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Abstract

Background: Linoleic acid is an important polyunsaturated fatty acid, required for all eukaryotes. Microsomal delta-
12 (A'? oleate desaturase (FAD2) is a key enzyme for linoleic acid biosynthesis. Desert shrub Artemisia sphaerocephala
is rich in linoleic acid, it has a large FAD2 gene family with twenty-six members. The aim of this work is to unveil the
difference and potentially functionality of AsSFAD2 family members.

Results: Full-length cDNAs of twenty-one AsFAD2 genes were obtained from A. sphaerocephala. The putative polypeptides
encoded by AsFAD2 family genes showed a high level of sequence similarity and were relatively conserved
during evolution. The motif composition was also relatively conservative. Quantitative real-time PCR analysis
revealed that the AsSFAD2—-1 gene was strongly expressed in developing seeds, which may be closely associated with
the high accumulating ability of linoleic acid in A. sphaerocephala seeds. Although different AsFAD2 family members
showed diverse response to salt stress, the overall mRNA levels of the AsFAD2 family genes was stable. Transient
expression of ASFAD2 genes in the Nicotiana benthamiana leaves revealed that the encoded proteins were all
located in the endoplasmic reticulum. Heterologous expression in Saccharomyces cerevisiae suggested that only
three AsFAD2 enzymes, AsFAD2-1, — 10, and — 23, were A'? oleate desaturases, which could convert oleic acid to
linoleic acid, whereas AsFAD2-1 and AsFAD2-10 could also produce palmitolinoleic acid.

Conclusions: This research reported the cloning, expression studies, subcellular localization and functional
identification of the large AsFAD2 gene family. These results should be helpful in understanding fatty acid
biosynthesis in A. sphaerocephala, and has the potential to be applied in the study of plant fatty acids traits.
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Background

Linoleic acid (LA, C18:2) is known as an important poly-
unsaturated fatty acid (PUFA), required for normal
growth of all eukaryotes [1]. LA is a precursor for the
synthesis of other PUFAs such as linolenic acid and
arachidonic acid, and physiologically active regulatory
compounds such as prostaglandin [2]. LA has the effect
of lowering serum cholesterol and triglyceride levels,
which is good for preventing cardiovascular diseases,
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such as atherosclerosis and myocardial infarction [3]. In
addition, LA is also the precursor of conjugated linoleic
acid (CLA), which is mainly generated in the rumen of
ruminant animals and has been shown to enhance im-
mune function and exert multiple beneficial effects in
obesity, cancer, inflammatory diseases, and hypertension
[4, 5]. However, LA cannot be synthesized by humans and
other mammals, and must be consumed through diet to
support normal physiological metabolism [6]. In plants,
higher LA content helps maintaining the fluidity and in-
tegrity of the cell membrane, which is beneficial for their
adaptation to various biotic or abiotic stresses [7, 8].

LA synthesis in plants is usually catalyzed by
membrane-bound enzymes A'? fatty acid desaturases
(FADs), it is also known as w-6 FADs, which act by
introducing a double bond at the delta-12 (A'?) position
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of the oleic acid carbon chain [9]. According to the loca-
tion in the endoplasmic reticulum (ER) or plastids, A'?
FADs are divided into microsomal (FAD2) and plastid
(FADG6) enzymes. In recent years, FAD2 genes have been
identified and functionally analyzed in a variety of organ-
isms, including plants, fungi, and some other lower
animals [1, 10]. To date, the FAD2 gene has been cloned
from many plant species. With the exception of Arabi-
dopsis thaliana, which has only one FAD2 gene [11],
most plants have multiple FAD2 genes. Thus, olive (Olea
europaea) has two FAD2 genes [12], Oilseed rape (Bras-
sica napus) has four [13], peanut (Arachis hypogaea) has
six [14], safflower (Carthamus tinctorius) has eleven
[15], and Artemisia sphaerocephala has twenty-six [16].
Gene families usually occur through gene duplication
and mutations, and the variations in the number of gene
family members is an important evolutionary mechan-
ism underlying functional diversity and shaping genomic
adaptation in various species [17]. Therefore, different
numbers of the FAD2 genes in plants may be a result of
their adaptation to diverse environmental conditions.

