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Abstract

Background: Cultivated rice (Oryza sativa L.) is one of the staple food for over half of the world’s population. Thus,
improvement of cultivated rice is important for the development of the world. It has been shown that abundant
elite genes exist in rice landraces in previous studies.

Results: A genome-wide association study (GWAS) performed with EMMAX for 12 agronomic traits measured in
both Guangzhou and Hangzhou was carried out using 150 accessions of Ting’s core collection selected based on
48 phenotypic traits from 2262 accessions of Ting’s collection, the GWAS included more than 3.8 million SNPs.
Within Ting’s core collection, which has a simple population structure, low relatedness, and rapid linkage
disequilibrium (LD) decay, we found 32 peaks located closely to previously cloned genes such as Hd1, SD1, Ghd7,
GW8, and GL7 or mapped QTL, and these loci might be natural variations in the cloned genes or QTL which
influence potentially agronomic traits. Furthermore, we also detected 32 regions where new genes might be
located, and some peaks of these new candidate genes such as the signal on chromosome 11 for heading days
were even higher than that of Hd1. Detailed annotation of these significant loci were shown in this study.
Moreover, according to the estimated LD decay distance of 100 to 350 kb on the 12 chromosomes in this study,
we found 13 identical significant regions in the two locations.

Conclusions: This research provided important information for further mining these elite genes within Ting’s core
collection and using them for rice breeding.
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Background
Cultivated rice (Oryza sativa L.) is one of the staple
foods for over half of the world’s population. Uncovering
the genetic basis of natural variations in important agro-
nomic traits in rice landraces is indispensable for ensur-
ing the world’s food supply.
In general, linkage mapping is a conventional method

for gene mining in rice. However, association mapping
based on linkage disequilibrium (LD) has been widely
used in rice studies since it was firstly reported in maize
[1, 2]. Association mapping could overcome the limita-
tions (i.e., limited alleles, high cost and poor mapping
resolution) of linkage mapping [3] and enable researchers

to use modern genetic technologies for exploiting natural
genetic diversity and identifying elite genes in the genome
[4]. Furthermore, many candidate genes or loci have been
identified in rice through genome-wide association study
(GWASs) of agronomic traits [5–10], abiotic stress toler-
ance [11–13] and metabolites [14, 15].
A population with diverse landraces or cultivars which

could be used in crops GWASs is supposed to be a per-
manent resource and be rephenotyped for many traits
[2]. Sampling populations (e.g., core collections and mini
core collections) created from rice landraces might be a
suitable choice for rice GWASs [16]. Rice landraces are
easier to be utilized for breeding than wild rice because
they have greater genetic diversity than elite cultivars
and represent an intermediate stage of domestication
history between wild rice and cultivars [17]. As early as
1920–1964, Ying Ting collected more than 7128 rice
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landraces from all over China and from some of the
other main rice-cultivating countries. This collection is
one of the earliest collections of rice germplasm resources
in China and was named Ting’s collection [18]. Moreover,
a rice core collection called Ting’s core collection and
consisting of 150 accessions selected based on 48 pheno-
typic traits has been constructed from 2262 accessions of
Ting’s collection [18]. In Ting’s core collection, the aver-
age polymorphism information content (PIC) is 0.48, and
the average genetic diversity is 0.54 [19]. Furthermore,
Ting’s core collection has been used in association map-
ping of 12 agronomic traits [20] and aluminum tolerance
[21] with 274 SSR markers. However, no association map-
ping with higher resolution has been performed for agro-
nomic traits within Ting’s core collection.
In the present study, a GWAS of 12 rice agronomic

traits was carried out using Ting’s core collection of rice
landraces with more than 3.8 million high-quality 3.8
million SNPs by whole-genome re-sequencing. Regions
identified by the GWAS were compared with those iden-
tified as QTL and candidate genes in previous studies.
This information will be very useful for rice breeders to
improve elite cultivars.

Results
Comparison between Ting’s core collection and other
populations used in GWASs
Ting’s core collection consists of 150 rice landraces that
were collected from 20 different provinces of China and
from North Korea, Japan, the Philippines, Brazil, Sulawesi,
Java, Oceania, and Vietnam (Additional file 2: Table S1).
The number of varieties in Ting’s core collection is lower
than that in a population of Chinese rice landraces [5], a
global collection [9] and a mini core collection of japonica
rice [8], however, the phenotypic diversity in several agro-
nomic traits in Ting’s core collection are comparable to
those in above mentioned collections or even higher for
some agronomic traits (Fig. 1).

Genome re-sequencing and SNP identification
Whole-genome re-sequencing of Ting’s core collection
was performed, resulting in a total of 522.4 Gb of clean
data with an average sequencing depth of 7.3× and an
average coverage of 82.9% of the reference genome
(Additional file 2: Table S2). The distribution of SNP po-
sitions along each chromosome are shown in Additional
file 1: Figure S1. A total of 3,808,730 SNPs and 391,756
InDels with a minor allele frequency > 0.05 were gener-
ated, and 386,562 SNPs were found in the CDS region
(Additional file 2: Table S3).

