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Abstract

Background: The heavy metal cadmium (Cd) accumulates in the environment due to anthropogenic influences. It
is unessential and harmful to all life forms. The plant cell wall forms a physical barrier against environmental stress
and changes in the cell wall structure have been observed upon Cd exposure. In the current study, changes in the
cell wall composition and structure of Medicago sativa stems were investigated after long-term exposure to Cd.
Liquid chromatography coupled to mass spectrometry (LC-MS) for quantitative protein analysis was complemented
with targeted gene expression analysis and combined with analyses of the cell wall composition.

Results: Several proteins determining for the cell wall structure changed in abundance. Structural changes mainly

appeared in the composition of pectic polysaccharides and data indicate an increased presence of
xylogalacturonan in response to Cd. Although a higher abundance and enzymatic activity of pectin methylesterase

wall, Lignin, Pectin methylesterase

was detected, the total pectin methylation was not affected.

Conclusions: An increased abundance of xylogalacturonan might hinder Cd binding in the cell wall due to the
methylation of its galacturonic acid backbone. Probably, the exclusion of Cd from the cell wall and apoplast limits
the entry of the heavy metal into the symplast and is an important factor during tolerance acquisition.

Keywords: Long-term cadmium exposure, Medicago sativa, Label-free protein quantification, Gene expression, Cell

Background

Anthropogenic influence has led to an accumulation
of cadmium (Cd) in the upper soil. Originating from
fertilizer application, mining activity and sewage
sludge, the concentration of Cd in the topsoil ranges
from <0.01 to 14.1 ppm throughout Europe [1]. Cad-
mium has a very high mobility and can enter plants
via their root system, from where it is distributed to
all plant parts and can cause multiple toxicity symp-
toms. Accumulation in the above-ground parts limits
the economical valorisation of plant material but on
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the contrary, plants can also be used to remove Cd
from the soil in the phytoremediation process.

The plant cell wall is a dynamic structure, which con-
tinuously undergoes changes to adapt to the plant’s de-
velopment as well as environmental conditions and
serves as a physical barrier against environmental threats
such as Cd. Its structural components provide mechan-
ical support and rigidity, which is furthermore main-
tained by the activity of embedded cell wall proteins
conferring optimal characteristics to the cell wall [2, 3].
The cell wall is mainly composed of cellulose, hemicellulose
and pectins. Cellulose is the main structural component
and composed of (-1,4-linked glucose, forming crystalline
microfibrils. Those microfibrils are embedded in a complex,
heterogeneous polysaccharide matrix. Hemicelluloses bind
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to cellulose and include xyloglucans, glucomannans, xylans
and mixed-linkage glucans, whereby their interaction with
cellulose highly contributes to cell wall strengthening [4].
Pectins are probably the most heterogeneous group of poly-
saccharides and include homogalacturonan (HG), rhamno-
galacturonans (RG) I and II, as well as xylogalacturonans
(XGA). The backbone of pectin is composed of unbranched
galacturonic acid (GalA), which can be partially decorated
with various sugar moieties such as xylose. As an exception,
the backbone of RGI does not only contain GalA but disac-
charide repeats. Galacturonic acid can be modified by
methylesterification and/or acetylation, which affects the
physicochemical properties of pectin. Thereby, the pectic
polysaccharide homogalacturonan is highly methylated
when it is build-in into to the cell wall and gets demethy-
lated afterwards by cell wall-located pectin methylesterase
(PME). However, attached sugar moieties at the galacturo-
nic acid backbone such as xylose interfere with the accessi-
bility of enzymes to their GalA target side [5]. Cell wall
domains with a high content in XGA are characterised by a
high methylation degree [6] as these patches are most likely
resistant to PME activity.

During Cd exposure, alterations in the cell wall struc-
ture occur and changes in the methylation pattern of
HG were observed [7, 8]. An increased PME activity
and an enhanced accumulation of PME transcripts fol-
lowing Cd exposure were shown in flax [9, 10]. The de-
methylesterification of HG creates binding sites for Ca,
which can be displaced by Cd due to a higher affinity of
the latter [11]. Thereby, the possible sequestration of
Cd in the cell wall prevents its further entry into the
cell and is part of the plant’s defence strategy against
Cd stress [12]. Additionally, Cd induces the activity of
peroxidases enhancing cell wall lignification [9, 10, 13],
which is observed in different plant species [14, 15]. By
inducing the accumulation of reactive oxygen species
(ROS), of which hydrogen peroxide (H,O,) acts as a
signalling molecule and triggers secondary reactions
such as peroxidase activity, Cd contributes to cell wall
lignification followed by growth inhibition [16—18].
Lignin is build up by blocks of monolignols, namely p-
coumaryl alcohol, sinapyl alcohol as well as coniferyl
alcohol and a set of different enzymes is required for
their biosynthesis [19, 20] (Fig. 1). In the initial step in the
synthesis of phenolic compounds such as monolignols,
phenylalanine (Phe) is converted to cinnamic acid by
phenylalanine ammonia-lyase (PAL), whose activity is en-
hanced by the gaseous plant hormone ethylene [21].
Ethylene is involved in multiple molecular, biological and
physiological processes in the plant’s life cycle and has a
simple biosynthetic pathway (Fig. 1). Exposure to heavy
metals affects ethylene biosynthesis as well as signalling as
reviewed by Keunen et al. [22]. In Cd-exposed Arabidopsis
thaliana plants an increased concentration of the ethylene
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precursor 1-aminocyclopropane-1-carboxylic acid (ACC)
was found and ethylene responsive genes were upregu-
lated [23]. Furthermore, inhibition of ethylene synthesis
results in a decreased PAL activity and a lower lignin con-
tent in cucumber roots [24].

Medicago sativa is an important forage legume world-
wide and its stem tissue is often used in research to
study processes taking place at the cell wall [25, 26] as it
represents more than 50% of the produced biomass and
is rich in cell wall material. Furthermore, the stems can
be used for industrial applications such as bioethanol
production, which increases the economic value of the
plant. Environmental conditions such as heavy metal ex-
posure influence the structure and composition of the
cell wall impacting its valorisation potential. Thus, stud-
ies addressing the structural changes of the cell wall are
of high economic and societal interest. A previous gel-
based study revealed changes in the cell wall proteome
of M. sativa stems when plants are exposed to Cd [27].
Several proteins involved in cell wall remodelling and
carbohydrate metabolism were shown to be altered in
their abundance, which supports the hypothesis that Cd
influences the cell wall structure and underlines its func-
tion as a defence barrier against Cd stress.

