.48 and 8.38% for population, DM sam-
ple, and CH sample, respectively). In general, DM is
closer to the collection (population) values than CH.
However, both strategies gave good estimates of the dif-
ferences among races and areas, as compared with the
collection studied.

Discussion

Sample size effects

The strongest effect of sample size was observed for the
CHi method on heterozygosity (ke and he-ho indices),
number of diagnostic markers (ndiag) and proportion of
missing values in the sample (pmiss); for those criteria,
the differences were greater when the sample size de-
creased. For the other methods, the effect of sample size
reduction did not have the same strong effect. Samples
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Table 4 Variability among 20 repetitions
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Table 5 Recovery of races from the collection

Method size  pmiss  he ho shan mrd  variants ndiag
CHi 507 1097 0122 0624 0267 0499 51.185 10.058
CHi 40 09 1.1 1.1 12 1.1 50 1.1
CHi 30 14 20 13 22 13 57 19
CHi 20 16 2.1 1.7 24 12 33 1.8
CHi 10 29 23 1.7 23 1.8 35 1.5
CHi 5 43 26 20 26 28 56 22
CHn 40 18 12 14 12 1.0 3.6 3.0
CHn 30 15 1.2 1.2 14 0.9 4.1 26
CHn 20 27 24 14 25 038 4.1 15
CHn 10 42 33 29 34 1.6 53 2.1
CHn 5 70 6.3 46 6.8 22 9.8 28
method size pmiss he ho shan mrd  variants ndiag
DMi 50 1512 0099 0504 0327 0363 559521 39740
DMi 40 1 1.3 1.1 1.1 1.0 0.8 0.6
DMi 30 15 20 16 17 14 12 14
DMi 20 21 25 2.1 2.2 14 1.1 1.2
DMi 10 31 44 35 35 30 09 12
DMi 5 57 52 4.1 4.7 4.8 1.8 1.0
DMn 40 14 1.0 12 09 1.1 09 1.1
DMn 30 17 1.5 14 13 20 1.0 1.3
DMn 20 25 2.7 23 24 35 1.1 14
DMn 10 32 33 3.2 33 39 14 1.3
DMn 5 53 46 45 46 0.8 2.3 1.1

Standard deviation for samples (s5, s10, ..., s40) expressed as the ratio in
respect to standard deviation from independent samples size 50%

“In independent samples, size = 50, values are the standard deviations
multiplied by 10% and other values are sSample/50Sample ratios

of sizes greater than s20 retained more than 85% of the
polymorphic markers for all methods and types of sam-
ples. In all cases, a reduction in sample size was associ-
ated with an increase in the standard deviation among
repetitions, that is, the processes were more unstable.

Type of sample effects

Independent and nested samples showed similar perform-
ance with respect to all the criteria for the DM-method. In
contrast, there are differences between nested and inde-
pendent samples obtained by the CH-method, particularly
for expected and observed heterozygosity, Shannon index,
number of diagnostic markers and proportion of missing
values in the sample. In these cases, nested samples per-
formed better than independent samples and were more
stable for the different criteria. This finding is of value as
the use of nested samples, avoiding the selection of very
different accessions for different sample sizes, is of benefit
to collection managers as efforts can be focused on main-
taining sufficient seed/clones of a defined sub-set of the
collection for more frequent distribution to clients.