Phenotypic variation
A wide range of phenotypic variation in the 12 agro-
nomic traits was revealed in Ting’s core collection both

in Guangzhou and Hangzhou (Fig. 1). Plant height, grain
length, grain width, grain length/width, 100 grains
weight, flag leaf length, flag leaf width and flag leaf
length/width showed similar distributions in the two lo-
cations, while heading days, seed set rate, panicle length
and panicle number per plant had different distributions
in the two locations. The broad-sense heritability ranged
from 56.2% (Heading days) to 96.5% (Grain length) for
these traits (Fig. 1).

Population structure and LD estimation in Ting’s core
collection
We performed PCA to identify the population structure
of Ting’s core collection with all SNPs data, and we ob-
served two subpopulations in Ting’s core collection
(Fig. 2). The discrimination obtained via a NJ tree based
on the SNP data was not identical to that based on
Cheng’s index method (Additional file 2: Table S1) [19]
and showed fairly consistent results with that from the
PCA (Fig. 3). Moreover, the LD dropped to the half of
its maximum value at a distance of 100~350 kb on the
12 chromosomes, which is agreement with previous
measurements [5, 9, 22, 23] (Additional file 1: Figure S2)
.

Relative kinship among varieties in Ting’s core collection
and the effect of controlling type I error using EMMAX
In Ting’s core collection, most kinship estimates be-
tween varieties were zero, and none of the kinship values
were larger than 0.5, indicating that these varieties were
unrelated (Additional file 1: Figure S3).
Observed versus expected P values for each signal

were graphed for estimating the effect of controlling for
type I errors. As deviations from expected values dem-
onstrate that the statistical analysis may cause spurious
associations [24]. Our result indicated that the false posi-
tives were unlikely for all traits except grain length/
width for the EMMAX method used in this study (Add-
itional file 1: Figure S4).

GWAS of 12 agronomic traits
A total of 3,808,730 SNPs were included in a GWAS of
12 agronomic traits using the EMMAX method. Only
one association signal’s -log10(P) value was higher than
6.58 (this value was the significant threshold in this
study, please see methods section)—a signal for heading
days (Fig. 4a). Thus, we used -log10(mBF) = 4.97 as the
significance threshold for different traits in our study. A
total of 1308 and 4272 significant loci were identified for
the 12 agronomic traits in Guangzhou and Hangzhou,
respectively (Table 1). The top-ranking candidate gene-
based association signals for each trait are shown in
Additional file 3: Table S4.
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Furthermore, Si et al. (2016) indicated that they consid-
ered analyzing the 11 predicted genes within the 260-kb
interval centered on the index SNP from the GWAS given
the estimated LD decay rate of about 100 to 200 kb [25].
Thus, we analyzed whether some of the significant detec-
tions for each trait were identical in the two locations ac-
cording to the estimated distance of LD decay of 100 to
350 kb on the 12 chromosomes (Additional file 1: Figure
S2). Three significant regions (located on chromosomes 5,
6 and 7) for seed set rate were detected both in
Guangzhou and Hangzhou. Moreover, two significant

regions for flag leaf length/width were detected (located
on chromosomes 10 and 12) in both locations (Figs. 4b, d,
5a, b, c, d and Table 1). Moreover, we chose the top 16
most significant signals (P value < 1 × 10− 6) for in-depth
analysis (Tables 2 and 3). The significant association sig-
nals with smaller P values and higher consecutive peaks
for each trait are summarized in Table 3, Figs. 4 and 5,
these signals might be located in candidate genes/regions.
In addition, a detailed distribution of these new gene-
based association signals is included in Additional file 4:
Table S5 To confirm the effect of different alleles at the

Fig. 1 Frequency distribution of agronomic traits in Ting’s core collection
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Fig. 2 Principal component analysis on 3.8 million SNPs of Ting’s core collection. PC 1 and PC 2 refer to the first and second principal components,
respectively. The numbers in parentheses refer to the proportion of variance explained by the corresponding axes. Symbols represent each variety in
Ting’s core collection

Fig. 3 Unrooted neighbor-joining trees of 150 rice varieties in Ting’s core collection. Root with different colors represent the subpopulation identified
in our previous study in which population structure was estimated by using 274 SSR markers (Zhang et al., 2011), i.e. Black, green and purple represent
indica, japonica and mixed, respectively