This study focuses on the cell wall monosaccharide
composition and lignin content in M. sativa stems, when
plants were exposed to a realistic Cd concentration in the
soil for an entire season. Based on the hypothesis that the
cell wall acts as a defence barrier against Cd, the present
study complements a previous gel-based study by using a
gel-free approach and different hypotheses on the changed
cell wall structure upon Cd exposure are addressed by
targeted analysis.

Results

Label-free quantitative proteome analysis

A LC-MS based quantitative protein analysis was carried
out on cell wall proteins, extracted in three fractions, and
soluble proteins. The used targeted approach results in a
cell wall protein-enrichment in which contamination with
cytosolic proteins is low. However, proteins involved in
photosynthesis are found throughout the three cell wall
protein fractions. Cadmium interferes with photosynthetic
activity and a consistent impact on the abundance of
chloroplastic proteins appeared in our data. Therefore,
proteins involved in photosynthesis will be included in the
results and discussion.

A total number of 166 significantly changed proteins
were identified in the three cell wall fractions. Those pro-
teins were categorized as proposed in [29] but keeping
defence proteins and proteins involved in photosynthesis in
separate categories (Additional file 1). Clearly more proteins
were of higher abundance in response to Cd (116 proteins
versus 50 proteins being of less abundance) (Fig. 2).
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Fig. 1 Monolignol and ethylene biosynthesis pathways. Molecules and enzymes of the pathways are indicated. Met methionine; SAM S-
adenosylmethionine; ACC 1-aminocyclopropane-1-carboxylic acid; ACS ACC-synthase, ACO ACC-oxidase; Phe phenylalanine, PAL phenylalanine
ammonia lyase; C4H cinnamate-4-hydroxylase; C3H coumarate 3-hydroxylase; HCT hydroxycinnamoyl transferase; 4CL 4-coumarate ligase; CAD
cinnamyl alcohol dehydrogenase; CSE caffeoyl shikimate esterase; CCOAOMT caffeoyl-CoA 3-O-methyltransferase; CCR cinnamoy! CoA reductase;
COMT caffeate O-methyltransferase; F5H ferulate 5-hydroxylase. Ethylene influences the activity of PAL (indicated as a lightning bold) and thereby
affects monolignol biosynthesis. The enzyme CSE together with 4CL bypasses the second HCT reaction and appears to be important in the lignin
biosynthetic pathway of M. truncatula [28]

Looking at each cell wall protein fraction separately
(Additional file 1), the highest number of proteins that

15 were more abundant. Although the used extraction ap-
proach is targeting cell wall protein, obtained extracts are

changed significantly was found in the EGTA and LiCl
fractions (65 and 68 respectively). While only five proteins
were of less abundance due to Cd exposure in the EGTA
fraction, 27 proteins in the LiCl fraction had a decreased
abundance after Cd exposure. In the CaCl, fraction, 33
proteins showed a significant abundance change, of which

an enrichment of cell wall proteins in which the contam-
ination with proteins of other subcellular localisations is
low. Among the proteins that changed significantly, the
percentage of secreted, cell wall localized proteins was
high in all three fractions: CaCl, fraction 66.67%, EGTA
81.46% and LiCl 77.94%.
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Strikingly, a high number of proteins that have an in-
creased abundance after Cd exposure have a designated
function in plant defence. These include chitinases and
chitin-binding proteins (grouped as carbohydrate bind-
ing), pathogenesis-related thaumatin family proteins,
allergen Pru proteins and Kunitz type trypsin inhibitor
proteins (grouped as proteins with interaction domain).
Only two defence-related proteins identified in the LiCl
fraction were of lower abundance (M. truncatula homo-
log of drug resistance transporter-like ABC domain pro-
tein and LRR and NB-ARC domain disease resistance
protein). Different peroxidases were identified in the
category oxidation-reduction process and a higher abun-
dance in response to Cd exposure was determined in the
EGTA and LiCl fraction. Contrary to this, a lower abun-
dance of peroxidase class III (contig 34,984) was found in
the LiCl fraction and CaCl, fraction. Clustering of the
identified peroxidases (Clustal Omega) and sequence com-
parison did not reveal a separation and no specific function
was found for those peroxidases that are of lower
abundance. Other proteins of the oxidation-reduction
process which were less abundant are ferritin, multi-
copper oxidase-like protein, basic blue-like protein, L-
ascorbate oxidase, plastocyanin-like domain protein and
early nodulin-like protein and were identified in the CaCl,
and LiCl fractions. Most of the proteins classified as pro-
teins acting on carbohydrates are involved in the structure
of the plant cell wall. Most prevalent, glucan endo-1,3-
beta-glucosidase was identified in all three fractions and

showed an increased abundance upon Cd exposure. Fur-
thermore, alpha-galactosidase-like protein and expansin
A10 in the CaCl, fraction and glycoside hydrolase family
18 protein and pectinacetylesterase family protein in the
EGTA fraction had an increased abundance. Other pro-
teins of higher abundance which are known to be in-
volved in the assembly of the cell wall are dirigent-like
proteins (categorized as miscellaneous), polygalacturo-
nase inhibiting protein 1, pectinesterase/pectinesterase
inhibitor, xyloglucanase-specific endoglucanase inhibitor
protein (all categorized as proteins with interaction do-
mains), extensin-like proteins (structural protein) and
FASCICLIN-like arabinogalactan-proteins (categorized as
involved in signalling). Most of them were found in the
EGTA and LiCl fractions. In the latter fraction, several cell
wall organizing proteins were also found to be of less abun-
dance such as beta-galactosidase-like protein and polyga-
lacturonase non-catalytic protein, but also proteins which
are of higher abundance were identified such as alpha-
glucosidase, pectinacetylesterase family protein, expansins
and pectinesterase/pectinesterase inhibitor. Additionally,
polygalacturonase inhibitor protein in the CaCl, fraction
(contig 93,293) was also identified to be less abundant.

