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Abstract

Background: Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot
esculenta Crantz) growing regions in the 1990’s and have now spread to other geographical locations, becoming a
global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and
vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of
virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly
resistant varieties is also necessary as part of integrated pest management strategies. Suitable sources of whitefly
resistance exist in germplasm collections that require further characterization to facilitate and assist breeding
programs.

Results: In the present work, a hierarchical metabolomics approach has been employed to investigate the
underlying biochemical mechanisms associated with whitefly resistance by comparing two naturally occurring
accessions of cassava, one susceptible and one resistant to whitefly. Quantitative differences between genotypes
detected at pre-infestation stages were consistently observed at each time point throughout the course of the
whitefly infestation. This prevalent differential feature suggests that inherent genotypic differences override the
response induced by the presence of whitefly and that they are directly linked with the phenotype observed. The
most significant quantitative changes relating to whitefly susceptibility were linked to the phenylpropanoid super-
pathway and its linked sub-pathways: monolignol, flavonoid and lignan biosynthesis. These findings suggest that
the lignification process in the susceptible variety is less active, as the susceptible accession deposits less lignin and
accumulates monolignol intermediates and derivatives thereof, differences that are maintained during the time-
course of the infestation.

Conclusions: Resistance mechanism associated to the cassava whitefly-resistant accession ECU72 is an antixenosis
strategy based on reinforcement of cell walls. Both resistant and susceptible accessions respond differently to
whitefly attack at biochemical level, but the inherent metabolic differences are directly linked to the resistance
phenotype rather than an induced response in the plant.
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Background
Cassava (Manihot esculenta Crantz) is a woody shrub
that is native to South America, which was originally
domesticated in the Amazon basin. Cassava was first in-
troduced into Africa during the 1500s, where it evolved
into a staple food source, and got widely distributed
across tropical regions during the 18th and nineteenth
century [1]. Several key attributes have contributed to
cassava as a food source in these regions; they include
its ability to grow on marginal land with poor soil pa-
rameters and its high starch content providing dietary
caloric value. However, micronutrient content is low in
root products [2], and this has led to the development of
bio-fortification programs to alleviate micronutrient de-
ficiency in developing countries [3].
More than 800 million people worldwide depend on

cassava roots as a staple crop [4]. World production was
estimated as > 290 million tonnes in 2017 (FAOSTAT,
http://www.fao.org/faostat/en/#data/QC/visualize). Pro-
duction in Africa and Central and South America is pre-
dominantly directed towards foodstuffs for human
consumption, whilst the growing Asian markets domin-
ate the export of cassava for industrial utilisation such as
starch and biofuels.
More recently it has become evident that domesticated

germplasm has not been adequately robust to cope with
emerging abiotic and biotic stresses, which are proving a
major threat to cassava production by smallholder farmers.
For example, the African cassava mosaic (ACMV) and cas-
sava brown streak (CBSV) family of viruses are the top
damaging agents described [5]. ACMV is transmitted either
by infected cuttings or by its vector, the whitefly Bemisia
tabaci. Severe ACMV outbreak, like the one in the mid-
1990s, caused total loss of the crop in parts of Kenya and
Uganda, and up to 90% losses in India and Sri Lanka [4].
Very recently, the presence of the Sri-Lankan cassava
mosaic virus (SLCMV) was reported for the 1st time in
KaunMoum, Cambodia [6]. Today, a large proportion of
cassava production areas in Cambodia and Vietnam shows
high incidence of this disease likely transmitted by white-
flies; potentially rendering its production unsustainable in
this region.
Despite several crop management recommendations,

super abundant whitefly outbreaks and associated virus
outbreaks occur on a regular basis in these sensitive re-
gions. One approach to address whitefly infestation as
the cause of crop wastage is through the development of
resistant or tolerant cassava varieties to the whitefly.
Societal concerns over Genetic Modification (GM) tech-
nologies means that the exploitation of natural variation
is paramount to crop improvement programs for both
input and output traits. Natural sources of whitefly re-
sistance have been identified in germplasm collections
held in the International Center of Tropical Agriculture

(CIAT) and the International Institute of Tropical Agri-
culture (IITA), covering wild relatives species and landrace
accessions [7–10]. CIAT’s accession ECU72 consistently
demonstrated resistance to the South American whitefly
Aleurotrachelus socialis and recently to the African white-
fly B. tabaci as it showed reduced oviposition rates and
adults’ preference, and higher nymph mortality. ECU72
also presented lower damaging scores upon whitefly infec-
tion, an indication of tolerance to biotic stress [11]. Other
landrace accessions within the CIAT genebank have also
been reported to display tolerance and/or resistance to
whitefly species [8, 10].
To date, how these accessions confer tolerance and/or

resistance to whitefly infestation at the molecular and bio-
chemical levels awaits elucidation. Such advances in our
knowledge are essential to augment existing and future
cassava breeding programs directed towards the develop-
ment of biotic stress resistant varieties. The current genetic
resources available for cassava have substantially driven re-
search towards development of resistant varieties to ACMV
and CBSV or both, such as genomic selection and
marker-assisted selection [12]. Concomitantly, trans-
genic approaches have also produced virus resistant
plants, but deployment to fields is pending on regula-
tory approval. Nevertheless, the whitefly vectoring role
has received little attention, and studies on under-
standing the biology of the insect and identification
and development of resistant lines have only recently
been initiated (www.cassavawhitefly.org). In compari-
son to commercial crops consumed in western soci-
eties, genetic resources and tools are a limiting factor
in cassava breeding. Despite noticeable advances in
cassava genomics [13, 14], complementary “omic”
technologies remain poorly utilised in assisting cassa-
va’s crop improvement programs. In the present work,
a metabolomics approach has been used to investigate
the resistance/tolerance mechanisms to whitefly in
cassava by comparing a resistant (ECU72) and a sus-
ceptible (COL2246) variety. The findings are discussed
with respect to the rational development of pre-
breeding materials for the implementation of whitefly
resistant cassava varieties in Sub-Saharan Africa.