The FAD2 enzymes play an important role in plant
fatty acid synthesis, and consequently, in their growth,
development, and resistance to low temperatures and
high salt concentrations, as well as other biotic and abi-
otic stresses [8]. Thus, it was found that Arabidopsis
lacking the FAD2 gene has reduced tolerance to cold
[18] and increased sensitivity to salt at the seed germin-
ation and seedling stages [19]. The safflower CtFAD2-1
gene, which was expressed in developing seeds, was
mostly responsible for the desaturation of storage lipids;
thus, CtFAD2-3, - 4, — 6, and - 7 were mainly expressed
in the cotyledons and hypocotyls of seedlings, whereas
CtFAD2-5 and - 8 were specifically expressed in roots
and CtFAD2-10 in flowers, were mostly responsible for
the desaturation of membrane lipids [15]. In cotton, the
expression of FAD2-3 and FAD2-4 genes were induced
under cold stress, whereas that of FAD2-2 was not
affected [20]. Heterologous expression of sunflower
FAD2-1 and FAD2-3 genes in yeast cells resulted in the
increase of dienoic fatty acid content, which give the
help of enhancing the freeze and salt tolerance of yeast
[21]. Two ShFAD?2 genes from Salvia hispanica shared a
similar expression pattern, either induction or suppres-
sion, in response to various abiotic stresses [22]. Overall,
these findings indicated that different FAD2 genes of the
same plant may vary not only in their tissue expression
patterns and functional characteristics, but also in
responses to environmental stresses. At present, the
research on FAD2 genes is mainly conducted in model
plants and oil crops, and there is no information on the
expression and functional activity of FAD2 genes from
the desert plant A. sphaerocephala, which has the largest
FAD?2 gene family among the investigated plants.
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Artemisia sphaerocephala Kraschen, which belongs to
the Artemisia genus of the Compositae family, is a per-
ennial wild shrub widely distributed in the moving and
semi-stable sand dunes in the deserts of northern China
[23]. Artemisia sphaerocephala seeds contain 21.5% oil
and can be used to produce biodiesel [24], nearly 90% of
seeds oil are unsaturated fatty acids, especially LA,
constituting over 78% of total fatty acids [25]. Compar-
ing with other plants, such as sunflower, soybean, and
peanut, A. sphaerocephala seeds and leaves can accumu-
late much more LA [16]. The maintenance of high
degree of membrane lipid unsaturation under stress
conditions is one of the important stress adaptation
mechanisms in plants, previous studies showed that A.
sphaerocephala is resistant to drought and salt by main-
taining high LA content [26, 27]. Twenty-six FAD2
genes were identified in A. sphaerocephala, which is the
largest FAD2 gene family reported till now [16]. In this
study, we cloned full-length cDNA of the A. sphaeroce-
phala FAD2 (AsFAD2) gene family members, and ana-
lyzed their structural characteristics, tissue distribution,
and expression levels under high salt stress conditions.
Using heterologous expression systems, we also evalu-
ated subcellular localization and functional activity of
AsFAD2 proteins. These results should be helpful in
further understanding of the roles of the AsFAD2 gene
family in the maintenance of high LA content in A.
sphaerocephala.

Results
Cloning and analysis of the full-length cDNA of AsFAD2
gene family.

We cloned the full-length ¢cDNAs of twenty-one
ASFAD?2 genes from different A. sphaerocephala tissues
using reverse transcription PCR (RT-PCR) and rapid
amplification of cDNA ends (RACE) methods based on
transcriptome sequence data (Additional file 1: Table
S1). However, because of the short lengths of the core
fragments and low expression levels of these genes in
the tissue the full-length cDNAs of AsFAD2-3, - 17, -
18, — 25, and - 26 genes were not obtained. The size of
full-length ¢cDNAs for the twenty-one AsFAD2 genes
varied between 1320 and 1728 bp, whereas the length of
5" UTRs and 3" UTRs were between 27 and 373 bp and
87-279 bp, respectively, and the predicted protein sizes
were between 371 and 429 amino acids. The theoretical
molecular masses and isoelectric points of predicted
proteins were about 43.50-49.13 and 6.22-8.83, respect-
ively. According to grand average of hydropathicity
(GRAVY) analysis, ASFAD2-2, - 7, — 14, and - 23 genes
encoded hydrophobic proteins, whereas the other genes
encoded hydrophilic proteins, as they had positive and
negative GRAVY values differently. The predicted trans-
membrane number was between 3 and 6. Plant-mPLoc
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analysis predicted that the twenty-one AsFAD2 genes
were located in the ER.

Sequence identity of multiple members of AsFAD2
gene family.

Sequence similarity among the coding regions of
twenty-one AsFAD2 genes at the amino acid level was
presented in Additional file 2: Fig. S1. The result showed
that the pairwise similarity of ASFAD2-1 and AsFAD2-
12, AsFAD2-16 and AsFAD2-19 were identical with the
similarity level of 100.00%, whereas there was only one
amino acid different in the pairwise similarity of
AsFAD2-5 and AsFAD2-16/19, AsFAD2-6 and
AsFAD2-24, AsFAD2-7 and AsFAD2-14, namely, the
similarity levels among these amino acid sequences were
99.74%. Thus, the AsFAD2-1, AsFAD2-5, AsFAD2-6,
and AsFAD2-7 were selected for further study. The
putative amino acid sequences of sixteen AsFAD2 genes
were significantly different, and the similarity level range
from 36.54 to 97.85%.