In the soluble protein fraction a total number of 28
significantly changed proteins were identified of which 25
were more abundant and three proteins had a decreased
abundance (see Additional file 1 for all identifications). Of
those proteins, 57.14% had no predicted target site and
can be considered as cytosolic. Six proteins were predicted
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to be secreted and another six proteins were chloroplastic.
The majority of the identified proteins are miscellaneous,
small proteins involved in translation, nucleotide binding
or protein folding. Furthermore, a rhicadhesin receptor, a
glutamine synthase and a sieve element occlusion pro-
tein were identified. Those proteins were increased
due to Cd exposure and only a 60S ribosomal L4-like
protein (contig 101,331) was found to be less abun-
dant. More abundant proteins are categorized as act-
ing on carbohydrates (fructose-bisphosphate aldolase,
glycoside hydrolase family 1 protein, glucosamine-6-
phosphate isomerase/6-phosphogluconolactonase), de-
fence (pathogenesis-related thaumatin family protein),
oxidation-reduction process (nodulin-like protein, per-
oxidases), photosynthesis (thylakoid rhodanese-like) and
proteases (eukaryotic aspartyl protease). In addition, a
peroxisomal NAD-malate dehydrogenase 2 and photo-
system II subunit Q-2 were of less abundance due to
Cd exposure.

Gene expression analysis

The expression of genes involved in monolignol, pectin
and ethylene syntheses was investigated in M. sativa
stems to reveal the impact of Cd exposure (see Fig. 1 for
abbreviations of gene names). Five biological replicates
were used in this experiment and relative normalised
expression values were calculated as means with the
standard error of the means (SEM) (Table 1). A heat
map hierarchical clustering shows the expression of all
genes and replicates assessed by qPCR (Fig. 3). Two pat-
terns of gene expression were observed. In the upper
branch, a higher gene expression due to Cd exposure
was measured for ACS7, ACS1, ACOS5, ERF1 and ETR2.
With the exception of ACS7, those changes of expres-
sion are significant (Table 1). Furthermore, 4CL, C4H

Table 1 Relative normalised gene expression in M. sativa stems
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and COMT are found in that upper branch but the expres-
sion difference between control plant and Cd-exposed
plants is low. While 4CL and C4H change significantly,
expression of COMT does not (Table 1). Genes, which
cluster in the lower branch, have a lower expression in
Cd-exposed plants but in general the expression values
show a high variation between replicates in the same con-
dition (Fig. 3). Only the expression change of ACOI and
ACO4 is significant (Table 1). In a second group of the
lower branch cluster CAD, PAL and GAUT1I. The latter is
a 14-galacturonyltransferase that synthesises HG [30].
While GAUTI is significantly higher expressed in Cd-
exposed plants, great variations between replicates can be
seen for CAD and PAL. Nevertheless, mean expression
values of the three genes indicate a higher expression in
response to Cd exposure (Table 1).

Monosaccharide composition in the stem cell wall after
long-term exposure to cd
The total sugar composition of the cell wall from M.
sativa stems was determined after TFA hydrolysis (Fig. 4).
This analysis excludes crystalline cellulose as it is TFA re-
sistant. The most prominent monosaccharide was by far
xylose (Xyl), which represents almost 50% in Cd-exposed
(48.34%) and control plants (47.46%). The next high
abundant monosaccharides were, in decreasing order, ara-
binose (Ara), galacturonic acid (GalA) and galactose (Gal).
The lowest abundance was determined for fucose (Fuc),
rhamnose (Rha), glucose (Glc), mannose (Man), and glu-
curonic acid (GlcA). No difference in the global monosac-
charide composition between Cd-exposed and control
plants was observed.

The prepared total cell walls from Cd-exposed and
control M. sativa stems were fractionated by sequential
extraction (Fig. 5). At the end of the sequential extraction,

gene annotation contig_ID M. sativa rel. norm expression (SEM) p-value
Monolignol pathway

PAL [31] 1.269 (0.039) 0.241
CAD [31] 1.091 (0.063) 0.241
C4H 1927 1.611 (0.079) 0.032
4CL 100732 1.525 (0.019) 0.008
comT 95660 1.375 (0.133) 0.241
CCRI 66309 0.947 (0.071) 0.691
CCR2 16287 0.871 (0.051) 0.481
Pectin biosynthesis

GAUTI 67060 1.101 (0.019) 0.002
Ethylene pathway

ACS1 19914 1.930 (0.198) 0.004
ACS7 20122 1.749 (0.398) 0.115
ACO1 17355 0.733 (0.058) 0.015
ACOS5 11971 2.182 (0.201) 8.762*%10*
ACO4 7336 0.880 (0.045) 0.043
ETR2 62168 2.005 (0.186) 0.003
ERFI 35744 1.734 (0.164) 0.006

Normalised expression values are expressed relative to the control set at 1.00. Values are given as an average of 5 replicates with the standard error of the mean
(SEM). A t-test was done to determine the significance (p < 0.05). Green: significantly upregulated by Cd; red: significantly downregulated by Cd
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a final cell wall pellet (CWP) remained, which was
also hydrolysed and the monosaccharide composition
was analysed (Table 2).

All analysed monosaccharides were present in the H,O
fraction, mostly Ara, followed by Gal, GalA, Glc, Man,
Xyl, Rha and traces of GlcA and Fuc. Slight significant dif-
ferences between the cell walls of Cd-exposed and control
plants appeared only for Rha and Xyl. Ara and Gal were
the most abundant neutral monosaccharides in the EDTA
fraction. The co-extraction of Rha suggests the presents of

RGI in this fraction with side chains of arabinan and/or
arabinogalactan, whereby Ara was significantly lower
abundant in the Cd-exposed stem cell wall, while the
abundance of Rha increased. GalA represents the pectin
backbone and its content significantly increased about
5.9% in the cell wall of Cd-exposed stems. Furthermore,
the co-extraction of Xyl with GalA indicates the presence
of xylogalacturonan in the cell wall of M. sativa stems and
a significantly increased abundance of Xyl was reported
due to Cd exposure. In the KOH fractions, Xyl was found
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to be the most abundant monosaccharide. The 1 M KOH
fraction contained mainly Xyl (more than 70% in both con-
ditions), followed by GalA. However, both were not af-
fected by Cd-exposure. Besides the great portion of Xyl,
the 4 M KOH fraction contained all other analysed mono-
saccharides, to the least proportion Rha and GlcA. Some
differences in the presence of monosaccharides (Gal, Glc,
Xyl, GalA) appeared between exposed and non-exposed
plants, of which only Gal significantly changed. Further-
more, a slight variation was detected for Rha, which is
significant. The final pellet, which remained at the end of
the sequential extraction was also hydrolysed with TFA.
This fraction still contained high amounts of Xyl, Glc, Gal,
Ara and GalA. Thereby, a significantly higher proportion
of Ara and Rha was present in the remaining pellet of Cd-
exposed plants. On the other hand, Man significantly
decreased in Cd-exposed plants.