Results
Generation of resistant and susceptible cassava leaf
material to Aleurotrachelus socialis
In order to apply our investigative comparative metabo-
lomics approach, non-infested and infested cassava leaf
material was generated. Cassava plantlets were grown to
a developmental stage whereby the first five leaflets were
expanded. The first two expanded leaves of five bio-
logical replicates were harvested representing time-point
0 (T0), and concurrently over the life cycle of the white-
fly, leaves were collected at 12 h, 24 h, 7 days, 14 days
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and 22 days post-infestation for both COL2246 and ECU72
independently exposed to A. socialis colonies. Both varieties
were exposed to identical population size of whitefly adults.
The infestation trials performed in the present work were
dedicated to evaluate the susceptibility or resistance of both
genotypes as means of ability to reduce infection. Evalu-
ation of tolerance as yield loss or plant fitness was out of
the scope of the present study. ECU72 presented a signifi-
cant reduced number of eggs deposited on leaves when
compared to COL2246 (Additional file 1: Figure S1) valid-
ating its resistant phenotype. A complementary experiment
was run in parallel in absence of whitefly. Leaves at progres-
sive developmental stages and free of whitefly were
collected and used as mock-infestation control in order to
exclude whitefly metabolites contamination and leaf devel-
opment effects. This material was then prepared for
comparative metabolomics using LC-MS and GC-MS me-
tabolite profiling approaches. An illustrative representation
of the sampling methodology is provided in Fig. 1.

Cassava leaf’s metabolome
Using complementary LC-MS and GC-MS metabolite pro-
filing built upon the non-targeted approach enabled the un-
ambiguous structural characterization of 184 components
and 28 level 4-unknowns according to the Metabolomics
Standard Initiative [15] (Additional file 2: Table S1). This

matrix of data containing the annotated and characterized
metabolites was used as targeted dataset. The compounds
characterized at T0 (pre-infestation) in both COL2246 and
ECU72 were also present across the multiple infestation
time-points and no additional metabolites detected in the
infested leaves were included in the targeted dataset to
prevent ambiguous interpretation of data as they could
originate from whitefly metabolome. Compounds charac-
terized by LC-MS comprised a range of secondary metabo-
lites dominated by the presence of phenylpropanoids and
flavonoids and certain compounds related to primary me-
tabolism, e.g., amino acids and mono- and disaccharides.
Phenylpropanoids including ester-derivatives of hydroxy-
cinnamic acids along with related monolignols and oligo-
lignols [16, 17] were evident. Chemical variation was also
extended to additional classes of compounds involving
cyanogenic glycosides, hydroxybenzoates and glycosylated
apocarotenoids (Additional file 2: Table S1). The GC-MS
analysis of polar extracts facilitated the annotation of
components of intermediary/primary metabolism. For
example, components of TCA cycle and glycolysis,
mono- and disaccharides, alcohol and acid sugars,
amino acids and polyamines. Analysis of non-polar ex-
tracts by gas chromatography allowed detection of tri-
terpenoids, in either their free or glycosylated forms,
tocopherols, fatty acids or alkanes.

Fig. 1 The generation of cassava leaf material infested with Aleurotrachelus socialis. Five plants per time-point and genotype were incubated in
enclosed cages for 3 days with whitefly colonies. After eggs were laid out during incubation time (72 h), whitefly adults were released and plants
taken out of the cages and transferred to a whitefly-free environment to allowed progression of whitefly cycle and prevent recurrent infestation
of emerging leaves. Coloured boxes highlight those leaves collected for metabolomics analysis and where whiteflies developed. Three replicates
of non-choice infestation trials were performed and analysed independently. Dpi: days post-infestation; L: number of leaf counting from top
emerging leaf. Pictures taken by A.B.C and L.A.B.L-L at CIAT
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Identification of changes in the cassava metabolome
upon exposure to A. socialis
Non-targeted analysis by LC-MS revealed 9287 chemical
features (Additional file 3: Table S2) which when analysed
by Principal Component Analysis (PCA) rendered separ-
ation of the genotypes regardless of infestation or duration
of infestation. In this instance, the score plot of compo-
nents 1 and 2 (Fig. 2a) explained 18.88% of the variability,
whereby genotypes separated along the PC1 axis (18.8%
variability) and time-points along the PC2 axis (0.098%
variability). The targeted profiling approaches based on
212 features enabled more robust quantification and
characterization of key metabolites across important
sectors of metabolism. When incorporated into PCA, a
similar clustering pattern of genotypes was revealed (Fig.
2b) with PC1 and PC2 explaining 32.5 and 13.9% of the
variability, respectively. PCA performed on GC-MS data
yielded similar results (Additional files 4: Figure S2 and 5:
Figure S3). Collectively, the untargeted analysis in combin-
ation with the targeted metabolite profiling revealed clear
chemical differences in the metabolomes of COL2246 and
ECU72, regardless of the infestation treatment and its pro-
gression. The characterization of metabolites in high con-
fidence also facilitated data mining for key biochemical
differentiators between the two genotypes, leaf develop-
ment and responses to A. socialis infestation.