Phylogenetic and motif analysis of encoded proteins of
ASFAD?2 gene family.

To elucidate phylogenetic relationship of the AsFAD2
gene family, the deduced polypeptide sequences of the
selected sixteen AsFAD2 genes (Additional file 3: Table
S2) were aligned with FAD2 sequences of other plants,
including oil plants, model plants, and some plant with
divergent FAD2 fatty acid modifying enzymes (Fig. 1).
Phylogenetic analysis showed that the sixteen AsFAD2
were divided into seven groups. AsSFAD2—-1 was clustered
with other seed expressed FAD2s, such as sunflower
HaFAD2-1 and safflower CtFAD2-1. AsFAD2-10 was
clustered together with other constitutively expressed
FAD2s, such as sunflower HaFAD2-2, HaFAD2-3, and
safflower CtFAD2-2. AsFAD2-23 was clustered together
with fatty acid acetylenases and hydroxylases from other
plants. AsSFAD2-9 and CtFAD2-9, AsFAD2-2, -5, - 6, -
15 and CtFAD2-8, and AsFAD2-11 and CtFAD2-7 were
positioned next to each other, respectively, in the same
branch. AsSFAD2—-4, — 8, and - 21 were clustered with fatty
acid conjugases from Calendula officinalis. ASFAD2-7, —
13, - 20, and - 22 proteins were clustered together with
fatty acid acetylenases and epoxygenases from several
plant species.

The alignment of putative AsFAD2 polypeptides
together with selected plant orthologs was shown in
Additional file 4: Fig. S2. The AsFAD2 polypeptides con-
tained C-terminal aromatic amino acid-rich motifs. For
example, AsFAD2-1, AsFAD2-2, and AsFAD2-4 had
YKNKM, FKNKL and WEFKK, respectively. Additionally,
AsFAD2 family proteins contained three highly con-
served histidine-rich motifs. Motifs of FAD2 protein
sequences of sixteen A. sphaerocephala, one Arabidopsis
thaliana and one Nicotiana tabacum were analyzed
(Fig. 2). The detailed information of twenty putative
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conserved motifs were shown in Additional file 5: Fig. S3.
These proteins all had nine conserved motifs, including
motif 1, 2, 3, 4, 6, 7, 8, 9, and 11. The motif composition
of the AsFAD2 family proteins was relatively conserved.
AsFAD2-2, -5, -6 and — 15 were clustered together to
be a branch (Fig.1), and they all had fourteen identical
motifs, AsSFAD2-5 and AsFAD2-15 contained motif 19.
AsFAD2-9 and AsFAD2-2 were next to each other, and
had same motifs. The motif composition of AsSFAD2-23
was different from other AsFAD2s. AsFAD2-10, AtFAD?2,
AsFAD2-1 and NtFAD2 were clustered together to be a
branch (Fig. 1). The motifs of AtFAD2, AsFAD2-1 and
NtFAD2 were completely identical. AsSFAD2-10 lacked
motif 16. AsSFAD2—4, - 8, — 11 and - 21 were located next
to each other and formed a branch (Fig. 1), AsFAD2-4
and AsFAD2-21 had same motifs. In contrast, AsSFAD2-8
contained motif 14 and lacked motif 12, AsFAD2-11 had
motif 12. AsSFAD2-7, - 13, - 20 and - 22 were situated
next to each other and formed a branch (Fig. 1), and they
all had fifteen same motifs.

Expression analysis of AsFAD2 gene family in A.
sphaerocephala.

The transcript levels of the sixteen AsFAD2 genes in
different A. sphaerocephala tissues were detected using
quantitative real-time PCR (qRT-PCR). It displayed that
the expression patterns of AsFAD2 gene family were
diverse, and they may play different functions roles in
different tissues and organs. The numbers and relative
expression levels of AsSFAD2 genes increased significantly
in the seed swelling and germination, especially the
expression levels of ASFAD2-2, - 15, — 20 increased sig-
nificantly (Fig. 3a-c). The expression level of AsSFAD2-15
was the highest in roots (Fig. 3d). AsFAD2-15 and
AsFAD2-20 showed high expression levels in stems and
leaves (Fig. 3d-f). In flower buds and flowers, the expres-
sion levels of AsFAD2-20 and AsFAD2-13 were the
highest (Fig. 3g-h), respectively, compared to other
ASFAD2s. ASFAD2-1 was strongly expressed in develop-
ing seeds, but had low expression levels in other tissues,
belonging to gene of the seed-type expression. ASFAD2—
10 was expressed in all the checked tissues, belonging to
gene of the constitutive expression. AsFAD2-1 and
AsFAD2-10 may play an important role in the formation
of high linoleic acid in A. sphaerocephala seeds (Fig. 3i-j).