PME activity and pectin methylation

The PME activity and pectin methylation was assessed
in five biological replicates of which each was measured
in two technical replicates. PME activity was significantly
increased in Cd-exposed samples as was monitored by
means of the methanol produced (nmolmg~ L CWR)
(Fig.5 a) and reflects the accumulation of the proteins in
response to Cd exposure (Additional file 1). However,
the amount of released methanol from the cell wall after
saponification was the same for control and Cd-exposed
samples and Cd exposure did not appear to alter the
pectin methylation degree despite the determined in-
creased PME activity (Fig. 6b).

Analysis of lignification in stem after long-term
exposure to cd

The total lignin content was determined spectro-
photometrically and compared between stems of Cd-
exposed plants and plants grown on unpolluted soil
after long-term exposure. No difference in the lignin
concentration appeared. The composition of lignin in
the CWR was assessed after nitrobenzene oxidation
and covered the main lignin degradation products p-
hydroxybenzaldehyde (H), vanillin (V) and syringalde-
hyde (S). The monolignol composition did not change
between conditions. In fact, a high variability in the
monomeric lignin composition was observed between
replicates (Table 3).

Quantification of ethylene precursor molecules in
response to long-term cd exposure

To evaluate the effects of Cd on ethylene synthesis, con-
centrations of ACC and its conjugates were determined
in Cd-exposed and unexposed plants (Fig. 7). As the im-
mediate precursor, the presence of ACC determines a
rate-limiting step in ethylene biosynthesis and eventually
influences the hormone concentration [32]. Long-term
Cd exposure did not affect the ACC content significantly
but an enormous increase of conjugated ACC was ob-
served (about 31.15%), which is however not significant.
Furthermore, S-adenosylmethionine (SAM) and methio-
nine content were significantly increased about 46.39
and 75.31% respectively upon Cd exposure (Fig. 7).

Discussion

For the current study, M. sativa plants were grown on
Cd-contaminated soil (10 mgkg™ " soil DW) for an entire
season (May till September). As it is agricultural prac-
tice, plants were cut and the secondary stem was sam-
pled after a re-growing stage. Although strong growth
inhibition occurred in a juvenile plant stage, no differ-
ence in biomass was measured when sampling them
[27]. The present study investigates how Cd exposure
changes the composition and structure of the cell wall.
Previous data which were based on a gel-based approach
[27] are complemented with a gel-free approach using
the same samples and different hypotheses on the chan-
ged cell wall structure upon Cd exposure are addressed
by targeted analyses.

To target cell wall proteins, extraction buffers with in-
creasing ionic strength were used successively to extract
step by step also tightly bound proteins. Several proteins,
which were found of higher abundance in the CaCl, and
EGTA fraction, appeared in the LiCl fraction to be of
lower abundance (Additional file 1). The LiCl buffer has
the highest ionic strength and therefore extracts the more
tightly bound cell wall proteins. Structural alterations in
the cell wall might influence cell wall - protein interac-
tions, thereby causing shifts of a protein in between the
different fractions. This type of shifts in affinity due to
changes in the cell wall can influence the interpretation
during quantification. This observation could be a first in-
dication for structural changes that appear in the cell wall
in response to Cd. Changes in the composition and prop-
erties of cell wall polysaccharides can alter the function of
the cell wall during stress response, thereby protecting the
plant from severe Cd-induced damages.
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Fig. 6 Methanol released (nmol mg’] CWR) by pectin methylesterase (PME) activity (a) and saponification with 1 M KOH (b) from the cell wall of
M. sativa stems in response to long-term Cd exposure. Values represent mean values from five replicates, each measured in technical replicates.
SEM is represented as error bars. Significance (p-value 0.05) is indicated by an asterisk
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However, as was observed in a gel-based study on M.
sativa stems [27], long-term Cd exposure led to a higher
abundance of defence-related proteins such as different
chitinases, pathogenesis-related thaumatin family proteins
as well was glucan endo-1,3-beta-glucosidase (Additional
file 1), which reflects the general stress response of the
plant and appears to be rather unspecific.

The effect of long-term cd exposure on the cell wall
composition in M. sativa stems

The plant cell wall is composed of cellulose as the main
load-bearing polysaccharide, hemicelluloses and pectins.
Its composition and remodelling are involved in the re-
sponses to abiotic stress [33, 34]. Thereby, cell wall pro-
teins, which are embedded in the polysaccharide network
and represent about 10% of the cell wall, can act on the
cell wall structure and customise the cell wall properties
during development and environmental stresses such as
Cd exposure. The here presented cell wall protein data
(Additional file 1) revealed significant changes in abun-
dance of several proteins upon long-term Cd exposure

Table 3 Lignin content and monomer composition of M.
sativa stems

1 1 1

Lignin (% H (umol g~ V (umol g™ S (umolg™
CWR) CWR) CWR) CWR)
Ctr 468 1095 (3.01) 52750 (275.10) 336.18 (145.77)
Cd 4.70 14.57 (2.61) 545.60 (172.55) 33848 (103.22)

Given values are the average of five replicates with the standard error of the
mean (SEM) in parentheses. Ctr control, CWR cell wall residues, H p-
hydroxybenzaldehyde, V vanillin, S syringaldehyde

with a function in cell wall structure and these findings
are in agreement with a previous study [27].

In the total extraction of monosaccharides from isolated
cell wall material of M. sativa stems, no significant differ-
ences between control and Cd-exposed plants appeared
(Fig. 4). Under both growing conditions the main mono-
saccharide is Xyl. Already in 1987 Xyl was found to be the
most prominent in mature M. sativa stems, enhancing
their indigestibility by cross-linking with lignin [35].

The cell wall polysaccharides were furthermore sequen-
tially extracted with H,O, EDTA and KOH (1 M followed
by an extraction with 4 M) to obtain a more comprehen-
sive picture of the cell wall composition. Overall, results
are comparable with those previously obtained from M
sativa stems of the same developmental stage [36].