Zhang et al. BMC Plant Biology          (2019) 19:259 Page 4 of 12



top 16 significant SNPs in the present study, we per-
formed allelic analysis to these SNPs. Accessions in Ting’s
core collection carrying different alleles for most of the 16
SNPs showed distinct discrepancies of phenotypes (Fig. 6).
In our study, we also identified some genes that were re-

ported in previous studies according to the estimated dis-
tance of LD decay of 100 to 350 kb on the 12
chromosomes. We think a SNP is close to a cloned gene
when it locates in 350 kb from the cloned gene. For head-
ing days, significant association signals close to
OsMADS51 on chromosome 1, OsPRR1 [26] on chromo-
some 2, DTH3 [27] on chromosome 3, CKI [28] on
chromosome 3, HAF1 [29] on chromosome 4, Hd1 [30]
on chromosome 6 and OsMADS13 [31] on chromosome
12 were detected (Fig. 4a and Table 4). For plant height,
significant association signals close to SD1 [32], Ghd7 [33]
and Ghd8 [34] were identified (Fig. 4b and Table 4). For
seed set rate, signals close to SPP1 [35] and Rf-1 [36] were
found (Fig. 4c and Table 4). For panicle length, significant
association signals close to OsBRI1 [37], LP [38], SSD1
[39], FZP [40], LP1 [41] and SP1 [42] were found (Fig. 4d
and Table 4). For grain length, significant association

signals close to GS3 [43] and TGW6 [44] were detected
(Fig. 4e and Table 4). For grain width, significant associ-
ation signals close to GW2 [45], GS2 [46], GL3.2 [47], GS5
[48], GS6 [49], TGW6 [44], OsSPL16-GW8 [50] and SLG
[51] were detected (Fig. 5a and Table 4). For 100 grains
weight, significant association signals close to GW5 [52],
TGW6 [43], GL7 [53] and OsSPL16 [50] were identified
(Fig. 5b and Table 4).

Discussion
The abundant genetic variation in Ting’s core collection
makes it an important reservoir of genetic diversity and
potential source of beneficial alleles for rice breeding
(Fig. 1). It is very difficult to mine and utilize the exotic
genes in all the rice accessions (i.e., 775,000) in the
world [54] by either linkage mapping or association
mapping. The maximum population size used for
GWAS was 1495 rice accessions in a previous study
[10]. One of the methods of utilizing a large set of germ-
plasm in a GWAS is to construct a core collection [16].
A rice core collection consisting of 150 accessions se-
lected based on 48 morphological traits from 2262

Fig. 4 Manhattan plots of EMMAX for 5 agronomic traits in genome-wide association studies. Negative log10(P) values from a genome-wide scan are
plotted against position on each of 12 chromosomes. a Manhattan plots of EMMAX for heading days. Red horizontal dashed line indicates the genome-
wide significant threshold; b Manhattan plots of EMMAX for plant height; c Manhattan plots of EMMAX for seed set rate; d Manhattan plots of EMMAX for
panicle length; e Manhattan plots of EMMAX for grain length. Black, red and green arrow represent the loci close to previous genes, new loci and identical
in Guangzhou and Hangzhou, respectively
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accessions of Ting’s collection has been constructed and
used in rice association mapping with low resolution
[19, 20]. Therefore, we performed a GWAS by whole-
genome re-sequencing for getting higher resolution
within Ting’s core collection.

Although the population size of Ting’s core collection
is smaller than that of three other populations [5, 8, 9],
the phenotypic diversity of several agronomic traits was
comparable to that of these populations or even higher
for some agronomic traits. Moreover, more than 3.8

Fig. 5 Manhattan plots of EMMAX for 4 agronomic traits in genome-wide association studies. Negative log10(P) values from a genome-wide scan are
plotted against position on each of 12 chromosomes. a Manhattan plots of EMMAX for grain width; b Manhattan plots of EMMAX for 100 grains weight; c
Manhattan plots of EMMAX for flag leaf length; d Manhattan plots of EMMAX for panicle number per plant. Black, red and green arrow represent the loci
close to previous genes, new loci and identical in Guangzhou and Hangzhou, respectively

Table 1 Summary of association mapping results for 12 agronomic traits using EMMAX

Trait Number of significant loci Identical genome region (IRGSP 1.0)

Guangzhou Hangzhou Position (Guangzhou) Position (Hangzhou)

Heading days 18 174 – –

Plant height 3 2 – –

Seed set rate 943 78 Chr05_25567352 Chr05_25408291

Chr06_8915912~Chr06_9551431 Chr06_9230285

Chr07_8779751 Chr07_8438294~Chr07_8467097

Panicle length 1 129 – –

Grain length 5 7 – –

Grain width 2 54 – –

Grain length/width 0 3772 – –

100 grains weight 0 1 – –

Flag leaf length 3 3 – –

Flag leaf width 9 31 – –

Flag leaf length/width 323 19 Chr10_12103594~Chr10_12266458 Chr10_12442627

Chr12_8018851~Chr12_8206256 Chr12_8234635

Panicle number per plant 1 2 – –

Total 1308 4272 – –
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million SNPs in Ting’s core collection were developed.
The ratio of SNPs to population size in Ting’s core col-
lection is higher than that in previous studies in which
the ratio were approximately 3.6 million SNPs to 517
rice landraces [5], 0.04 million SNPs to 413 diverse land-
races and cultivars [9], 4.1 million SNPs to 950 world-
wide varieties [6], 1.6 million SNPs to 1495 elite hybrid
varieties [10] and 0.04 million SNPs to 176 japonica var-
ieties [8]. Furthermore, a simpler population structure
(Figs. 2 and 3), more rapid LD decay (Additional file 1:
Figure S2) and more distant relatedness (Additional file
1: Figure S3) among accessions were found in Ting’s