According to the expression pattern of AsFAD2 genes
in various A. sphaerocephala organs, eleven genes with
high expression in leaves were selected to analyze their
response to salt stress (Fig. 4). Forty-five day-old seed-
lings were treated with 50 and 200 mM NaCl for 7 days,
and the relative expression of the AsFAD2 genes in
leaves was compared with that in untreated control
plants. At 50mM NaCl, the expression of AsFAD2-1
and - 10 were downregulated significantly, whereas that
of ASFAD2-2, - 15, and - 22 were upregulated, and that
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Fig. 1 Phylogenetic comparison of AsFAD2s and other plants FAD2s. The phylogenetic tree was generated by MEGA6.0. FAD2 desaturases (FAD),
hydroxylases (OH), epoxygenases (EPOX), acetylenases (ACET) and conjugases (CONJ) from various plants were included in the alignment. The
GenBank accession numbers of the amino acid sequences represented in the phylogenetic tree were: AhFAD2-1, ACZ06072.1; AhFAD2-2,
AHNG60569.1; sixteen AsFAD2 proteins; AtFAD, AAM61113.1; BnFAD2-1, AAF78778.1; BnFAD2-2, AAS92240.1; CaACET, ABC00769.1; CoCONJ,
AAK26632.1; CpEPOX, CAA76156.1; CtFAD2-1, AGC65498.1; CtFAD2-2, AGC65499.1; CtFAD2-3, AGC65500.1; CtFAD2-4, AGC65501.1; CtFAD2-5,
AGC65502.1; CtFAD2-6, AGC65503.1; CtFAD2-7, AGC65504.1; CtFAD2-8, AGC65505.1; CtFAD2-9, AGC65506.1; CtFAD2-10, AGC65507.1; CtFAD2—
11:ACET, AGC65508.1; DcACET, AAO38033.1; DcFAD2:0H, AAK30206.1; DsACET, AAO38036.1; FYACET, AAO38034.1; GhFAD2-1, CAA65744.1;
GhFAD2-2, CAA71199.1; GmFAD2-1, AAB00859.1; GmFAD2-2, AABO0860.1; HaFAD2-1, AAL68981.1; HaFAD2-2, AAL68982.1; HaFAD2-3,
AAL68983.1; HaACET, ABC59684.1; HhACET, AAO38031.1; NtFAD, AAT72296.2; OeFAD2-1, AAW63040.1; OeFAD2-2, AAW63041.1; RcOH,
AAC49010.1; RhACET, AAO38035.1; SIFAD2-1, XP_011075145.1; SIFAD2-2, XP_011080227.1; and SIEPOX, AAR23815.1 (Ah, Arachis hypogaea; As,
Artemisia sphaerocephala; At, Arabidopsis thaliana; Bn, Brassica napus; Ca, Crepis alpine; Co, Calendula officinalis; Cp, Crepis palaestina; Ct, Carthamus
tinctorius; Dc, Daucus carota; Ds, Dimorphotheca sinuate; Fv, Foeniculum vulgare; Gh, Gossypium hirsutum; Gm, Glycine max; Ha, Helianthus annuus;
Hh, Hedera helix; Nt, Nicotiana tabacum; Qe, Oleaeuropaea; Rc, Ricinus communis; Rh, Rudbeckia hirta; Si, Sesamum indicum; SI, Stokesia laevis)
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Fig. 2 Phylogenetic relationship and conserved motif composition of AsFAD2 family proteins. Applied parameters of MEME were as following:
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of the other genes were unchanged compared to control.
At 200 mM NaCl, the expression of ASFAD2-2 and -5
genes were increased significantly, whereas that of
AsFAD2-7 was decreased significantly, and that of the
other genes showed no difference compared to control.
Overall, mRNA expression of eleven AsFAD2 genes was
not significantly changed with NaCl treatment.

Subcellular Localization of ASFAD2 proteins.

Based on phylogenetic relationship and tissue expres-
sion patterns, seven AsFAD2 genes were selected for
subcellular localization analysis, including AsFAD2-1, -
9, =10, - 11, - 15, — 20, and - 23. The results showed
that seven AsFAD2 cDNA-encoded proteins were local-
ized to network-like organelles, the strong green fluores-
cent protein (GFP) and red fluorescent protein (RFP)
signals were observed in the epidermal cells of tobacco
leaves, and the both fluorescent signals could be over-
lapped and displayed as yellow fluorescent signals, indi-
cating that the selected seven AsFAD2s were transiently
expressed in the ER of tobacco leaf epidermal cells
(Fig. 5). It was speculated that the other AsFAD2
proteins could also be located in the ER.

Functional analysis of AsFAD2 genes in yeast.