Pectic polysaccharides were extracted with the chelat-
ing agent EDTA. Galacturonic acid, the building block
for HG, was the main pectic residue, while glucuronic
acid was present only in trace amounts (Table 2). The
GalA of HG can be decorated with residues of xylose
forming domains of xylogalacturonan (XGA), a pectic
polysaccharide which was demonstrated to be present in
the cell wall of various tissues of Arabidopsis [37]. The
co-extraction of Xyl with GalA in the EDTA fraction in-
dicates the presence of XGA in the cell wall of M. sativa
(Table 2). Xylogalacturonan is a commonly found com-
ponent in the cell wall of legumes [38] and cell walls of
soy bean are rather composed of XGA and RG than of
HG [6]. It was demonstrated that XGA is present in
regions of cell detachment [39]. Here, the amount of ex-
tracted GalA and Xyl significantly increased in response
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to Cd exposure (Table 2), suggesting a higher abundance
of XGA in the cell wall due to the applied stress. The
HG backbone of XGA can be partially methylated. The
de-methylation of HG by PME is a key process during
the modulation of the pectin network and its activity fa-
cilitates the clustering of pectin to a gel-like matrix [40].
The decoration of HG with Xyl inhibits gel formation as
it hinders the accessibility of pectin-modifying enzymes
to their target sites [5, 41] and stabilises the high methy-
lation degree of pectin [42]. Nonetheless, Cd-exposure
increased the abundance and enzyme activity of PME in
M. sativa stems (Fig. 6a, Additional file 1), which would
decrease the methylation degree of the cell wall and pro-
mote Cd binding within the pectin network. However,
data did not reveal changes in the methanol released
from the cell wall fraction upon saponification between
control and Cd-exposed plants (Fig. 6b). The methylesteri-
fication degree of pectin in the cell wall can vary within a
tissue leading to local differences of the mechanical cell
wall properties even on a small spatial scale [43]. The XGA
incorporation into the cell wall of M. sativa stems will cer-
tainly affect the gel properties of the wall matrix. There are
probably regions with less XGA, which are accessible for
the PME and its higher abundance and enzyme activity in
response to Cd (Fig. 6a, Additional file 1) could compen-
sate for the XGA-rich areas in order to maintain a particu-
lar overall de-methylation degree of the cell wall. These
domains in the cell wall network could serve for Cd

demobilization, while those domains with a higher portion
of XGA are protected from the PME activity.

Studies suggest that heavy metal tolerance of plants is
determined by the degree of pectin methylation and
make the link to heavy metal sensitivity or resistance.
Heavy metal tolerant populations were found to have a
higher degree of pectin methylation [44]. Consequently,
this limits the ability of the cell wall to bind heavy
metals and maintains a low apoplastic heavy metal con-
centration, resulting into a decreased symplastic up-
take. Both processes are an important factor for the
tolerance of the plant [45]. Thus, a XGA-rich cell wall
can help to exclude Cd from the apoplast, which is
combined with a local Cd deposition in the cell wall of
M. sativa stems. In that way, the here observed struc-
tural alterations in the cell wall contribute to the previ-
ously reported tolerance of M. sativa to long-term Cd
exposure [27].

Most hemicelluloses were extracted with KOH of
different concentrations. The most prevalent monosac-
charide was xylose and the determination of Fuc in both
KOH fractions indicate to xyloglucan. The co-extraction
of GalA in the KOH fractions (Table 2) may result from
a cross-linkage between pectin and xyloglucan [46].
Xyloglucan is widely spread throughout the cell wall of
plants [47]. Its linkage to pectin highly contributes to
the cell wall structure and assembly and support the in-
tegration of xyloglucan into the cell wall [48].
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However, different glycosyl hydrolase family proteins
were of higher abundance (Additional file 1). Those are
known to be involved in cell wall deconstruction, loos-
ening and growth [49, 50]. Apparently, the growth dur-
ing stressful conditions is a conflict between stiffening
by cross-linking and loosening of the cell wall. While
ROS and peroxidases support stiffening by cross-linkage
of hemicellulose with lignin, expansins and glycosyl hy-
drolases support loosening [34].

Long-term cd exposure affects ethylene biosynthesis but
not lignification and monolignol composition

Ethylene is a gaseous hormone which is involved in the re-
sponse to multiple biotic and abiotic stresses [22, 51, 52]
and its levels increased after metal exposure in different
plants [23, 53]. In the current study, long-term Cd expos-
ure led to increasing content of methionine and SAM.
Next, SAM is converted to ACC by the activity of ACC
synthase (ACS). The transcript levels of both investigated
gene isoforms ACS1 and ACS7 were upregulated in stems
of Cd-exposed M. sativa plants, suggesting an en-
hanced production of ACC, which is the rate-limiting
step in ethylene biosynthesis [32]. While ACC content
slightly decreased upon Cd exposure, the abundance of
its conjugated forms increased, although this change is
insignificant (p = 0.086). The three known conjugates of
ACC are y-glutamyl-ACC (GACC), jasmonyl-ACC (JA-
ACC) and malonyl-ACC (MACC) and conjugation might
be a biochemical regulation of available ACC which affects
ethylene levels [54]. The synthesis of MACC positively
correlates with ethylene production, suggesting that a self-
regulated feedback control of ethylene synthesis is active
which would stimulate the storage of ACC [55]. Possibly
MACC can be converted back to ACC thereby stimulating
the ethylene production [56].

In a final step, ACC is oxidised to ethylene by ACC
oxidase (ACO) and in the current study the decrease of
ACC in Cd-exposed plants was accompanied by an up-
regulation of ACOS transcript levels and of the ethylene
responsive genes ETR2 and ERFI. Therefore, free ACC
gets converted to ethylene, enhancing ethylene signalling
in response to long-term Cd exposure.