Differentiating chemical signatures between the
susceptible and resistant genotypes
Changes in phenylpropanoid
Pair-wise comparison of both genotypes at every time-point
of the infestation cycle revealed the following quantitative
differences in metabolite’s composition: p-coumaroyl esters

of shikimic acid, quinic acid and malic acid accumulated
significantly (p < 0.05) in the susceptible variety COL2246
along with malate esters of caffeic acid and ferulic acid
(Fig. 3; Additional file 2: Table S1). Glycosylated forms of
the flavonols kaempferol and quercetin occurred in both
genotypes. However, the pentose-derivatives preferentially
accumulated in COL2246 and the hexose derivatives in
ECU72. Flavan-3-ols epigallocatechin (EGC), epigallocate-
chin gallate (EGCG) and its corresponding dimer EGC-
EGCG were significantly higher in abundance in the
susceptible genotype COL2246 when compared to the re-
sistant ECU72. In addition, the trihydroxybenzoate gallic
acid incorporated into these molecules also had a higher
abundance in COL2246. Another family of compounds that
presented higher levels in the susceptible variety were iden-
tified as pentoside derivatives of the cyanogenic glycosides
prunasin and lotoaustralin in their anitrile (non-active)
forms. The oligolignol G(t8–O–4) S(8–5)G [18] and the lig-
nans lariciresinol-deoxyhexoside and two non-identified
components were also consistently higher in COL2246.
From the MS spectra it could be deduced that these two
unknown compounds are related to lignan. For example,
the unknown feature with a retention time at 13.9min and
m/z value of 533.2062 generated a chemical formula of
C27H34O11 (Additional file 6: Table S3) that retrieved 75
and 3 hits when blasted against the chemical database
Chemspider and ChEBI, respectively. Twenty out 75 entries
retrieved from Chemspider matched with the lignan arctiin
and 17 out 75 Chemspider’s entries matched the lignan
identified as phyllirin (or forsythin), an 8,8’-coupled lignan
similar to lariciresinol that also accumulated in COL2246
in its glucosylated form. Similarly, an unknown compound
at 10.5min and having an accurate m/z value of 889.2034

Fig. 2 Component 1 and 2 score plots of principal component analysis of (a) Non-targeted LC-MS analysis, and (b) LC-MS targeted analysis and
(c) loadings plot of LC-MS targeted analysis where significant (p < 0.05) features altered in ECU72 (pink) and COL2246 (green) are highlighted.
Green and pink symbols represent infestation time-points of susceptible variety COL2246 and resistant variety ECU72, respectively. Collection
times during infestation were defined by the following symbols: 0 days post-infestation (T0); ▼ 0.5 day (12 h) post-infestation (T1); ▲ 1 day post-
infestation (T2); ■ 7 days post-infestation (T3); ✦ 14 days post-infestation (T4) and ★ 22 days post-infestation (T5). Principal component analysis
plots were performed using Simca software and using pareto-scaling method. Averaged biological and technical replicates are presented to
facilitate visualisation
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(UNK-889.2034-10.5min) showed a similar accumulation
profile in the infected leaves of COL2246 as those of the
oligolignols and putative lignans detected in the present
work, suggesting it could be a structurally related molecule
(Fig. 3; Additional file 6: Table S3).
In contrast, the resistant variety ECU72 displayed

significantly higher levels of hexoside derivatives for a
range of compounds such as caffeic acid, ferulic acid, the
neolignans dehydrodiconiferyl alcohol (DDC) and isode-
hydrodiconiferyl alcohol (IDDC), and the flavonoids tri-
cin and kaempferol. In addition, a number of unknown
metabolites were also observed in ECU72 that might
represent (neo)lignans/oligolignols based on their accur-
ate mass (Fig. 3; Additional file 6: Table S3).
The differential accumulation of certain compounds in

COL2246 was noticeable over the course of the whitefly in-
festation cycle and already present at pre-infestation stage
(0 dpi). For example, coumaroyl-quinate and malate esters,
oligolignol G(t8–O–4) S(8–5)G, lignans lariciresinol-
deoxyhexoside, putative UNK-533.2062-13.9min and
UNK-889.2034-10.5min presented a fold-change increase
in COL2246 higher than 4, and the levels of flavonoids
quercetin pentoside and isorhamnetin-3-O-rutinoside in
the susceptible leaves of COL2246 were > 2 fold-change
higher prior to and during infestation (Additional file 2:
Table S1). Pentoside derivatives of kaempferol were also

consistently higher during the time-course of the infestation
from 0.5 dpi onwards (Additional file 2: Table S1), and ac-
cumulation of epigallocatechins and gallic acid were also
significantly higher in COL2246 at late stages of infestation
(≥7 dpi). In the resistant genotype ECU72, the hexoside
derivatives of flavonoids and lignans were significantly
higher at early stages of the time-course experiment, i.e. < 7
dpi, when compared to susceptible COL2246, whereas the
phenylpropanoids caffeoyl and feruloyl-hexosides were also
significantly increased at 22 dpi (Fig. 3; Additional file 2:
Table S1).

Differences between genotypes in sterols composition and
content upon whitefly infection
Although the differences between genotypes in the phe-
nylpropanoid content were the overriding comparative
features of the metabolomes (Fig. 3), alterations in the
levels of sterols, triterpenoids and wax components (long
chain alkanes) were also evident, as displayed across
their respective biosynthetic pathway display (Fig. 4).
These significant differences between genotypes oc-
curred at early stages of infestation (< 7 dpi) or were
already present before exposure to whitefly (0 dpi). Two
non-identified compounds UNKnp-st_Ketosterol_39.736
min and UNKnp-st_32.516 min were the exception as

Fig. 3 Pathway display visualisation of significant changes in secondary metabolite abundances observed between COL2246 and ECU72 during
the infestation cycle. Cells indicate time-points and were coloured according to their respective fold-change, green cell indicating significant
accumulation of corresponding metabolite in susceptible variety COL2246 and pink cells representing significant increased levels of metabolites
in resistant variety ECU72 respective COL2246
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their abundances were significantly higher in COL2246
at 22 days post-infestation, respectively.
The long-chain alcohols hexacosanol and triacontanol

and the sterols cycloartenol, avenasterol and stigmasterol
preferentially accumulated in the resistant variety ECU72 at
early stages. A group of non-identified steroid-glycosides
showed a similar pattern of accumulation while the abun-
dance of the triterpenoids α-amyrin and lupeol and un-
known sterols and terpenoid metabolites were significantly
higher in the susceptible variety COL2246.
A significant proportion of the sterol molecules could

not be resolved with the experiments conducted in the
present work. It was clear from their EI (GC-MS)
spectrum that they were present as glycosylated forms
but references regarding the identification of this class of
compounds in cassava are scarce [19, 20]. Therefore, a
detailed characterisation of this particular class of com-
pounds is required to further elucidate their structures
but is not the scope of the present work.