Sixteen AsFAD2 family members were expressed in
the Saccharomyces cerevisiae INVScl, and the fatty acid
compositions of the yeasts were analyzed (Fig. 6 and
Additional file 6: Table S3). The results indicated that
dienoic fatty acids, including palmitolinoleic acid (C16:2)
and LA (C18:2), were not produced in the yeast with the
empty pYES2 vector (Fig. 6a). However, C18:2 content

was respectively 18.58, 16.54 and 3.29% of total fatty
acids in the transformed yeast expressing the AsFAD2-1
(Fig. 6b), ASFAD2-10 (Fig. 6¢), and AsFAD2-23 (Fig.
6d), the conversion ratio of C18:1 to C18:2 were 60.07,
57.49 and 12.78%, respectively (Additional file 6: Table
S3). In addition, C16:2 was detected in the transformed
yeast strains expressing AsFAD2-1 and AsFAD2-10,
C16:2 content was respectively 18.10 and 9.95%, and the
conversion ratio were 36.41 and 18.82%, respectively
(Additional file 6: Table S3). However, no corresponding
fatty acid product was detected in yeast cells expressing
other genes (Additional file 6: Table S3).

Discussion

Among plant species examined to date, A. sphaeroce-
phala had the largest FAD2 family containing twenty-six
genes, which was much more than in the next largest
family in safflower (11 genes) [15]. In this study, we iso-
lated twenty-one AsFAD2 genes from A. sphaerocephala
(Additional file 1: Table S1), including sixteen AsFAD2
genes with distinct coding regions (Additional file 2: Fig. S1).
The AsFAD2 family members contained uninterrupted
coding region sequences, which were highly homolo-
gous and relatively conserved during evolution (Fig. 2).
Similarly, in safflower, the coding regions of CtFAD2
genes did not contain introns. Therefore, the formation
of the gene family was suggested to be most likely
caused by gene duplication rather than nucleotide alter-
native splicing [15]. Whole-genome sequencing of soy-
bean revealed two genome duplication events occurred
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Fig. 3 Relative expression levels of sixteen AsFAD2 genes in various A. sphaerocephala tissues. a GS-3d (Germinated Seeds after 3 days). b GS-7d
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fifty-nine and thirteen million years ago [28], and seven
soybean FAD2 genes were generated as a result in
previous study [29]. In cucumber, two FAD2 genes also
originated through gene duplication [30]. A. sphaeroce-
phala is a cross-pollinated diploid wild plant [31], in
the absence of genomic data, it is unclear whether this
species has undergone whole-genome duplication or
not. Therefore, further research was needed to deter-
mine how FAD2 gene family was emerged in A. sphaer-
ocephala with a large quantity. However, based on the
results of this study, it could be inferred that the forma-
tion of ASFAD2 gene family may be similar to that in
safflower, i.e., could be a result of gene duplication.

The deduced amino acid sequences of the AsFAD2
family members contain aromatic amino acid-rich motifs
at the C-terminus and three highly conserved histidine-
rich motifs, which had similarities as well as differences
compared with those in other plants (Additional file 4:
Fig. S2), indicated complexity of the AsFAD2 gene family
and more possibilities for the diversification of AsFAD2
enzymes. In addition, the predicted AsFAD2 proteins

contain between three and six transmembrane regions
(Additional file 1: Table S1), which played an important
role in FAD2 catalytic activity [32], and confirmed that
the A. sphaerocephala FADs were membrane-bound.
The number of transmembrane domains among plant
FAD2 enzymes is different, it is usually in the range of
three to six. Thus, red flax (Linum grandiflorum), pump-
kin (Cucurbita pepo), sesame (S. indicum), and grape
(Vitis labrusca) enzymes contain 3, 4, 5, and 6 trans-
membrane regions, respectively [33, 34]. Our data indi-
cated that the AsFAD2 family members were structurally
diverse.

The FAD2 enzymes not only have desaturase activity,
but can also perform other fatty acid modifications,
including hydroxylation [35], epoxidation [36], and for-
mation of acetylene bonds [37, 38] and conjugated
double bonds [39, 40]. Some FAD2 enzymes had more
than two functions. For example, LfFAD2 of Lesquerella
fendleri was a bifunctional enzyme with dehydrogenase
and hydroxylase activity [41],whereas Crepis alpina
CaFAD2 and safflower CtFAD2-11 were tri-functional
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enzymes as they can introduce a carbon double bond in
either cis or trans configuration or acetylenic bond at
the A12 position [15, 42]. Based on phylogenetic rela-
tionship inferred AsFAD2-4, — 8, — 11, and - 21 proteins
may be conjugated enzymes, AsFAD2-7, — 13, - 20, and
—22 may have acetylene and cyclooxygenase activities,
and AsFAD2-23 may have acetylase and hydroxylase
activities (Fig. 1). However, no corresponding fatty acid
products were detected in transgenic yeast cells (data
not presented). These results illustrated that these
AsFAD2s did not have the functions of fatty acid modi-
fying enzymes in transgenic yeast, which was consistent
with the result of safflower CtFAD2 gene family [15].
Current studies have shown that although the expres-
sion and function of FAD2 genes in plants have temporal
and spatial differences, roughly two types of expression
patterns, constitutive and seed-specific, can be distin-
guished [43]. Thus, among five FAD2 copies identified in
soybean, FAD2-1A and FAD2-1B were expressed specif-
ically in immature seeds, encoding enzymes responsible
for the synthesis of seed polyunsaturated fatty acids,
whereas FAD2-2A, FAD2-2B, and FAD2-2C were consti-
tutive expression and encoding enzymes responsible for
membrane lipid desaturation [44]. The phylogenetic
analysis showed that the AsFAD2-1 gene belonged to
seed-specific expression (Fig. 1), which was consistent
with its tissue expression profile (Fig. 3), whereas
ASFAD2-1 was strongly expressed in developing seeds,
which was similar to the expression patterns of FAD2-1
genes in most plants such as cotton and grape [33, 45].
The phylogenetic analysis also revealed that the AsFAD2—