Besides other mechanism [22], ethylene positively af-
fects the activity of PAL [21, 24], thereby augmenting
the lignin content [57]. The PAL enzyme catalyses the
conversion of Phe to cinnamate, making the entry into
monolignol biosynthesis. Those monolignols are the
building blocks for lignin biosynthesis. The impact of Cd
on cell wall lignification and plant growth is well estab-
lished [14, 58, 59] and changes in the lignin composition
in the context of abiotic stress were observed [60].
Nevertheless, after long-term Cd-exposure of M. sativa
plants, lignin content of the cell wall and transcript level
of PAL did not significantly change. Furthermore, the
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monolignol composition was not affected after long-
term Cd exposure either (Table 3). Yet, a significantly
changed accumulation of C4H and 4CL transcripts were
detected; both encoding enzymes of the monolignol bio-
synthetic pathway (Table 1). Cadmium-induced stimula-
tion of PAL activity was shown to be dose and time
dependent in roots of Matricaria chamomilla, which
also applies for the content of soluble phenolics and
their accumulation [61]. In the current study, the applied
Cd concentration was kept low to mimic realistic soil
concentrations and could have been too low to signifi-
cantly affect lignin biosynthesis and content, although
the ethylene biosynthesis was induced accompanied by a
variation of PAL transcript levels.

Lignification is driven by peroxidase activity. Quantita-
tive LC-MS revealed an increased abundance of different
peroxidase isoforms due to Cd-exposure as observed be-
fore [27]. Peroxidases and their activity increase upon
Cd exposure [62] and therefore lead to increased lignifi-
cation [59]. For lignin formation, peroxidases require
H,0O, as a substrate molecule. Furthermore, Cd induces
oxidative stress in plant cells and enhances the gener-
ation of H,O, [63]. However, no difference in the lignifi-
cation between stems of control and Cd-exposed plants
was detected in the current study. Probably those per-
oxidases are more involved in H,O, scavenging dur-
ing long-term mild Cd-exposure instead of altering
the lignin content [34, 64]. During LC-MS analysis, a
decreased abundance of some peroxidase isoforms
was observed. After clustering all identified isoforms
in a phylogenetic tree, no separation of the less abun-
dant isoforms from the more abundant isoforms ap-
peared (data not shown). Thus, the observed decrease
of the identified peptides might be due to degradation
fragments as Cd also induces proteolysis which is
underlined by an increased abundance of proteases
monitored in this study (Additional file 1).

Conclusion

Long-term Cd exposure led to an adaptation of M.
sativa to the applied stress. Phenotypically, no difference
was observed between Cd-exposed and control plants in
their mature growing stage, which is reflected by simi-
lar biomasses. During long-term Cd exposure the com-
position of pectic polysaccharides in the cell wall of M.
sativa stems changes. Against the initial hypothesis that
the cell wall undergoes structural changes supporting
the immobilization of Cd, data indicate an increased
abundance of XGA upon Cd exposure. Contrary to HG,
XGA is resistant to PME activity and therefore stabi-
lises the high methylation degree of pectin. Thus, the
creation of binding sites for Cd in the pectin network
does not take place. Probably, the exclusion of Cd from
the cell wall and apoplast limits the entry of the heavy
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metal into the symplast, which is an important factor
during tolerance acquisition. As another important
aspect for the cell wall restructuring, no increase in lig-
nification was reported, although peroxidases are highly
abundant in Cd-exposed plants. Most likely peroxidases
are accumulating as a response to Cd-induced oxidative
stress in order to maintain the redox balance in M.
sativa. However, long-term Cd exposure stimulated
ethylene signalling in M. sativa stems. The plant hor-
mone positively influences the activity of PAL and the
phenolpropanoid pathway. PAL is not only induced by
ethylene but further depends on substrate availability
[65] and the Phe content is a key-factor in the process
of cell wall lignification and cell wall stiffening. Under-
standing how this is influenced by long-term Cd expos-
ure in M. sativa stems would be valuable to model the
plant response to the applied stress.

Methods

Plant material and sampling

Medicago sativa L. seeds, cultivar Giulia, were inocu-
lated with Sinorhizobium meliloti and sown on Cd-
contaminated and control soil. The soil was prepared as
one batch composed of 2/3 potting soil mixed with 1/3
sand (w/w). Half of the prepared soil was contaminated
with Cd applied as CdSOy to a final concentration of 10
mg Cd per kg soil dry weight (DW). Plants were sown in
May 2015 in 12 times 12 pots for each condition. The
plants were kept in the greenhouse until the flowering
stage was reached and subsequently cut similar to the
agricultural practice. For the re-growing period, the
plants were kept outside till the pre-flowering stage was
reached followed by one more week in the greenhouse
before the final sampling (10th of September 2015).
During the entire experiment no fertilizer was applied
nor was the day-cycle or temperature controlled. The
first and the last two internodes were removed from the
stems and only the middle parts were sampled to obtain
a more homogeneous sample. Stems were sampled in
five biological replicates for each condition, with a pool
of stem material from 24 pots corresponding to one bio-
logical replicate. Samples were ground to a fine powder
in liquid nitrogen and kept at — 80 °C till further use.

Label-free quantitative proteome study

Protein extraction and preparation

Cell wall and soluble protein extraction of five repli-
cates from M. sativa stems were done as described
before [66, 67].

Digestion of proteins was performed using an Amicon
Ultra-4 10K Centrifugal filter device (Millipore) [68].
Cell wall and soluble proteins, 20 pug of each sample,
were reduced with 10 mM DTT in 100 mM ammonium
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bicarbonate (AmBic) for 20min and subsequently
washed with 100 mM AmBic (30 min, 4700 g, 4 °C). Re-
duced samples remained on top of the filter and were
alkylated with 50 mM iodoacetamide dissolved in 100
mM AmBic for 30 mins in the dark. After two washing
steps, samples were digested with 40 pL trypsin Gold
(Promega), 5ngml™ " trypsin in 20 mM AmBic, at 40°C
overnight. Afterwards, 100 uL. H,O was added on the fil-
ter, devices were centrifuged (40 min, 4700 g, 4 °C) and
peptides collected from the bottom of the tube. The
peptides were dried under vacuum and solubilized in
40 pL of 5% acetonitrile (ACN) and 0.01% trifluoroacetic
acid (TFA).