Differences in intermediary metabolism
Subtle changes were observed in the primary metabolism
components mainly linked with carbohydrate metabol-
ism. The susceptible variety COL2246 had higher levels
of the monosaccharides glucose, fructose and glucuronic
acid, the heptose sedoheptulose and the disaccharide cel-
lobiose. The abundance of the tricarboxylic acid cycle

(TCA cycle) components was also higher in COL2246
(Additional file 2: Table S1, Fig. 4) whilst the resistant
variety ECU72 showed higher amounts of threonic acid
and galactinol, citric acid and the amino acid threonine
(Fig. 4).

Temporal variation of cassava metabolome upon A. socialis
infestation
Analysis of variance was applied independently to
time-course experiments of COL2246 and ECU72
(Additional files 7, 8: Tables S4, S5). Those metabo-
lites displaying significant (p < 0.05) changes under
multiple statistical post-hoc tests were selected for
further discussion.
The ANOVA results summarized in Fig. 5a revealed

56 metabolites that significantly changed over time in
ECU72. Similarly, 22 metabolites varied with infestation
progression in COL2246, 16 of which were the same as
in ECU72.
Changes over time in this core group of 16 metabolites

are displayed as a heat map (Fig. 5b) where at least five dif-
ferential patterns can be observed when comparing both
genotypes COL2246 and ECU72. The first cluster defined
by syringin and its isomer indicated similar levels and tem-
poral variation in both genotypes during infestation. Clus-
ters 2 and 3 were defined by metabolites that reciprocally
accumulate in both varieties, i.e., preferentially accumulated

Fig. 4 Pathway display visualisation of significant changes in primary/intermediary metabolite abundances observed between COL2246 and
ECU72 during the infestation cycle. Cells indicate time-points and were coloured according to their respective fold-change, green cell indicating
significant accumulation of corresponding metabolite in susceptible variety COL2246 and pink cells representing significant increased levels of
metabolites in resistant variety ECU72 respective COL2246
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in COL2246 or ECU72, respectively. Both clusters of me-
tabolites generally presented similar variation with time
with subtle exceptions (Additional file 9: Figure S4). For
example in cluster 2, the flavonol isorhamnetin-3-O-rutino-
side increased in COL2246 but decreased in ECU72 at 1
and 7 dpi; or the UNK-7.1min-471.111 in cluster 3 which
tended to decrease from 0.5 to 14 dpi in the susceptible
variety COL2246 and increased over time in the resistant
ECU72. The di- and tri- hydroxybenzoates protocatechoyl
and galloyl hexosides and the flavonol methylkaempherol
hexoside constituted cluster 4 of metabolites and had
similar levels in both genotypes but contrasting accu-
mulation at 14 dpi. Similarly, the last cluster repre-
sented metabolites consistently accumulating in the
susceptible variety COL2246 and gradually increasing
with infestation progression in both varieties, except at
7 dpi when a dramatic increase in the susceptible var-
iety occurred followed by a decrease in the next time
point. This subgroup of metabolites includes apocarote-
noids, feruloyl malate and flavonol trisaccharide (8.9
min-755.2034). The temporal variation of some of these
metabolites matched the variation observed during leaf
development in the absence of whitefly infestation, sug-
gesting that they could be linked to progression in leaf
development rather than to response to infestation
(Additional file 9: Figure S4). Some examples are syrin-
gin, the flavonols isorhamnetin-3-O-rutinoside and

quercetin pentoside and the unknowns in cluster 3, i.e.
UNK-7.1 min-471.111 and UNK-17.4 min-664.262.
Dendrogram classification of infestation time-points

based on the LC-MS targeted matrix differentiated three
clusters in both COL2246 (Fig. 6a) and ECU72 (Fig. 7a)
but with different distribution of the time-points within
the clusters. In the susceptible variety COL2246, the
early (0–24 hpi) and late stages (14–22 dpi) of infest-
ation were grouped in separate clusters 1 and 3 whilst
the time-point 7 dpi was located in cluster 2. However,
in the resistant variety ECU72 pre-infestation time-point
0 dpi constituted a cluster in itself and early (12–24 hpi)
and late (7–22 dpi) post-infestation stages formed two
distinctive groups (Fig. 7a). The distinction between
early and late infestation events in the susceptible variety
COL2246 was also evident in the metabolic changes oc-
curring exclusively in this genotype (Fig. 6b). The group
of 6 metabolites exclusively changing in COL2246 were
arranged in two clusters displaying reciprocal temporal
variation. Anitrile non-active forms of cyanogenic glyco-
side lotaustralin and prunasin and the UNK-1.3 min-
488.163 tended to increase as the infestation progressed
and these compounds reached their highest concentra-
tion at late stages. The opposite was observed for those
metabolites grouped in cluster 2. Here, lotaustralin in its
active form and the compounds pantothenic acid and
the putative lignan-13.9-533.2062 were highly abundant

Fig. 5 a Venn diagram of features significantly (p < 0.05) varying during the infestation time course in COL2246 and ECU72. b Heat-map and
temporal variation of core metabolites changing over time in both COL2246 and ECU72. Infestation time points indicated as days
post-infestation (dpi)
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at pre-infestation and rapidly decreased in abundance
during the time-course.
The clustering and varying levels of the 40 metabolites

changing uniquely in ECU72 is shown in Fig. 7b. At least
5 clusters displaying different patterns of temporal vari-
ation were identified. The first cluster is the only one
with a positive tendency, i.e., the metabolite’s levels in-
creased with time, whereas the remaining 4 clusters de-
creased during infestation. Different fluctuation patterns
along the time-course were distinguished in clusters 2 to
4. Cluster 2 presented the highest concentration at pre-
infestation followed by rapid decrease as infestation pro-
gressed but showed peaks of increase at 1 and 14 days
post-infestation. Cluster 3 was characterised by a tem-
poral pattern of increasing concentration from pre-
infestation up to 1 dpi followed by a rapid decrease over
the later time points. Metabolites in cluster 4 and 5
maintained high levels at early infestation time-points
up to 1 dpi and then progressively reduced in abundance
with time, except for cluster 5 which showed a surge at
14 dpi.