10 gene was constitutively expressed (Fig. 1), which was
consistent with the results of tissue expression (Fig. 3).
The AsFAD2 genes had the highest homology with the
safflower CtFAD?2 genes (Fig. 1), apparently because both
species belong to the same Compositae family, i.e., have
close genetic relationship.

The regulation of FAD2 gene is important in under-
standing the composition of fatty acids and biosynthesis,
plant development, and essential role in biotic and
abiotic stresses [8]. Under salt stress, FAD2 enzymes
play a key role in regulating and maintaining lipid com-
position, biophysical properties, and normal function of
membrane-bound proteins [8]. In high salt-exposed Ara-
bidopsis, the expression of FAD2 mutants resulted in
low levels of PUFAs, which decreased membrane lipid
fluidity and salt tolerance [19]. Two ShFAD2 genes from
Salvia hispanica were differentially upregulated or
repressed by salt stress [22]. In this study, except
ASFAD2-1 and - 10 were downregulated, ASFAD2-2, —
15, and -22 were upregulated at 50mM NaCl;
ASFAD2-2 and -5 were increased and AsFAD2-7 was
decreased significantly at 200 mM NaCl compared to
control. Other genes showed no difference compared to
control under salt stress. The total expression level of
eleven AsFAD2 genes was not affected (Fig. 4). Our
previous study has shown that A. sphaerocephala could
maintain its membrane unsaturation degree at a rela-
tively stable level under salt stress [27]. In this research,
the completely opposite response of the different mem-
ber of AsFAD2 family indicates that AsFAD2 family
could help the plant to maintain the balance of oleic acid
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Fig. 5 Subcellular localization of seven AsFAD2s. Confocal laser scanning microscopy images of N. benthamiana leaf cells expressing AsFAD2
proteins with GFP fused to their C-termini (AsFAD2-GFP). HDEL-RFP (ER-RK) was used as an indicator of the ER. Scale bars =20 um

and linoleic acid under salt stress, which has not been
reported before. Overall, these results suggested that the
AsFAD?2 gene family members might adjust to appropri-
ate levels to protect the cell membrane of A. sphaeroce-
phala from salt stress. The relationship between the
responses of these AsSFAD2 genes to various stresses and
fatty acid composition of the plant need further study.
Previous study suggested that fatty acid modifications,
including elongation and desaturation, occur on the ER
membrane [46]. Seven AsSFAD2 proteins were located in

the ER (Fig. 5), which was in agreement with previous
findings for cotton FAD2-4:GFP [47], three BuFAD2s:
YFP [13] and FrFAD2-1:GFP [48]. The above results
were also consistent with the prediction of subcellular
localization by Plant-mPLoc 2.0 (Additional file 1:
Table S1). We deduced the other AsSFAD2 enzymes may
be also ER-localized. These results further confirmed that
the core reaction of LA biosynthesis in plants occurs in
the ER. In addition, the fatty acid composition of N.
benthamiana leaves expressing seven AsFAD2s were
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detected, and no additional novel fatty acids was found
(such as crepenynic acid) compared to the controls (data
not presented). This result was different from the
CtFAD2-11 [15].