LC-MS/MS peptide separation and analysis

Peptides were analysed with a NanoLC-2D System
(Eksigent) coupled to a TripleTOF 5600+ MS (Sciex) as
was previously detailed in Behr et al. 2018 [69]. The CID
spectra were analysed with Mascot-Daemon (version
2.4.2, Matrix Science) by searching against the alfalfa
EST database downloaded from the Samuel Roberts
Noble website (675,750 sequences; 304,231,702 residues,
released on 3rd of November 2015) [70] with the follow-
ing parameter settings: 2 missed cleavages, mass accur-
acy precursor: 20 ppm, mass accuracy fragments: + 0.5
Da, fixed modifications: carbamidomethyl (C), dynamic
modifications: Oxidation (M and P), Acetyl (protein N-
term), Didehydro (F) and tryptophan to kynurenine. To
ensure proteins identifications at least two assigned pep-
tides needed to pass the MASCOT-calculated score of
>25 and the peptides should have been identified in at
least 80% of the replicates. Mascot data were imported
in PROGENESIS QI software for proteomics (NonLinear
Dynamics) for quantitative analysis. Quantitative results
were statistically evaluated by means of a one-way
ANOVA p-value (p<0.05) as well as a fold-change of
1.5 to reveal proteins with a significantly different abun-
dance. In the quantitative analysis only unique peptides
were considered. Proteins, for which a significant change
was observed, were manually validated to avoid false
positive identifications. The subcellular location was de-
termined by the TargetP online tool [71] using standard
parameters. Thereby, proteins were considered as cell-
wall targeted when a secretion signal peptide was pre-
dicted or the subcellular localization was found based on
literature. Identified cell wall proteins were categorised
into functional classes following Duruflé et al. 2017 [29].

Real time quantitative PCR (qPCR)

The RNAqueouse™ Kit (Life Technologies) was used for
RNA extraction from five biological replicates according
to the manufacturer’s instructions. The RNA was purified
with 3 M sodium acetate and 100% isopropanol, subse-
quently washed with 70% ethanol before resuspention in
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RNase-free water. A NanoDrop® ND-1000 spectrophotom-
eter (Thermo Fischer Scientific) was used to determine the
concentration and quality (Asgo/280 and Aneo/230 ratio be-
tween 1.9 and 2.5). One pg of the extracted RNA was
DNase treated (TURBO DNA-free™ Kit, Life Technologies)
and reverse transcribed (PrimeScript™ RT Reagent Kit; Per-
fect Real Time, TAKARA Bio Inc.). The obtained cDNA
was diluted 10-fold in 1/10 Tris-EDTA buffer (Sigma-
Aldrich) and stored at —20°C till further use.

The Alfalfa Gene Index and Expression Atlas Database
[70] was used to design specific primer pairs for genes of
interest by using open source tools (www.bioinformatics.
nl/cgi-bin/primer3plus/primer3plus.cgi, https://eu.idtdna.
com/calc/analyzer). Primer pairs for PAL and CAD were
taken from literature [31]. The primer efficiency was eval-
uated prior to gene expression analysis (Additional file 2:
Table S1). All qPCR reactions were performed in a 96 well
plate with the 7500 Fast Real Time PCR System (Life
Technologies) as described elsewhere [27]. All details
according to Minimum Information for publication of
Quantitative real-time PCR Experiments [72] are shown
in Additional file 2: Table S2. Gene expression was calcu-
lated according to the 22 method relative to the sample
with the highest expression. Obtained data were normal-
ised using the average 27 values of the three most
stable reference genes which were selected by the Gray-
Norm algorithm [73] out of ten tested [31].

All values were expressed relative to the control samples.
The significance was assessed with a t-test with p-value
<0.05. Normalised relative expression data were clustered
(uncentered Pearson correlation, complete linkage) [74]
and displayed as a heat map [75].

Isolation of cell wall residues

A sufficient amount of powdered deep frozen plant ma-
terial from five biological replicates was mixed with 40
mL 80% methanol, sonicated for 10 min and shaken for
4h at room temperature. The homogenates were subse-
quently centrifuged (3700 g) and the pellet washed five
times with 80% ethanol by a vortexing/centrifugation
cycle. The isolated cell wall residues (CWRs) were dried
(45°C, 24'h) and served as material to analyse lignin, the
cell wall composition, the determination of the PME
activity and pectin methylation.

Sequential extraction of monosaccharides from the stem
cell wall

Isolated CWRs (90 mg) were incubated in 1.5 mL of 0.1
M acetate buffer (pH 5.0) for 20 min at 80 °C followed by
digestion with 10 uL a-amylase plus 10 uL amyloglucosi-
dase shaken overnight at 37°C to remove the starch
from the samples. The reaction was stopped by the
addition of 6 mL 100% cold ethanol. Samples were kept
at — 20°C for 3 h, subsequently washed in 100% ethanol
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three times and dried at room temperature. From the
isolated cell wall material, 15 mg were used for the se-
quential extraction, whereby the supernatant was kept
after each extraction step and the remaining pellet was
used for the next extraction step (Fig. 5).

The first extraction step was done three times with
1.5 mL water at 99 °C, 1000 rpm for 2h and contained
water-soluble polysaccharides. The second extraction
was done three times with 0.1% EDTA (pH 7.5) at 99 °C,
1000 rpm for 2h to solubilise pectins. The third and
fourth extractions were done with 1 M potassium hy-
droxide (KOH) and 4 M KOH respectively with addition
of 10 mM sodium borohydride (NaBH,). Both extraction
steps were incubated for 2 h at 20°C, 1000 rpm and ex-
tracted mainly hemicelluloses. Prior to dialysis, the pH
of 1M and 4M KOH fractions was neutralized with
75 uL and 300 pL of acetic acid respectively.

Float-A-Lyzer® G2 devices (Spectrum Laboratories)
with a molecular weight cut-off of 0.5-1.0 kD were
used to dialyze the extracts. The devices were washed
with 10% ethanol and H,O prior to dialysis according
to the manufacturer’s instructions. All dialysis steps
were done under constant stirring. The 4 M KOH frac-
tion was first dialyzed against a neutralized 1 M KOH
solution (2h) and subsequently transferred in a neu-
tralized 0.25M KOH solution together with the 1M
KOH fraction (2 h). Finally, all four fractions were dia-
lyzed overnight against H,O and freeze-dried (Alpha
1-4 LD plus, Christ). The isolated CWR, the four
freeze-dried fractions and the final remaining pellet
from the sequential extraction were hydrolysed at
99°C in 500pL 2M TFA for 2.5h. Samples were
cooled down on ice, centrifuged (10,000 g, 3 min) and
the supernatant was used for analysis in two-times
and 100-times dilutions.