Discussion
Hierarchical metabolomics as a means of assessing
complex natural variation
The untargeted metabolomics approach used created a ro-
bust chemical fingerprinting of the cassava metabolome of

the two genotypes in question. The overall variance facili-
tated the separation of the genotypes, from which chemical
differentiators could be determined. More targeted metab-
olite profiling enabled us to incorporate greater robustness
in our components and assign chemical identification to
the key metabolites of interest. These approaches can also
be informative to assess genetic drag arising from future in-
trogressions into donor germplasm when pyramiding traits.
In general, the data represent one of the most compre-

hensive studies of cassava to date. Through the use of
the hierarchical metabolomics approach, the study has
characterized over 200 metabolites in cassava with high
confidence across a wide dynamic range and represent-
ing key sectors of the metabolism. An initial biochemical
network has been created which can be integrated with
future complementary omic datasets, such as tran-
scriptomics to create potential correlation networks.
Such an approach will enable a systems levels compari-
son between the resistant and susceptible varieties; po-
tentially revealing robust metabolite and molecular
markers for the trait of interest.

Potential biochemical mechanisms conferring whitefly
resistance
Numerous examples exist of mutants/transgenic plants that
are altered in the abundance of monolignol biosynthesis
pathway intermediates [21–25], in a way reminiscent to the

Fig. 6 a Ward’s Agglomerative Hierarchical Clustering of infestation time-points using LC-MS targeted data in COL2246 and (b) Heat map of
metabolites significantly changing over time in COL2246 exclusively. The dotted line in the dendrogram indicates the truncation level
automatically generated by the software XLSTAT
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metabolic differences observed between COL2246 and
ECU72. What are the implications of the elevated levels of
the malate, quinate and shikimate esters of the hydroxycin-
namic acids p-coumaric, caffeic and ferulic acid in the sus-
ceptible variety? The main hypothesis is based on an
alteration of the lignification, based on a lower activity in
the last steps of the monolignol biosynthesis pathway in the
susceptible cassava. This may lead to the diversion of the
monolignol precursors into their CoA-thioester forms that
are rapidly converted to their respective malate, quinate, or
shikimate esters by hydroxycinnamoyl transferases (HCT)
which are able to transfer shikimate, quinate, and malate to
hydroxycinnamoyl-CoA esters and vice versa [26–28]. For
example, feruloyl-malate accumulates in ccr1-knockout
mutants of Arabidopsis thaliana [22] at the expense of
sinapoyl-malate, and hyperaccumulation of feruloyl and
sinapoyl-malate esters as well as their glucosidic precursors
occurs in A. thaliana mutants of the Mediator regulatory
complex of lignin [29]. Nonetheless, it is likely that feruloyl-
malate could be alternatively synthesised by transesterifica-
tion of feruloyl-glucoside with no involvement of CoA ester
intermediates as is the case in sinapoyl-malate biosynthesis
[22, 30]. This may also explain the differential accumulation
of these ferulate derivatives in ECU72 and COL2246.

Complementary experiments of lignin analysis reinforce the
current hypothesis as a higher content of lignin was
present in the leaves of the resistant variety ECU72
(Additional file 10: Table S6). In addition, the differ-
ent levels of ferulic acid and p-coumaric acid in the
cell wall extracts (Additional file 10: Table S6) has an
impact on the cell wall properties [31] that could be
directly related to biomechanical defence as has been
observed in other species [32].
Inhibition/activation by enzymatic products over their re-

spective biosynthetic enzymes is a well-known regulatory
mechanism of enzyme activity. For example, phenylalanine
ammonium lyase (PAL), the first committed enzyme of
phenylpropanoid biosynthesis, is inhibited by its product
cinnamic acid [33]. In a similar way, the lack of lignin may
re-activate the initial steps of the phenylpropanoid pathway
to produce more monolignols. This hypothesis has been
also suggested by other authors studying poplar and Arabi-
dopsis CCR-downregulated plants where PAL transcript
levels were elevated [23, 25]. In our case, this feedback is
evident by the fact that the total amount of compounds
derived from phenylalanine were significantly higher (up to
1.8-fold increase) in the susceptible variety COL2246
(Additional file 11: Table S7 and Additional file 12: Figure

Fig. 7 a Ward’s Agglomerative Hierarchical Clustering of infestation time-points using LC-MS targeted data in ECU72 and (b) Heat map of
metabolites significantly changing over time in ECU72 exclusively. The dotted line in the dendrogram indicates the truncation level automatically
generated by the software XLSTAT
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S5). This genotype presented increased amounts of hydro-
xycinnamic acids, flavonoids and cyanogenic glycosides
when compared to the resistant variety ECU72, some of
them being consistently high throughout the course of the
infestation. The relative proportion of each chemical class
of compounds remained unaltered within each genotype.
Surprisingly, hexoside derivatives (likely glucose) of

hydroxycinnamic acids and certain flavonoids were more
abundant in the resistant variety ECU72. Glucosides are
traditionally considered as storage and transport forms
of metabolites, and although the role of the different gly-
cosyl transferases and membrane transporters remains
controversial, it is clear that these compounds are in-
volved in the homeostasis of monolignol metabolism
and location [34].
Although a detailed in-depth analysis of carbohydrates