S. cerevisiae INVScl is a suitable heterologous expres-
sion system for functional studies of FAD2 enzymes, be-
cause it has a simple fatty acid profile, contains the
FAD?2 substrate (oleic acid), and lacks endogenous FAD2
activity. Functional analysis of FAD2 enzymes from
many plants such as A. thaliana [49], Tung [50], Soy-
bean [45], and Camelina sativa [51] were successfully
performed in yeast, where recombinant enzymes pro-
duced certain amounts of LA. In this study, sixteen
ASFAD2 genes were expressed in S. cerevisiae INVScl,
which were then analyzed for fatty acid composition. It
was found that AsFAD2-1, -10, 23 could effect the
conversion of C18:1 to C18:2 in transgenic yeast,
whereas no C18:2 was detected in the controls. Further-
more, AsFAD2-1 and AsFAD2-10 could also convert
C16:1 to C16:2. These results indicated that AsFAD2-1
and AsFAD2-10 were both A'? oleate desaturases and
A" palmitoleate desaturase. Previous study showed that
C16:2 was generated in the plastid of plant by FAD6
activity [52]. This study showed that C16:2 could also be
produced by FAD2 in the ER. Similar results have been
found in other studies [13, 15, 48, 51], and the reasons
need further study. In this study, the corresponding fatty
acid products were not detected in yeast cells expressing
other ASFAD2 genes. Similar results were obtained in
safflower, where five CtFAD2 family members were
found to be functional and six non-functional [15].
Although the heterologous expression system in yeast is
normally used to study the function of plant PUFA bio-
synthesis enzymes, numerous factors still mediate the
enzyme activity, such as yeast strain, promoter type, and

culture condition [1]. In addition, we speculated neo-
functionization, pseudogenization could also cause those
genes had no functions in yeast, although they could
expressed in the tissues of A. sphaerocephala.

Conclusions

In this study, we cloned and characterized a large FAD2
gene family from A. sphaerocephala. The coding region
sequences of AsFAD2 gene family were highly homolo-
gous and relatively conservative during evolution. The ex-
pression of AsFAD2 gene family members had temporal
and spatial differences. However, the overall expression of
ASFAD?2 genes remained stable under salt stress. ASFAD2
proteins were all located in the ER. Three AsFAD2 en-
zymes were confirmed in transgenic yeasts as A'* fatty
acid desaturases.

Methods

Plant material

We used seventeen samples of A. sphaerocephala,
including seeds after 3 and 7 days of germination, seed-
lings, roots, stems, leaves, flower buds, flowers, early
developing, mid-developing, and mature seeds, and six
different callus tissues. Leaves, stems, roots, flowers,
flower buds, early developing seeds, mid-developing
seeds and mature seeds were collected from A. sphaero-
cephala plants (voucher No. 0019079, identified by
Quanru Liu and deposited at Hebei Normal University,
http://www.nsii.org.cn/node/79/cvh/157/2ef/15103591)
growing in the Alxa Desert of Inner Mongolia, north-
west China (N: 38°68°, E: 105°61"). No specific permis-
sion was required for use of these materials for
experimental purposes. In addition, seeds after 3 and 7
days of germination, seedlings, and six different callus
tissues were collected from the laboratory of Lanzhou
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University, Lanzhou, China. The collection of all samples
completely complies with local and national legislation
permission. These samples were taken as same as our
previous work [16]. One month old Nicotiana tabacum
plants were used for transient expression of AsFAD2
genes to determine the subcellular localization of the
encoded FAD2 proteins. N. tabacum seeds were pre-
served in our lab.

Isolation of the full-length ¢cDNA of AsFAD2 gene
family.

Total RNA was extracted from each plant sample
using the UNIQ-10 Column Trizol Total RNA Isolation
Kit (Sangon, China) and analyzed for concentration and
quality using NanoDrop ND1000 (Thermo Fisher Scien-
tific, USA) and gel electrophoresis. Based on our previ-
ous study [16], nucleotide sequences of twenty-six
ASFAD?2 genes determined by RNA-seq (Additional file 7:
Table S4). 5'/3" RACE gene-specific primers for each
AsFAD?2 gene were designed by Primer 5.0 and synthe-
sized by the Sangon Company (Additional file 8: Table
S5 and Additional file 9: Table S6). Total RNA of seven-
teen A. sphaerocephala samples (1 pg for each) was used
as a template to synthesize first-strand cDNA by 5" and
3" RACE, respectively, using a SMARTer® RACE 5'/3"
Kit (Clontech, Japan) according to the manufacturer’s in-
structions. Finally, the full-length cDNA of each AsFAD2
gene was obtained by splicing of 5" and 3" sequences
and reference sequences using the DNAMAN 6.0
software.

The open reading frame (ORF) of each AsFAD2 gene
was identified using the online ORF finder software
(https://www.ncbi.nlm.nih.gov/orffinder/). Primers were
designed based on the region upstream of the start
codon and downstream of the stop codon (both codons
were included) (Additional file 10: Table S7) and ORFs
were amplified by PCR using PrimeSTAR HS DNA Poly-
merase (Takara, Japan). The resultant products were
purified by the TaKaRa MiniBEST Agarose Gel DNA
Extraction Kit (Takara, Japan), subcloned into the pLB
vector (Tiangen, China), and used to transform E. coli
(Transgen, China). All constructs were verified by
sequencing.

Bioinformatics analysis.