core collection than in other collections. The above
mentioned information illuminates and supports the fact
that Ting’s core collection is suitable for GWASs.
Population structure in the present study was not iden-

tical to that in our previous study [55, 56]. This discrep-
ancy might be due to molecular markers density used in
two studies. In our previous study, 274 SSR markers were
included to detect the population structure while about
3.8 million SNPs were used in present study.
A total of 3,808,730 SNPs from 150 varieties were used

for the GWAS (Additional file 2: Table S3). A mixed model
was performed using EMMAX software [55, 56]. EMMAX
not only can correct for a wide range of sample structures
by explicitly accounting for pairwise relatedness between
individuals, using high-density markers to model the
phenotype distribution. But also can reduce computational
time [55, 56]. The value obtained from a rough Bonferroni
correction of P = 1/n, where n is the total number of
markers used in the GWAS, is widely applied as the thresh-
old P value for significance [5–8, 10]. The threshold P value
for significance in our study was P ≤ 2.63 × 10− 7, corre-
sponding to -log10(P) = 6.58. However, only one peak, i.e.,
one on chromosome 4 for heading days was higher than
this threshold value in Fig. 4a. Hence, we chose a lower
-log10(mBF) value as the significance threshold for different
traits in our study (Table 1) because there will be no signifi-
cant locus according to the theoretical threshold P value.
We speculated that this result might due to population size
in our study. However, Ting’s core collection is suitable for
GWASs because the peaks located in well-known genes
such as SD1, GS2, GS3, GS5, GL7, GW8 and TGW6 were
also much lower than the theoretical threshold value (Figs.
4 and 5).
In our study, some significant association signals were

identified through a GWAS of Ting’s core collection. First,
loci significantly associated with agronomic traits were un-
covered close to cloned genes such as Hd1, SD1, Ghd7,
GW8, and GL7 (Figs. 4, 5 and Table 4) that were reported
in previous studies. Moreover, some of these loci were lo-
cated by coincidence in these genes, and they might be nat-
ural variations of these genes, which could be functional
(Table 2 and Additional file 3: Table S4). Second, Si et al.
[25] indicated that some significant loci within the distance
of LD decay might be identical to each other. However,
there were no identical significant loci in the two locations
overall (Table 1), but some identical significant regions were
discovered in the two locations when the estimated dis-
tance of LD decay of 100 to 350 kb was considered in
Ting’s core collection (Table 1, Figs. 4 and 5). Third, some
new significant association signals that might be candidate
genes were detected in our study (Figs. 4, 5 and Additional
file 4: Table S5). Some peaks of these candidate genes such
as the peak on chromosome 4 for heading days (Fig. 4a)
were even higher than the threshold value. Further, the

Table 2 Information of new genome-wide significant association
signals using EMMAX

Trait Chromosome SNP position (IRGSP 1.0)

Heading days 1 23,170,046~23,178,871

2 23,561,650~23,647,315

4 501,174~599,922

8 24,711,213~24,788,877

11 25,420,422~25,527,993

Plant height 8 4,006,947~4,099,049

11 2,700,225~2,766,157

Seed set rate 1 18,520,148~18,579,781

1 22,939,166~22,978,931

6 8,983,019~9,267,052

6 27,910,112~27,985,250

7 7,750,765~9,020,981

8 2,701,887~2,793,377

8 23,506,423~23,515,115

9 5,476,906~5,579,147

Panicle length 4 431,949~574,020

4 30,763,510~31,085,620

6 10,410,902~10,540,457

8 19,760,055~19,773,993

Grain length 1 40,952,595~41,000,011

8 18,807,278~18,877,159

11 10,147,830~10,203,596

Grain width 3 11,852,705~11,908,957

11 24,258,724~24,290,332

100 grains weight 3 20,308,101~20,374,967

7 8,265,240~8,330,871

11 9,821,720~9,835,992

Flag leaf length 9 19,484,679~19,503,424

11 17,945,459~17,974,773

12 17,992,241~18,042,367

Panicle number per plant 1 22,182,883~22,220,448

12 4,146,868~4,199,211
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Table 3 Top highest genome-wide significant association signals of agronomic traits using EMMAX