Race nobs Proportion abs (diff)
Collection  CH DM CH DM

AVMORO 277 0.0180 0.0052 00208 00128 00028
BOLITA 253 0.0164 0.0033 00182 00132 0.0018
CELAYA 290 0.0189 0.0202 00189 00013 0.0000
CHALQU 364 0.0237 0.0358 0.0241 0.0121 0.0004
COMITE 101 0.0066 0.0104 0.0033 0.0038 0.0033
CONICO 1135 00738 0.0475 00592 00263 00146
CONNOR 488 0.0317 0.0455 00234 0.0138 0.0083
CRISCO 210 0.0137 0.0091 0.0312 00045 00176
DENBLA 132 0.0086 0.0046 00137 00040 0.0051
DENTAD 293 0.0190 0.0039 00124 00151 0.0067
DTRGRU 222 0.0144 0.0026 00117 00118 0.0027
ELOTCO 137 0.0089 00111 00104 00021 0.0015
NALTEL 218 0.0142 00169 00046 00027 0.0096
OLOTIL 149 0.0097 0.0065 0.0072 0.0032 0.0025
OLOTON 252 0.0164 0.0215 00085 00051 0.0079
PADENT 433 0.0281 00137 00293 00145 00011
PEPITI 125 0.0081 0.0111 00078 0.0029 0.0003
RGDENT 156 0.0101 00104 00104 0.0003 0.0003
SALVAD 223 0.0145 0.0026 00065 00119 0.0080
SAPEPY 104 0.0068 0.0020 0.0052 0.0048 0.0016
TABLON 224 0.0146 00286 00104 00140 0.0042
TEPECI 175 0.0114 0.0156 00059 0.0042 0.0055
TUXPEN 795 0.0517 0.0553 0.0377 00036 0.0140
Sum or Mean 15384  1.0000 1.0000 1.0000 0.0082 0.0052
NOID 8628 0.5608 06170 0619 0.0562 0.0588
sum 15,384  1.0000 1.0000 1.0000 0.2445 0.1785

Number of accessions belonging to the main identified races (nobs);
proportion of accessions belonging to each race in the whole collection and
recovered for the sampling methods (CH, DM); absolute value of the
discrepancy between the sample recovered proportion and the collection
proportion (abs (diff)). Including and not including non-identified (NOID) races

Strategies for selecting samples (CH, DM methods)

Results in this paper show that for all the criteria (except
the number of retained polymorphic markers, but in-
cluding the mrd genetic distance used as the objective
function), for all sample sizes, and for both types of sam-
ples (independent or nested), the statistical DM method
gives a better approximation to the known population
values (that is, the sample/population ratio is closer to
one) than the CH method. This result was expected, as
the main strength of the statistical stratified random
sampling strategy consists of giving to individuals from
the same stratum (group or cluster based on mrd dis-
tance) the same probability to be selected into the sam-
ple, selecting any of them at each step of the sampling
process, and assigning to each group a sample size pro-
portional to its diversity. When used to build nested
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Table 6 Recovery of adaptation areas from the collection

Adapt nobs Proportion Abs (diff)
Collection  CH DM CH DM

DRL 1240 0.0806 00852 00611 00046 0.0195
DRM 2289 0.1488 0.1333 0.1437 0.0155 0.0051
HIG 4922 03199 02737 03563 00462 00364
LOW 167 0.0109 00156 0.0143 0.0047 0.0034
MID 322 0.0209 0.0228 0.0286 0.0018 0.0077
WLM 1179 00766 00735 00546 00032 0.0220
WLO 2440 0.1586 0.2042 01216 0.0456 0.0370
WUM 2053 0.1335 0.1502  0.1203 0.0173 0.0180
Sumor mean 14,612 0.9498 09584 09005 0.1383 0.1443
NOI 772 0.0502 0.0416 00995 0.0086 0.0493
Sum 15,384  1.0000 1.0000 1.0000 0.1469 0.1936

Number of accessions belonging to the main identified adaptation areas
(nobs); proportion of accessions belonging to each adaptation area in the
whole collection and recovered for the sampling methods (CH, DM); absolute
value of the discrepancy between the sample recovered proportion and the
collection proportion (abs (diff)). Including and not including the non-
identified (NOI) areas, dry lowland (DRL), dry mid-altitude (DRM), highland
(HIG), lowland (LOW), mid-altitude (MID), wet lower mid-altitude (WLM), wet
lownand (WLO), wet upper mid-altitude (WUM)

samples, the CH method produces similar results as the
DM, but shows different results for the most important
criteria, genetic diversity (ke) and Shannon index (shan),
both of which are underestimated.