The characteristics of AsFAD2 genes were analyzed
using several online resources. Nucleotide and deduced
amino acid sequences were identified by NCBI BLAST
(http://www.ncbi.nlm.nih.gov/BLAST/) and physicochem-
ical properties of putative proteins predicted using
ProtParam (http://web.expasy.org/protparam/). TMHMM
(http://www.cbs.dtu.dk/servicess TMHMM/) and Plant-
mPLoc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/plant-
multi/) servers were used to predict transmembrane
regions and subcellular location, respectively. Sequence
motifs were searched and analyzed using the MEME web
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server (http://meme-suite.org/tools/meme) and TBtools
software. A phylogenetic tree was constructed by
MEGAG6.0 using the maximum likelihood method, and
bootstrapping with 1000 replicates was used to establish
the confidence limit of the tree branches.

Quantitative real-time PCR (qRT-PCR) analysis.

Total RNA was extracted from ten tissues of A.
sphaerocephala (germinated seeds after 3 and 7 days,
seedlings, roots, stems, leaves, flower buds, flowers, early
and mid-developing seeds) using an RNA Isolation kit
(Sangon, China), reverse-transcribed into ¢cDNA using
the PrimeScript RT reagent Kit With gDNA Eraser
(Takara, Japan), and analyzed by qRT-PCR in an ABI
7500 thermocycler (Applied Biosystems, USA) using a
SYBR Premix Ex Taq Kit (Takara, Japan). Primers for the
sixteen AsFAD2 genes were presented in Additional file 11:
Table S8. PCR conditions were as follows: 95 °C for 30s,
and 40 cycles of 95 °C for 5s and 60 °C for 1 min. Relative
gene expression was calculated by the 272" method [53]
and presented as the mean + SE of three replicates, the
actin-encoding gene was used as an internal control.

Subcellular localization of AsFAD2 genes in Nicotiana
benthamiana leaves.

To observe the subcellular localization of AsFAD2
proteins, the coding sequences of selected seven repre-
sentative AsFAD2 genes without the stop codons were
respectively amplified by PCR using primers listed in
Additional file 12: Table S9 and then inserted into the
Xho 1 and Sal 1 sites of the pBI121-EGFP vector
(Miaolingbio, China) using the In-Fusion® HD Cloning
Kit (Takara, Japan). So, the DNA fragments of target
genes were respectively fused to the N-terminal region
of GFP under the control of the CaMV35S promoter.
The recombinant vectors were named as pAsFAD2:
EGFP. The pHDEL:RFP (mCherry) plasmid was used to
mark the ER. The pAsFAD2:EGFP and pHDEL:RFP were
independently transformed into the Agrobacterium
tumefaciens GV3101. The two cultures (ODggp = 0.8)
were mixed (1:1) and co-infiltrated into epidermal tis-
sues of N. benthamiana leaves using infiltration buffer
(10 mM MES, 10 mM MgCl,-6H,O, 100 uM acetosyrin-
gone, PH=5.7) [54]. Transfected leaves regions were
examined at 48 h after injection, and analyzed with a
confocal laser scanning microscope (FV1000 MPE,
Olympus) at the excitation wave lengths of 488 and 561
nm to visualize GFP and RFP fluorescence, respectively.

Heterogonous expression of AsFAD2 genes in Saccha-
romyces cerevisiae.

The coding sequences of sixteen AsFAD2 genes were
amplified using specific primers (Additional file 13:
Table S10) and inserted into the shuttle vector pYES2
(Invitrogen, USA), which harbored the GAL1 promoter
for inducing gene expression by galactose [47]. The
resultant constructs were sequenced and introduced into
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Saccharomyces cerevisiae INVScl (Invitrogen, USA)
using a Quick & Easy Yeast Transformation Mix kit
(Takara, Japan). Yeast colonies were selected on
synthetic complete medium lacking uracil (SC-U) and
containing 2% glucose (w/v), and single colonies were
grown in liquid medium at 30 °C with shaking for 24 h.
Yeast cells were harvested by centrifugation at 1500 g for
5 min, diluted to ODggo = 0.4, and induced using SC-U
liquid medium with 2% galactose and 1% raffinose at
22 °C for 3 days. Cells were harvested by centrifugation,
washed in sterile water three times, and freeze-dried in a
lyophilizer.

Total fatty acids were extracted from 0.5g of yeast
cells, and fatty acid methyl esters were analyzed by gas
chromatography (Agilent 6890 N, USA) and mass spec-
trometry (Agilent 5975C) using a polar capillary column
(Agilent DB-FFAP) as previously described [55]; hepta-
decanoic acid (C17:0) was used as internal standard.

Statistical analysis

Data were subjected to one-way analysis of variance
(ANOVA) using SPSS 17.0 (SPSS Inc., Chicago, IL,
USA). The significant differences among means were
identified by Duncan’s multiple range tests at a signifi-
cance level of P <0.05. Data were presented as means *
SE (n =3).
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