Trait Chr. Position (IRGSP 1.0) Reference allele Alternative allele Alternative allele frequency -log10(P) R2 (%)a Candidate/known geneb

Grain width 1 11,789,024 C A 0.77 6.29 9.41

Heading days 2 3,970,385 G A 0.05 6.20 11.54

3 32,824,935 T A 0.05 6.21 8.57 CK1 [29]

3 32,824,941 C G 0.05 6.08 10.75 CK1 [29]

4 463,322 G A 0.95 7.86 12.86

4 463,371 G A 0.94 7.41 10.97

8 15,918,110 G A 0.05 6.21 7.42

8 15,918,112 C T 0.05 6.10 4.38

9 18,628,054 T C 0.13 6.04 6.87

Seed set rate 4 31,539,937 A G 0.18 7.35 9.45 LOC_Os04g52940.1

7 7,918,286 G A 0.07 6.16 5.21

7 8,178,284 A G 0.12 6.47 3.15

7 8,299,577 G A 0.07 6.33 14.26

7 8,390,152 C T 0.07 6.08 5.27

7 8,390,155 C T 0.07 6.09 8.25

7 8,447,659 T C 0.09 6.45 9.64 LOC_Os07g14800.1

Note: aR2 represents the genetic variants explained by the significant SNPs. bGene ID of MSU rice genome annotation project (http://rice.plantbiology.msu.edu/)

Fig. 6 The box plots showing phenotypic distribution for Ting’s core collection carrying the different alleles at the top 16 significant SNPs in
Table 3. The middle line indicates the median, the box indicates the range of the 25th to 75th percentiles of the total data, the whiskers indicate
the inter-quartile range and the outer dots are outliers
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peak on chromosome 11 for heading days (Fig. 4a) was
higher than that of some famous genes such as Hd1. It
would be valuable to test the functions of these candidate
genes because some loci or regions were also detected by
previous studies. For instance, the region on chromosome
8 for plant height, the region at position 23,300,000 on
chromosome 1 for heading days and the region at position
21,650,000 on chromosome 2 were found to be significantly
associated with related traits in the study of Zhao et al. [9].

Conclusions
In this study, Ting’s core collection showed abundant
genetic variation for agronomic traits and was proved

to be a suitable natural population that could be
comparable to other populations used in previous
GWASs. Moreover, according to this study, core col-
lections constructed from large natural populations of
other plants might be good choices for GWASs. Fur-
thermore, some natural variations in cloned genes
were founded in this study, and these variations could
be used for functional analysis of these genes. In
addition, new candidate genes identified in this study
could be very useful for rice improvement. In sum,
this study provided important information for further
mining these elite genes within Ting’s core collection
and using them for rice breeding.

Table 4 Top highest genome-wide significant association signals of agronomic traits using EMMAX