Differences between the CH and DM approaches to ob-
tain samples were observed in the Multidimensional
Scaling 2D-representation of the collection, and the best
selected (by CH and DM) independent s10, s20 and s50
samples were compared. While these representations illus-
trate advantages of the DM-method over the CH-method
in terms of representativeness appeared during the selec-
tion process, they also shows a possible weakness of the

Table 7 Diversity measures in the collection and in the best
independent samples s20 (20% of collection)

Adaptation Races

Collection DM CH Collection DM CH
Ho 00655 0.0632 0.0555 0.0655 0.0632 0.0555
Hr  0.0400 00400 00405  0.0400 0.0400 0.0405
Hs  0.0390 0.0389 0.0397 0.0369 0.0366 0.0371
Hg  0.0011 0.0012 0.0008 0.0032 0.0034 0.0034
Fsr 00267 00289 00192 00789 0.0848 0.0838
Fr  —06356 -05801 —-03700 -0.6356 -05801 —0.3700
Fis  —0.6805 -0.6271 -03967 -0.7756 -0.7266 —04953

DM-method and CH-method; groups of adaptation and race; mean of
observed heterozygosity (Ho); mean of expected heterozygosity (Hy), average
of within group (Hs) and between groups (Hg) expected heterozygosity and
Hg/Hy ratio (AMOVA-Fs7). Wright statistics Fir (proportional deviation of
observed from expected heterozygosity in the whole collection), Fis
(proportional deviation of observed from expected heterozygosity within
groups of adaptation or race)
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DM-method: when a group (cluster obtained in the first
stage for DM) shows high diversity, the method selects a
large number of genotypes for the sample; if the group
size is not big enough, the method could select all or al-
most all the group genotypes (see the upper-right cloud of
blue dots in Fig. 3, DM50, and compare it to the assigned
number of genotypes selected from groups 4 and 6 by the
DM-method in Table 1). In summary, both strategies
(CH, DM) could be used simultaneously to obtain the ad-
vantages and avoid the weakness of each.

Conclusions
The representativeness and genetic diversity found by
this study in a large number of maize accessions from
the CIMMYT germplasm bank show a stronger effect
on sample size with the CH method than with the DM
method. Sample sizes greater than 20% of the total size
of the populations retained more than 85% of the poly-
morphic markers with both the CH and the DM
methods. Independent and nested samples showed simi-
lar performance with respect to all the criteria for the
DM method, but there were differences between nested
and independent samples obtained by the CH method.
In general, for most of the criteria, the statistical DM
method achieved better approximations to the known
population values than the CH method. The plot of the
first two multidimensional scaling dimensions of the col-
lection and the best (out of 20 repetitions) sample selected
by CH and DM for independent samples of sizes from 10
to 50% clearly shows the biases in the core sample selected
by the CH method, compared with the more complete,
less biased and more uniform core sample selected under
the statistical DM. In terms of comparing both sampling
methods for recovering the information on races and their
areas of adaptation, the results favored the DM method
over the CH method for better recovering the information
existing in the entire collection.