hasn’t been performed, the GC-MS profile revealed a
higher content of cellobiose in the susceptible variety
COL2246. Cellobiose is a dimer of glucose and is a compo-
nent of cellulose. Mutants of CCR in Arabidopsis showed
decreased lignin content but no significant changes in car-
bohydrates [35].
Taking all these results into consideration plus the fact

that PCA analysis indicated major differences between ge-
notypes rather than between time-points of the infestation
within a given genotype, we propose that the resistance
strategy in ECU72 is based on an antixenosis mechanism
associated with a reinforced lignified cell wall of vascular
tissue preventing the whitefly feeding on the leaves of
ECU72. Previous work on the feeding behaviour of glass-
house whitefly (Trialeurodes vaporariorum) on host rec-
ognition revealed that this phloem-feeding insect explores
the mechanical resistance of the leaves by repeated injec-
tions of its stylet. This pre-feeding behaviour allows the fly
to assess the rigidity/toughness of the leaves and to evalu-
ate the accessibility to nutrients [36]. Oviposition rate
positively correlated with the feeding behaviour being
higher in the susceptible variety. Several articles on resist-
ance mechanisms of other crops have also highlighted the
antixenosis reinforced cell wall as the strategy for prevent-
ing whitefly or aphids attack.

Genotypes respond differently to whitefly infestation
Cassava accessions COL2246 and ECU72 experience a dif-
ferent response at the metabolic level to whitefly infest-
ation. Dendrogram classification of time-points evidenced
these differences which are also apparent on the PCA
scores plot. ECU72 at pre-infestation consistently clusters
away from the post-infestation time-points whilst in the
susceptible variety COL2246, pre-infestation and early
stages 0.5 and 1 dpi tend to group together (Figs. 2, 6a
and 7a). This pattern of response in ECU72 may be associ-
ated with a primed mechanism that rapidly triggers a re-
sponse to the presence of the whitefly [37–39].

The analysis of the time-series identified those metabo-
lites changing with time that could be linked to the biotic
stress response. Although 52 metabolites significantly chan-
ged with time, only 16 were shared by both genotypes, 6
were exclusively altered in COL2246 and a variation of 40
metabolites in ECU72 were associated with infestation time.
The temporal variation observed in the susceptible variety
presented a typical positive and negative linear tendency,
i.e., metabolites gradually increasing and decreasing as in-
festation progressed. For example, the cyanogenic glycoside
lotaustralin decreased with time as its anitrile by-products
increased, which corresponds to the well-known toxicity
mechanism described in cassava [40, 41]. However, in the
resistant variety ECU72 the metabolites that significantly
changed with time seem to follow a more complex pattern
with subgroups of compounds presenting sudden rises or
falls in abundance at certain time-points of the infestation
that could be linked to biochemical events associated with
the presence of different whitefly developmental stages. For
example, flavonoids and malate and quinate esters of p-
coumaric acids in clusters 2 and 5 of Fig. 7b displayed a
rapid increase at 14 dpi that could have been triggered by
the feeding activity of emerging nymphs.

Implications for the future breeding of whitefly resistance in
cassava
There are numerous strategies to breed for elite germ-
plasm to tackle emerging societal and environmental
concerns. However, Marker Assisted Selection (MAS)
remains the most rational or predominant approach
presently used by the private plant breeding industry.
Although more closely related accessions can be used as

donors during more refined trait breeding to maximise
additive effects or heterosis, the necessity for natural vari-
ation is paramount. In the present study, we have exploited
natural diversity present in Latin American germplasm for
whitefly resistance/tolerance in cassava [8, 10, 42]. Concur-
rently, a susceptible and resistant accession has been re-
vealed. These now potentially represent well characterised
parental material from which segregating populations can
be prepared, eventually leading to fixed marker defining
regions that can be utilised to breed for the whitefly resist-
ance trait. In the present example a number of differentiat-
ing metabolites have been identified to provide a specific
chemical signature. These features have the potential to act
as quantitative trait markers. The robustness of these
features can now be tested under different environmental
conditions or in the presence of different backgrounds
which can confer epistatic effects. In addition, the metabo-
lites associated with resistance could act as predictive
markers during the construction of pre-breeding popula-
tions, where phenotypic parameters may not be pro-
nounced, due to inadequate gene dosage.
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Conclusions
This study has used metabolomics to characterise a South
American derived accession of cassava that is resistant to
whitefly infestation in comparison to a geographically re-
lated susceptible accession. Our hierarchical approach to
metabolomics was effective in rapidly capturing molecular
features that differentiated the resistant chemotypes, in the
presence and absence of infestation. Metabolite profiling
was then used to confirm the changes in the metabolite
pools characterising the resistant variety. Differences in me-
tabolite profiles of both resistant and susceptible accessions
ECU72 and COL2246 were detected consistently through-
out the course of the whitefly infestation and also at pre-
infestation time. Thus, it was concluded that the whitefly-
resistance phenotype observed in the cassava accession
ECU72 is associated to an antixenosis strategy based on
reinforcement of cell wall. This hypothesis was based on
the most significant chemical features differentiating both
accessions being derivatives from biosynthetic intermedi-
ates of monolignols, preferentially accumulating in the sus-
ceptible variety compared to the higher deposition of lignin
in the resistant variety. In addition, it was determined that
the metabolomes of the susceptible and resistant accessions
respond differently during whitefly’s infestation; the re-
sponse to infestation is different between accessions.
These findings provide valuable insights into the

underlying biochemical mechanism(s) associated with
the resistance phenotypes; while providing characterised
parental materials for future breeding programmes di-
rected towards conferring whitefly resistance into staple
crops in developing countries.