Trait Significant loci -log10 (P) genes Genes position

Heading days Chr1_40,209,752 4.56 OsMADS51 40,344,329~40,364,584

Chr2_24,800,400 4.42 OSPRR1 24,569,294~24,572,560

Chr3_1,342,491 4.59 DTH3 1,269,856~1,271,783

Chr3_32,824,935 6.21 CKI 32,999,502~33,006,898

Chr4_32,895,071 4.69 HAF1 33,022,716~33,028,387

Chr6_9,156,215 4.78 Hd1 9,336,359~9,338,643

Chr12_5,600,578 4.55 OsMADS13 5,586,131~5,590,285

Plant height Chr1_38,483,533 4.85 SD1 38,382,382~38,385,504

Chr7_9,235,801 4.38 Ghd7 9,152,402~9,155,185

Chr8_4,056,392 4.70 Ghd8 4,333,717~4,335,434

Seed set rate Chr1_6,369,510 5.15 SPP1 6,528,797~6,630,463

Chr10_18,962,735 4.41 Rf-1 18,935,690~18,942,573

Panicle length Chr1_29,750,254 4.39 OsBRI1 29,927,543~29,931,487

Chr2_9,035,894 4.31 LP 9,042,076~9,046,141

Chr3_10,779,794 4.69 SSD1 10,684,315~10,688,955

Chr7_28,613,922 5.20 FZP 28,299,591~28,301,089

Chr9_16,891,286 4.12 LP1 17,182,867~17,188,378

Chr11_7,007,154 4.23 SP1 7,193,230~7,198,552

Grain length Chr3_16,876,884 4.12 GS3 16,729,501~16,735,109

Chr6_25,249,340 4.46 TGW6 25,093,242~25,094,294

Grain width Chr2_8,073,466 4.28 GW2 8,114,961~8,121,925

Chr2_28,875,239 4.33 GS2 28,863,173~28,866,997

Chr3_17,360,192 4.45 GL3.2 17,340,415~17,342,284

Chr5_3,576,630 4.45 GS5 3,439,259~3,443,769

Chr6_1,281,784 5.07 GS6 1,465,499~1,468,600

Chr6_25,355,332 4.62 TGW6 25,093,242~25,094,294

Chr8_26,162,707 4.61 OsSPL16 26,501,167~26,506,218

Chr8_28,114,414 4.44 SLG 28,162,970~28,165,431

100 grains weight Chr5_5,539,341 3.73 GW5 5,365,122~5,366,701

Chr6_25,216,303 4.01 TGW6 25,093,242~25,094,294

Chr7_24,377,379 3,69 GL7 24,664,168~24,669,324

Chr8_26,475,471 3.78 OsSPL16 26,501,167~26,506,218
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Methods
Plant material
Ting’s core collection with 150 accessions of rice land-
races [18], was used in this study. The information for
these accessions is shown in Additional file 2: Table S1.

Phenotyping
In total, 12 agronomic traits of Ting’s core collection
were measured in two locations. The methods of meas-
uring these 12 agronomic traits were identical to those
described in detail in our previous study [20].
A randomized complete block design with three repli-

cations was used in two locations. First, Ting’s core col-
lection was cultivated at the farm of South China
Agricultural University, Guangzhou (23°16′’ N, 113°8′
E), during the late season (July–November) in 2009.
The design and methods of this research in Guangzhou
were described in detail in our previous study [20]. Sec-
ond, Ting’s core collection was cultivated at the farm of
China National Rice Research Institute, Hangzhou
(30°3′ N, 120°2′ E), during the late season (May–Octo-
ber) in 2016. A randomized complete block design with
three replications, as in Guangzhou, was used during
this season in Hangzhou. The space between rows and
between plants was set to 26 and 20 cm, respectively.
Twenty-four plants of each variety were grown in four
rows with 6 plants per row. For each block, the five
plants in the middle position of the second and third
row of each variety were selected to prevent edge ef-
fects. The broad-sense heritability (H2) was calculated
as H2 ¼ σ2g=ðσ2g þ σ2eÞ, where σ2g is the genetic variance,

σ2e is the environmental variance.

DNA isolation and genome sequencing
Total genomic DNA was extracted using a modified
SDS method. Then, each landrace’s DNA was sheared
randomly into ~ 500-bp fragments by Covaris, and the
DNA fragments were loaded on 2% agarose gels. Frag-
ments of ~ 500 bp were recovered and purified, and
adapters were then added to each fragment. After mak-
ing libraries for the clusters, they were loaded into an
Illumina HiSeq™ 4000 for 2× 150-bp paired-end se-
quencing at 6~7-fold genome coverage.
The 150-bp paired-end reads were mapped onto the

rice reference genome (IRGSP 1.0) using bwamem with
the –M option in BWA software [57]. The mapped
reads were realigned by using RealignerTargetCreator
and IndelRealigner in GATK [58]. UnifiedGenotyper in
GATK was used with the −glm BOTH option to label
SNPs and indels. After removing nucleotide variants
with a missing rate ≥ 0.25 and a minor allele fre-
quency > 0.05, a total of 3,808,730 SNPs and 391,756
indels were generated.

Population genetic analyses
Principal component analysis (PCA), construction of a
neighbor-joining (NJ) tree, determination of LD decay
level and kinship analysis among landraces were per-
formed based on SNPs. The population structure of
the 150 varieties was estimated with PCA by using the
software EIGENSTRAT [59]. PHYLIP version 3.695
software (http://evolution.genetics.washington.edu/
phylip/getme-new1.html) was used to construct the NJ
tree on the basis of similarity measures. The software
MEGA V5.2 was used to observe the NJ tree [60]. The
LD in Ting’s core collection was evaluated using
squared Pearson’s correlation coefficients (r2) calcu-
lated with the −r2 command in the software PLINK
[61]. A Q matrix was obtained from the membership
probability of each variety using ADMIXTURE Version
1.22 software [62]. The Q matrix was used for further
association mapping. The Loiselle algorithm was
chosen to construct a kinship matrix (K) with the soft-
ware SPAGeDi [63]. Moreover, all negative kinship
values were set to zero.

GWAS
A total of 3,808,730 SNPs from 150 varieties were used
for GWAS. A mixed model was performed using
EMMAX software [56]. P ≤ 2.63 × 10− 7 (P = 1/n, n =
total number of markers used [7], which is a rough
Bonferroni correction, corresponding to -log10(P) =
6.58). However, no significant loci were detected based
on this threshold, hence, we calculated another significance
threshold, i.e., a minimum Bayes factor (mBF), based on
the P value threshold for significance. The mBF was calcu-
lated using the following formula: mBF=−e*P*ln(P)
[64]. Thus, the significance threshold in this study
was -log10(P) = 4.97.
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Table S3. Summary of categorized SNPs and InDels. (DOC 246 kb)