Methods

Genotype germplasm bank accessions

We worked with data from an initial genotyped collec-
tion of 22,903 germplasm bank accessions from CIM-
MYT’s germplasm bank, material available for
distribution under the Standard Material Transfer
Agreement (SMTA) of the International Treaty on Plant
Genetic Resources for Food and Agriculture (http://
www.fao.org/3/a-bc083e.pdf). These landraces were ge-
notyped with DArTseq™ technology. The genotyping
was conducted on composite samples (30 individuals)
represented in each accession DNA sample. A total of
616,967 biallelic single nucleotide polymorphism (SNP)
markers was identified. The frequency of SNP alleles
within each sample was determined from the number of
sequence counts for each allele. The resulting data were
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filtered for the presence of missing values (allowing only
a maximum of 20%) and marker coverage (greater than
2.0) to develop a final dataset of 161,104 SNP markers.
The germplasm was filtered to a final set of 15,384
maize landraces, the availability of geographic data from
collection site origins being used as a selection criteria.
Table 8 describes racial and adaptation composition of
the panel of 15,384 landraces, Table 9 shows the charac-
teristics of the markers finally used on the 15,384 maize
accessions. All data used in the final analysis along with
associated identifiers, descriptions of accessions used
and marker filtering parameters are available via The
CIMMYT Seeds of Discovery repository of the CIMMYT
Research Data and Software Repository Network (https://
data.cimmyt.org/dataverse/seedsofdiscoverydvn) under a
study entitled “SNP Allele Frequencies and Descriptive
Data of 15,384 CIMMYT Germplasm Bank Maize Land-
race Accessions”, http://hdl.handle.net/11529/10548315.
This data is available under the license and terms of use
described in http://hdlhandle.net/11529/10548315 in
alignment with germplasm availability under the SMTA.

Sampling methods

Three stage stratified random sampling: the D-method (DM)
Briefly the D-method [13, 16, 17] begins by classifying
the accessions into groups (clusters) based on the Modi-
fied Rogers’ genetic distance (mrd) [28] using the “mini-
mum variance within groups” clustering method, as
proposed by [29]. The appropriate number of groups is
defined graphically, using the between and within sum
of squares and their related “pseudo F” statistic. The

Table 8 Structure of dataset
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number of accessions to be selected from each cluster is
then defined proportionally to the mean mrd of each
cluster. After defining the number of accessions to sam-
ple from each cluster, a thousand independent stratified
random samples are obtained and the mean mrd values
for each are calculated; the sample showing the max-
imum mean mrd value overall is selected as the optimal
germplasm panel.

Core hunter 3: the CH-method

As described in [25] “Core Hunter is a multi-purpose
core subset selection tool that uses local search algo-
rithms to generate subsets relying on one or more met-
rics, including several distance metrics and allele
richness.” It is implemented in the R [30] package Core
Hunter (http://www.Core Hunter.org, reviewed October
2018) and allows the user to define and use different op-
tions. In this work we applied the CH-method to an mrd
distance matrix and the default options. As described in
[25] “Core Hunter 3 constructs core collections with
high diversity (high entry-to-nearest-entry distance; E-
NE) and which maximally represent the individual acces-
sions from the entire collection.”

Sampling process

The nested and the independent sample represents two
methods to provide users of the germplasm bank sample
of accessions. Independent denotes that every time a
new sample is taken is independent from the previous
ones; nested denotes when a big sample of the collection
is taken and then subsamples from the big original

Races Adaptation

Race Nobs  collection CH DM Race nobs  collection CH DM Nobs  collection CH DM
AVMORO 277  0.0180 00052 00208 NALTEL 218 0.0142 00169 00046 DRL 1240  0.0806 0.0852 0.0828
BOLITA 253 00164 00033 00182 OLOTIL 149 0.0097 00065 00072 DRM 2289  0.1488 0.1333  0.14%
CELAYA 290 0.0189 0.0202 00189 OLOTON 252 0.0164 0.0215 0.0085 HIG 4922 0.3199 02737 03159
CHALQU 364 00237 00358 0.0241 PADENT 433 0.0281 00137 00293 LOW 167 0.0109 0.0156 0.0105
COMITE 101 0.0066 0.0104 0.0033 PEPITI 125 0.0081 0.0111 00078 MID 322 0.0209 0.0228 0.0201
CONICO 1135 0.0738 0.0475 0.0592 RGDENT 156 0.0101 0.0104 0.0104 NOI 772 0.0502 0.0416  0.0447
CONNOR 488 0.0317 0.0455 00234 SALVAD 223 0.0145 00026 00065 WLM 1179 0.0766 0.0735 0.0791
CRISCO 210 00137 00091 00312 SAPEPY 104 0.0068 00020 00052 WLO 2440  0.1586 02042 01627
DENBLA 132 0.0086 0.0046 0.0137 TABLON 224 0.0146 0.0286 00104 WUM 2053 0.1335 0.1502  0.1349
DENTAD 293 0.0190 0.0039 0.0124 TEPECI 175 00114 0.0156  0.0059