Methods
Plant material
In the tissue culture lab of the Cassava Genetics Program at
CIAT, seedlings of each Manihot esculenta (Crantz) geno-
type COL2246 (whitefly-susceptible check) and ECU72
(whitefly-resistant check) from CIAT’s genebank collection
were multiplied in vitro. Plants from in vitro culture, 8–10
weeks old, were planted in pots with sterile soil in a ratio of
3:1 sand to black soil (no clay topsoil) and kept in the glass-
house at 30 °C and 50–60% relative humidity [8]. CIAT’s
genebank operates within the framework of the Inter-
national Treaty on Plant Genetic Resources for Food and
Agriculture (ITPGRFA) (http://www.fao.org/plant-treaty/
overview/en/). Information related to original source of ge-
notypes, characterisation and identification is stored in
CIAT’s genebank and provided in the present manuscript
as Additional file 15: Table S10.

Infestation bioassays using Aleurotrachelus socialis
(Bondar)
The A. socialis colony was raised on cassava genotype
Manihot esculenta var. COL1468 as the host [8].

Non-choice experiments using a completely randomized
design were used to challenge cassava genotypes ECU72
(whitefly (WF)-resistant) and COL2246 (WF-susceptible)
[8, 10]. Each plant was put into individual cylindrical (1m
height × 30 cm diameter) mesh cages and 100 male and
100 female adults of A. socialis were released into each
cage. Oviposition of adults was allowed for 72 h and plants
were moved thereafter to a greenhouse free of whiteflies to
allow progression of the whitefly life cycle. Five plants per
genotype and time-point were used and three independent
infestation trials were conducted, i.e. three biological repli-
cates. Whole infested leaves carrying eggs or nymphs were
collected from all plants at each time-point: zero hours
post-infestation (T0), 12 hpi, (T1), 24 hpi (T2), 7 days post-
infestation (T3), 14 dpi (T4), and 22 dpi (T5). Whiteflies
from collected leaves were counted using a microscope and
leaves were fast frozen in liquid nitrogen immediately after
and stored at − 80 °C until lyophilization.

Metabolites extraction
Freeze-dried material was ground to a fine powder by
using tissue disruptor TissueRuptor (Qiagen) and ali-
quots of 10 mg used for metabolites extraction. Extrac-
tions were carried out in 50% methanol (1 h, shaking,
room temperature) and 1 volume of chloroform was
then added. Polar and non-polar metabolites were col-
lected from methanolic epiphase and organic hypophase,
respectively, after centrifugation. Both polar and non-
polar extracts were filtered with 0.45 μm nylon mem-
branes and 0.2 μm PTFE membranes prior to analysis.
Quality control samples were prepared by pooling 10mg
from each sample and 3 technical replicates per sample
were run on the different analytical platforms. A quality
control sample and a blank of extraction (empty tube)
were included every 25 analytical runs.

LC-MS metabolite profiling
Polar extracts were analysed by LC-MS using a MAXIS
UHR-Q-TOF mass spectrometer (Bruker Daltonics) and
electrospray ion (ESI) source in negative mode. Ion source
conditions were as follows: dry gas at 8 L/min, capillary
3500V, end plate at − 500V, vaporizing temperature was
195 °C and nebulizer was 1.3 Bar. Mass spectra were re-
corded in full scan mode from 100 to 1200m/z range. A
separate batch of analysis in MS/MS mode was also per-
formed to facilitate chemical features fragmentation and
structure characterization. Hence, a maximum of 4 ions
above an intensity threshold of 1000 counts in every cycle
were selected for fragmentation in a data-dependent manner
by collision induced dissociation (CID). Separation of me-
tabolites prior to MS detection was carried out using a
UHPLC UltiMate 3000 equipped with a PDA detector (Dio-
nex Softron). Chromatographic separations were performed
in an YMC-UltraHTPro C18 2 μm column (100 × 2mm
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i.d.) using 10% acetonitrile in water (A) and acetonitrile (B)
as mobile phases in gradient mode, both containing 0.1%
formic acid. These solvents were used in a gradient mode
starting at 100% (A), held for 1min, then stepped to 65%
(A) in 17min, followed by a linear gradient over 12min to
0% (A). A 5min washing and re-equilibration time was in-
cluded in the gradient program. The flow rate used was 0.2
ml/min and the injection volume was 5 μl. Samples were
spiked with genistein as an internal standard (0.01mg/ml in
the vial).
For the purpose of structural characterization, some of

the extracts were also analysed by reversed phase LC-
ESI-Fourier Transform-Ion Cyclotron Resonance (FT-
ICR)-MS in negative ionization mode using an Accela
UHPLC hyphenated to an LTQ FT Ultra (Thermo Elec-
tron Corporation, Bremen, Germany). Conditions were
as mentioned in [43].

GC-MS metabolite profiling
Components of intermediary/primary metabolism were
mostly covered by gas chromatography coupled to an elec-
tron impact-single quadrupole mass spectrometer. Ten μl
of the polar extract was spiked with 10 μl of the internal
standard solution (1mg/ml of deuterated succinic acid in
methanol) and dried under vacuum (Genevac EZ.27). Dried
extracts were derivatised to their methoxymated and sily-
lated forms and analysed by GC-MS according to previous
publication [44]. Similarly, 400 μl of the chloroform extract
(non-polar phase) were spiked with 5 μl of internal standard
(1mg/ml of 5-α-cholestan-3-ol in chloroform) and dried
under vacuum (Genevac EZ.27). Derivatisation of non-
polar metabolites proceeded as above and temperature gra-
dient on the GC-MS was adapted to optimize detection of
terpenoids [45]. Raw data files generated from GC-MS
analysis of non-polar and polar extracts are included as
Additional files 13 and 14, respectively.

Global profiling
Peak alignment, peak-picking and adducts grouping was
performed on LC-MS netCDF raw data files using the R
package metaMS [46]. The output was a matrix containing
the intensity of each identified feature per sample and
grouped in peak cluster (PC) groups, i.e., co-eluting groups
of features that could arise from the same compound (iso-
topes, adducts, in-source fragments, etc.). GC-MS raw files
were processed as in [44] using AMDIS version 2.71. Blank
subtraction and batch correction using quality control (QC)
samples were also performed on both LC-MS and GC-MS
data and levels of metabolites were quantified relative to
their corresponding internal standard.