Quantitative results were obtained by Ionic Chroma-
tography coupled to Pulsed Amperometric Detection
(ICS 5000+, Thermo-Dionex). The voltage of the gold
electrode was kept at 0.1V for 0.4s, reduced to -2V
within 0.02's, increased to 0.6 V within 0.01s, reduced
to - 0.1V for 0.07s. The AgCl electrode was used as
a reference. Two chromatographic methods were applied
to separate all monosaccharides. The eluents were prepared
from ultra-pure water and sodium hydroxide (NaOH). For
the first method, 5 uL. were injected on a CarboPac PA20
column (3 x 150 mm + guard column 3 x 30 mm, Thermo-
Dionex) at 30 °C (0.5 mL min~*). The gradient started with
12mM NaOH for 10 min, increased to 300 mM within 2
min and was kept at 300 mM for 5 min. For the second
method, 1 pL. was injected on a CarboPac SA10-4 pm col-
umn (2 x 250 mm + guard column 2 x50 mm, Thermo-
Dionex) at 45°C (0.38 mL min~'). The gradient started
with 1 mM NaOH for 5 min, increased to 198 mM within
3 min and was kept at these conditions for 2 min.
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PME activity assay

The PME activity assay was done as described before
[76]. Any methanol that is released by the PME activity
is converted into formaldehyde by alcohol oxidase. In a
second reaction, formaldehyde forms a complex with
purpald, resulting in a purple coloration. A standard
curve was generated by using methanol at different con-
centrations. Ten mg of prepared CWR were suspended
in 200 pL 1 M NaCl and shaken for 1 h at 4 °C. Samples
were subsequently centrifuged (13,200g, 10 min, 4°C)
and the supernatant recovered for the PME activity
assay. One reaction contained 100 uL pectin in PBS
(0.64 mg mL™"), 10 uL alcohol oxidase (0.01 U pL™") and
50 uL. PME sample. The reaction was incubated at 30 °C
for 10 min, subsequently 200 uL purpald (5 mgmL™ " in
0.5 N NaOH) was added and the mixture was incubated
for 30 min at 30 °C. Finally, 550 uL. H,O was added and
the absorption measured at 550 nm. For both conditions,
five biological replicates were analysed and measured in
two technical replicates.

Methylation of pectin

Hydrolyses of methylated pectin and determination of
resulting methanol was done as descripted before [77]
with slight modifications. Briefly, 300 pL of 1M KOH
were added to five mg of isolated CWR and incubated
for 30 min at room temperature. The pectin hydrolysates
were neutralized (7.0 pH) with 1 M phosphoric acid and
the volumes adjusted to 1 mL. For the determination of
methanol present in the extract, the same protocol as
for the PME activity assay was followed.

Extraction and characterization of lignin in stem cell wall
Five mg of CWR were digested with 2.6 mL of 25%
acetyl bromide in glacial acetic acid for 2 h at 50 °C using
a HACH LT200 system. Samples were cooled on ice and
transferred into 10 mL of 2 M NaOH plus 12 mL glacial
acetic acid. The reaction tube was rinsed with glacial
acetic acid and 1.75mL of 0.5M hydroxylammonium
chloride was added. Each volume was adjusted to 30 mL
with glacial acetic acid, centrifuged (3000 g, 15 min) and
lignin content was measured spectrophotometrically
(280 nm, extinction coefficient ¢ =22.9g™ ' Lcm ™).

Lignin was characterized following the nitrobenzene
oxidation method previously described [69, 78]. The
products after nitrobenzene oxidation of ten mg of CWR
were derivatized with Bis(trimethylsilyl)trifluoroacetamide
and analysed by gas chromatography coupled to mass
spectrometry (GC-MS). A HP-5MS column (30 m x
0.25 mm, 0.25 pm, Agilent) was used on a 7890B-5977A
GC-MS system (Agilent). Salicylic acid-D4 was used as
internal standard.
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Determination of compounds of the ethylene

biosynthetic pathway

Extraction was done in 500 pL ice-cold 80% methanol
from 50 mg finely ground plant material. For quantifica-
tion, D4-ACC (250 pmol, Olchemim Ltd.) and D3-
Methionine (1000 pmol, Sigmar-Aldrich) was added. Half
a milligram of OASIS HLB 0.3 um solid phase bulk pack-
ing material (WATERS) was added to bind pigments. The
packing material and cell debris were removed with cen-
trifugation (14,000 g, 4 °C, 10 min). The ACC metabolites
and precursors were analysed with ES* UPLC-MS/MS
(ACQUITY TQD, WATERS) using a Waters Column
ACQUITY UPLCr BEH Amide 1.7 pm Column. The elu-
ents were 0.1% formic acid in H,O (A) and 0.1% formic
acid in ACN (B). The gradient was as following: gradient
0-2 min: 15.0% A, 85.0% B; 2—5.8 min: linear gradient to
35.0% (A), 65.0% B; 5.8—6.4 min: linear gradient to 80.0%
A, 20.0% B; isocratic at 80.0% A, 20.0% B until 7 min. The
flow rate was 0.4mL min~". The partial loop injection
mode was used with an injection volume of 6 pL. The spe-
cific transitions selected for multiple reaction monitoring
(dwell time 0.034s. for each transition) were: 106.10 >
60.20 (cone: 14.0, collision energy 10.0) and 106.10 > 88.00
(cone 14.0, collision 8.0) for D4-ACC; 150.00 > 104.00
(cone 15.0, collision 15.0) for methionine; 153.00 > 107.00
(cone 14.0, collision 10.0) for D3-Methionine; 189.00 >
130.00 (cone 16.0, collision 12.0) for malonyl-ACC;
232.00 > 148.00 (cone 16.0, collision 12.0) for glutamyl-
ACC; 295.00>148.00 (cone 16.0, collision 12.0) for
jasmonyl-ACC and 399.40 > 250.00 (cone 16.0, collision
15.0) for SAM. The quantity of ACC was analysed by CI”
GC-MS/MS after derivatization using pentafluorobenzyl
bromide following [79]. Data are expressed in picomoles
per gram fresh weight (pmol g FW™1).
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Additional file 1: Quantitative LC-MS/MS data and protein assignments.
Overview of the proteins that changed significantly in the different cell
wall protein fractions. (XLSX 95 kb)

Additional file 2: Table S1. Sequence information on forward and
reverse primers used to determine gene expression levels via quantitative
real-time PCR. Table S2. Quantitative real-time PCR parameters according
to the MIQE guidelines. (DOCX 32 kb)
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