DTRGRU 222 00144 00026 00117 TUXPEN 795 0.0517 0.0553 00377

ELOTCO 137 0.0089 00111 00104 NOI 8628 0.5608 06170 0619%

sum 15384 1.0000 1.0000  1.0000 15384 1.0000 1.0000  1.0000

Races: number (nobs) of accessions from 23 main identified plus one subset of 10 other minor and non-identified (NOI)

Adaptation: number of accessions from nine areas where accessions were collected plus non-identified areas (NOI), dry lowland (DRL), dry mid-altitude (DRM),
highland (HIG), lowland (LOW), mid-altitude (MID), wet lower mid-altitude (WLM), wet lownand (WLO), wet upper mid-altitude (WUM). Proportion in the whole
collection and in independent samples sized 20% of the collection. Core Hunter (CH) and DM methods
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pmiss nefgen pest nhom ho he ae shan
Minimum. 0.0000 12,308 0.0000 701 0.0000 0.0000 1.0000 0.0000
1st Quantile 0.0018 14,183 0.9970 13,285 0.0007 0.0002 1.0000 0.0013
Median 0.0190 15,092 0.9997 14,674 0.0031 0.0005 1.0010 0.0035
Mean 0.0466 14,668 0.9492 13,698 0.0655 0.0400 1.0630 0.0962
3rd Quantile 0.0781 15,357 0.9999 15234 0.0188 0.0050 1.0050 0.0251
Maximum 0.1999 15,384 1.0000 15383 0.9544 05000 2.0000 1.0000

@Proportion of missing values (pmiss), number of accessions showing information (nefgen), allele frequency estimation (pest), number of homozygous accessions
(nhom), observed heterozygosity (ho), expected heterozygosity (he), number of effective alleles (ae), Shannon entropy index (shan)

sample are taken for full filing user’s demands for that acces-
sion. Twenty repetitions of nested and independent samples
sized 50, 40, 30, 20, 10, and 5% from the entire collection
(s50 = 7692, s40 = 6154, s30 = 4165, s20 = 3077, s10 = 1538,
and s5="769 accessions, respectively) were selected using
the two previously mentioned sampling methods.

Diversity measures

Genetic diversity is usually studied from two points of
view: allelic genetic diversity, the point of view of geneti-
cists and taxonomists, and between individuals’ genetic
diversity, the point of view of breeders [20]. We used al-
lele frequencies to produce six diversity indices: expected
and observed heterozygosity and their difference (in-
breeding coefficient), Shannon entropy index, number of
polymorphic alleles or markers, and diagnostic markers
(markers being specific only for a few accessions in the
collection). From the “breeder perspective,” we used the
mrd genetic distance between pairs of individuals, and,
finally, the proportion of missing values in the sample as
a measure of information recovery. The following diver-
sity criteria were used.

Expected Heterozygosity [26], or gene diversity [27],
he, is the most used index. It is defined as: 0<he; = 1-

Z?:l fa?jSO.S, for an i diploid marker (locus), and /e

= %Zle he;, the average over all loci, for the
population. The index summarizes genetic variation
and reaches a maximum value of 0.5 for diploid loci
when both allelic frequencies are equal to 0.5,
maximum locus diversity.

Observed heterozygosity, ho;, is the proportion of
heterozygotes at locus i, and is averaged for population
characterization, ho. It is affected by inbreeding and
other evolutionary processes and then, when compared
against /e, produces the inbreeding coefficient f for a
locus: f; =1 - ho,/he;, and their average value for a
population. The f coefficient is the maximum likelihood
estimator of inbreeding under Hardy-Weinberg
equilibrium [27]. We used the ke — ho difference as a

measure of inbreeding: negative values imply high
inbreeding, positive values low inbreeding and zero
no-inbreeding.