Targeted analysis
Annotation and identification of features detected under
either the LC-MS and/or the GC-MS platforms enabled

the creation of cassava-specific metabolite libraries based
on the analysis of the MS fragmentation pattern and
chemical formula generated from accurate mass. Elec-
tron impact (EI) MS spectra from GC-MS were interro-
gated in the NIST 17 library and Golm Metabolome
Database (GMD) as described in [44]. Chemical formula
generated from UHR-Q-TOF (LC-MS) accurate mass of
parent ions, fragments and neutral losses obtained from
CID MS spectra were searched in Chemspider and
ChEBI databases enabling manual characterisation of
compounds. In addition, structural validation was also
obtained using an in-house FT-ICR-MS-based spectral
database [43]. Bruker Compass DataAnalysis software
v4.1 was used to calculate chemical formula from mea-
sured m/z values and neutral losses between parent ion
and fragments. Chromatographic properties, analytical
platform, and additional UV/Visible spectral information
were also incorporated in the identification workflow.

Data analysis strategy and statistical analysis
Quality and general overview of data was revised using
principal component analysis (SIMCA v15, Umetrics).
Data matrices were analysed using two strategies: (i) By
pair-wise comparisons of genotypes per time-point using
multiple t-test comparisons corrected by Holm-Sidak
post-hoc test (α = 0.05); (ii) by investigating how each
variety responds to the infestation of the whitefly by
using analysis of variance (ANOVA) and multiple mean
comparison Tukey HSD, Bonferroni or Dunnett post-
hoc tests using pre-infestation time-point (T0) as con-
trol. Statistical analysis and graphs were performed using
the XLSTAT, GraphPad Prism 7 and MetaboAnalyst on-
line platform.
Results were painted over bespoken pathways con-

structed from KEGG and Manihot esculenta-PlantCyc
dedicated databases and literature references.

Analysis of lignin
Protein-free cell wall extracts were prepared following
the protocol of [47] and 20 mg of this extract was used
for lignin analysis. Lignin quantification was performed
using the optimised acetyl bromide assay described in
[47] and lignin monomeric composition and cross linked
components were analysed by using the standard thioa-
cidolysis and mild-alkali methods described in [48, 49].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-019-2107-1.

Additional file 1: Figure S1. Egg counting of non-choice experiment
and statistical analysis.

Additional file 2: Table S1. Fold-change of metabolites characterized
by LC-MS and GC-MS in COL2246 and ECU72 and sorted by (a) analytical
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platform or (b) chemical class. Ratios defined as COL2246/ECU72 are
highlighted in bold when significant (p < 0.05).

Additional file 3: Table S2. LC-MS untargeted data matrix sorted by
retention time and obtained from global profiling data analysis as
described in the Methods section.

Additional file 4: Figure S2. Principal component analysis of GC-MS
analysis of non-polar extracts. (A) Score and (B) loadings plot of
components 1 and 2. Collection times during infestation were defined by
the following symbols: 0 days post-infestation (T0); ▼ 0.5 day (12 h) post-
infestation (T1); ▲ 1 day post-infestation (T2); ■ 7 days post-infestation
(T3); ✦ 14 days post-infestation (T4) and ★ 22 days post-infestation (T5).
Principal component analysis plots were performed using Simca software
and pareto-scaling method. Averaged biological and technical replicates
are presented to facilitate visualisation.

Additional file 5: Figure S3. Principal component analysis of GC-MS
analysis of polar extracts. (A) Score and (B) loadings plot of components
1 and 2. Collection times during infestation were defined by the
following symbols: 0 days post-infestation (T0); ▼ 0.5 day (12 h) post-
infestation (T1); ▲ 1 day post-infestation (T2); ■ 7 days post-infestation
(T3); ✦ 14 days post-infestation (T4) and ★ 22 days post-infestation (T5).
Principal component analysis plots were performed using Simca software
and pareto-scaling method. Averaged biological and technical replicates
are presented to facilitate visualisation.

Additional file 6: Table S3. Characterization and annotation of
compounds detected under LC-MS analysis based on the in-source and
CID fragmentation and chemical formula generated from the accurate
mass measured.

Additional file 7: Table S4. Results of ANOVA analysis of COL2246
time-series.

Additional file 8: Table S5. Results of ANOVA analysis of ECU72 time-
series.

Additional file 9: Figure S4. Comparative variation pattern of leaf
metabolites during whitefly infestation and leaf development (untreated).
Only core metabolites changing in both COL2246 and ECU72 identified
from Fig. 4b are compared.

Additional file 10: Table S6. Results of analysis of lignin of cassava
leaves. Quantification and detection of hydroxycinnamic acids (HCAs) and
lignin monomers after alkali and acid hydrolysis was performed by GC-
MS as described in the Methods section.

Additional file 11: Table S7. Quantification of phenylpropanoid
subfamilies hydroxycinnamic acids, flavonoids, lignans and lignin
oligomers in COL2246 and ECU72

Additional file 12: Figure S5. Quantification of total phenylpropanoids
or phenylalanine derived compounds and subfamilies in COL2246 and
ECU72 at each time-point of infestation. Left-hand columns indicate
absolute amounts (μg/g DW) of each chemical class and right-hand
columns illustrate the relative amount (%) of each chemical family
respective the total amount of phenylpropanoids. Red arrow indicates
the level of fold-change (fc) increase . See Additional file 11: Table S7

Additional file 13: Table S8. GC-MS raw data matrix sorted by
retention time obtained from analysis of non-polar.

Additional fille 14: Table S9. GC-MS raw data matrix sorted by retention
time obtained from analysis of non-polar.
Additional file 15: Table S10. Passport data of accessions COL2246
and ECU72 from CIAT’s genebank
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