Shannon diversity index for the i locus: 0<sh; = —
Z?Zl Py log,(p;) <1, and its average value for a
population. We used the logarithm base 2, because
when the allele frequencies are equal to 0.5 the index
value is 1.0, maximum of diversity.

Modified Rogers’ distance - between individuals genetic
distance

Based on its good mathematical and genetic properties
[28], we selected the mrd between two individuals x, y,
measured by a set of L SNP markers:

2 2
(Iaijx_ﬁijy> <1
=1

1 L
Osmrdy, = —— Z
V2L

=1

Data processing was performed using scripts specific-
ally written for the free software R [30]. A High-
Performance Computer containing four nodes, each one
formed by 94 Cores and 512 Gb of RAM memory, was
used.

Number of retained polymorphic markers

The reduction in the number of genotypes generated by
the sampling processes could reduce the polymorphism
of some markers due to the selection in the sample of
genotypes showing the same genetic structure; the op-
posite result is not possible because a marker that is
monomorphic in the collection will continue being
monomorphic in any extracted sample. Since the num-
ber of polymorphic markers is a measure of a collec-
tion’s diversity, we considered its reduction in the
samples as a measure of the effect of sampling on mea-
sured diversity.

Diagnostic markers
When an allele is fixed for only a few genotypes in the col-
lection, we define that allele (or marker) as a diagnostic
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one, because it identifies and differentiates a few sets of
genotypes from the rest of the collection. We observed
the performance of those alleles (markers) across different
sample sizes and methods.

Proportion of missing values

The proportion of missing values in a collection or sam-
ple is not a measure of its genetic diversity, but it is a
measure of the quality of any statistical set of data: pro-
cesses that produce low proportions of missing data are
better processes.

Representativeness

From the point of view of statistics, the most important
objective when sampling a population is the “sample
representativeness”: a good sample should represent the
population in terms of the values of the measured traits
and the frequency distribution of individuals in the
population. Those principles, when applied to genetic di-
versity, where the measured “traits” are a sample of loci
from the genetic structure, imply that a good sample
must be a subset of individuals representing most of the
genetic structure of the population, that is, the measured
and the non-measured loci in the population. One way
we can measure the representativeness of a genetic sam-
ple is to compare a set of criteria associated with diver-
sity, between the population and the samples, being
better the sample that gave rise to values nearer to the
known values in the population.

Stability or repeatability of process

Another important characteristic of a sampling method
is its stability or repeatability. In this paper we repeated
20 times each “strategy — type of sample — sample size”
combination to measure the repeatability of the sam-
pling processes. The standard deviations between repeti-
tions were calculated for each criterion to obtain a
measure of repeatability; when the standard deviation is
lower, the process is considered more repeatable and
stable.

Recovery of external information (races and adaptation
areas)

Germplasm bank genotypes are characterized for differ-
ent external (non-genetic) variables. In this case, we
found two such variables: genotype race and climatic
adaptation area where the genotype was collected. When
the sampling process is applied, we expect the external
variables to maintain the proportion of genotypes be-
longing to each external group as in the collection. The
proportion of genotypes per variable (race or area) were
calculated from the whole collection and from the best
s20 independent samples for both methods (CH, DM).
They were then compared and the absolute value of
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discrepancies (population — sample) was used as a meas-
ure for the capacity to recover external characteristics.
Finally, we conducted an analysis of molecular variance
(AMOVA) and calculated Wright [31] statistics to com-
pare the relative performance of each approach in the
development of samples with close representation of the
overall population.

Data processing

We used scripts specifically written for the free software
R [30], Figures were done using the package ggplot2
[32]. Processes were run in as a high-performance com-
puter containing five nodes, each one formed by 94
cores and 512 Gb of RAM memory.
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