Additional file 3: Table S4. List of all P-value ranked genes in the gene-
based association analysis of heading days/plant height/seed set rate/
panicle length/grain length/100 grains weight/flag leaf length/flag leaf
width/panicle number per plant. (XLSX 169 kb)

Additional file 4: Table S5. List of new loci in association analysis of
heading days/plant height/seed set rate/panicle length/grain length/grain

Zhang et al. BMC Plant Biology          (2019) 19:259 Page 10 of 12

http://evolution.genetics.washington.edu/phylip/getme-new1.html
http://evolution.genetics.washington.edu/phylip/getme-new1.html
https://doi.org/10.1186/s12870-019-1842-7
https://doi.org/10.1186/s12870-019-1842-7
https://doi.org/10.1186/s12870-019-1842-7
https://doi.org/10.1186/s12870-019-1842-7


width/100 grains weight/ flag leaf length/panicle number per plant.
(XLSX 51 kb)

Abbreviations
CDS: Coding sequence; DNA: Deoxyribonucleic acid; EMMAX: Efficient mixed
model association eXpedited; IRGSP: International Rice Genome Sequencing
Project; QTL: Quantitative trait locus; SDS: Sodium dodecyl sulfate;
SNPs: Single Nucleotide Polymorphisms; SSR: Simple Sequence Repeats

Acknowledgments
We are grateful to Dr. Jinquan Li from Max Planck Institute for Plant Breeding
Research for his advice and assistance and Dr. Xiangdong Liu from South
China Agricultural University for supplying Ting’s core collection. We would
like to thank the anonymous reviewers for valuable suggestions and
American Journal Experts (https://www.aje.com) for English language editing.

Authors’ contributions
Conceived and designed the experiments: PZ and HT. Performed the
experiments: PZ and KZ. Analyzed the data: PZ, KZ, ZZ and HT. Contributed
reagents/materials/analysis tools: PZ and HT. Wrote the paper: PZ, KZ and HT. All
authors read and approved the final manuscript

Funding
This work was supported by three funds of the National Natural Science
Foundation of China (31701401, 31872862 and 31601287), a fund from
Zhejiang Province Public Welfare Technology Application Research Project
(LGN19C130005), a fund from the State Key Laboratory for Conservation and
Utilization of Subtropical Agro-bioresources (SKLCUSA-b201713), as well as a fund
from Shanghai Agrobiological Gene Center (201503). The funding bodies did not
play any role in the design of the study and collection, analysis, and interpretation
of data and in writing the manuscript.

Availability of data and materials
The datasets used during the current study are available from the corresponding
author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 July 2018 Accepted: 21 May 2019

References
1. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J,

Kresovich S, Goodman MM, Buckler ET. Structure of linkage disequilibrium
and phenotypic associations in the maize genome. Proc Natl Acad Sci U S
A. 2001;98(20):11479–84.

2. Huang X, Han B. Natural variations and genome-wide association studies in
crop plants. Annu Rev Plant Biol. 2014;65:531–51.

3. Kraakman A, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA. Linkage
disequilibrium mapping of yield and yield stability in modern spring barley
cultivars. Genetics. 2004;168(1):435–46.

4. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association
mapping in plants. Plant Genome. 2008;1(1):5–20.

5. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang
Z, et al. Genome-wide association studies of 14 agronomic traits in rice
landraces. Nat Genet. 2010;42(11):961–76.

6. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, et
al. Genome-wide association study of flowering time and grain yield traits in a
worldwide collection of rice germplasm. Nat Genet. 2012;44(1):32–53.

7. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W,
Lian X, et al. Combining high-throughput phenotyping and genome-wide
association studies to reveal natural genetic variation in rice. Nat Commun.
2014;5:5087.

8. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P, Hu L, Yamasaki M, Yoshida S,
Kitano H, Hirano K, et al. Genome-wide association study using whole-
genome sequencing rapidly identifies new genes influencing agronomic
traits in rice. Nat Genet. 2016;48(8):927.

9. Zhao K, Tung C, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam
MR, Reynolds A, Mezey J, et al. Genome-wide association mapping reveals a
rich genetic architecture of complex traits in Oryza sativa. Nat Commun.
2011;(9):467.

10. Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B,
Xia J, et al. Genomic analysis of hybrid rice varieties reveals numerous
superior alleles that contribute to heterosis. Nat Commun. 2015;6:6258.

11. Famoso AN, Zhao K, Clark RT, Tung C, Wright MH, Bustamante C, Kochian LV,
McCouch SR. Genetic architecture of aluminum tolerance in rice (Oryza sativa)
determined through genome-wide association analysis and QTL mapping. PLoS
Genet. 2011;7:e10022218.

12. Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Hoeller S, Kraska T, Frei M.
Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-
wide association study. J Exp Bot. 2015;66(1):293–306.

13. Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM,
Tarpley L, Eizenga GC, McGrath SP, Zhao F, et al. Genome wide association
mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza
sativa L.) grown at four international field sites. PLoS One. 2014;9:e896852.

14. Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, et
al. Genome-wide association analyses provide genetic and biochemical
insights into natural variation in rice metabolism. Nat Genet. 2014;46(7):714–21.

15. Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru J, Ebana K, Yano M,
Saito K. Metabolome-genome-wide association study dissects genetic
architecture for generating natural variation in rice secondary metabolism.
Plant J. 2015;81(1):13–23.

16. Zhang P, Zhong K, Shahid MQ, Tong H. Association analysis in rice: from
application to utilization. Front Plant Sci. 2016;7:1202.

17. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA. Phylogeography of
Asian wild rice, Oryza rufipogon, reveals multiple independent
domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A.
2006;103(25):9578–83.

18. Li X, Lu Y, Li J, Xu H, Shahid MQ. Strategies on sample size determination
and qualitative and quantitative traits integration to construct core
collection of rice (Oryza sativa). Rice Sci. 2011;18(1):46–55.

19. Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y. Population structure and genetic
diversity in a rice core collection (Oryza sativa L.) investigated with SSR
markers. PLoS One. 2011;6:e2756512.

20. Zhang P, Liu X, Tong H, Lu Y, Li J. Association mapping for important
agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers.
PLoS One. 2014;9:e11150810.

21. Zhang P, Zhong K, Tong H, Shahid MQ, Li J. Association mapping for
aluminum tolerance in a core collection of rice landraces. Front Plant Sci.
2016;7:1415.

22. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD.
The extent of inkage disequilibrium in rice (Oryza sativa L.). Genetics. 2007;
177(4):2223–32.

23. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G,
Clark RM, Hoen DR, Bureau TE, et al. Genomewide SNP variation reveals
relationships among landraces and modern varieties of rice. Proc Natl Acad
Sci U S A. 2009;106(30):12273–8.

24. Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, et al.
Genetic analysis and characterization of a new maize association mapping panel
for quantitative trait loci dissection. Theor Appl Genet. 2010;121(3):417–31.

25. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J,
Shangguan Y, et al. OsSPL13 controls grain size in cultivated rice. Nat Genet.
2016;48(4):447–56.

26. Kim SL, Lee S, Kim HJ, Nam HG, An G. OsMADS51 is a short-day flowering
promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant
Physiol. 2008;147(1):438.

27. Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily
conserved OsPRR quintet: Rice pseudo-response regulators implicated in
circadian rhythm. Plant Cell Physiol. 2003;44(11):1229–36.

28. Bian X, Liu X, Zhao Z, Jiang L, Gao H, Zhang Y, Zheng M, Chen L, Liu S, Zhai
H, et al. Heading date gene, dth3 controlled late flowering in O. Glaberrima
Steud. By down-regulating Ehd1. Plant Cell Rep. 2011;30(12):2243–54.

29. Dai C, Xue H. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1
to negatively regulate gibberellin signalling. EMBO J. 2010;29(11):1916–27.

Zhang et al. BMC Plant Biology          (2019) 19:259 Page 11 of 12

https://www.aje.com


30. Yang Y, Fu D, Zhu C, He Y, Zhang H, Liu T, Li X, Wu C. The RING-finger
ubiquitin ligase HAF1 mediates heading date 1 degradation during
photoperiodic flowering in rice. Plant Cell. 2015;27(9):2455–68.

31. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T,
Yamamoto K, Umehara Y, Nagamura Y, et al. Hd1, a major photoperiod
sensitivity quantitative trait locus in rice, is closely related to the arabidopsis
flowering time gene CONSTANS. Plant Cell. 2000;12(12):2473–83.

32. Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, et al.
Interactions of OsMADS1 with floral homeotic genes in rice flower
development. Mol Plant. 2015;8(9):1366–84.

33. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D,
Ishiyama K, Saito T, Kobayashi M, Khush GS, et al. Green revolution: a
mutant gibberellin-synthesis gene in rice. Nature. 2002;416(6882):701–2.

34. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X,
et al. Natural variation in Ghd7 is an important regulator of heading date
and yield potential in rice. Nat Genet. 2008;40(6):761–7.

35. Yan W, Wang P, Chen H, Zhou H, Li Q, Wang C, Ding Z, Zhang Y, Yu S, Xing Y,
et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity,
plant height, and heading date in rice. Mol Plant. 2011;4(2):319–30.

36. Liu T, Mao D, Zhang S, Xu C, Xing Y. Fine mapping SPP1, a QTL controlling
the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa).
Theor Appl Genet. 2009;118(8):1509–17.

37. Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K,
Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type
cytoplasmic male sterility that encodes a mitochondria-targeting PPR
protein. Theor Appl Genet. 2004;108(8):1449–57.

38. Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K,
Takatsuto S, Yoshida S, Ueguchi-Tanaka M, et al. The role of OsBRI1 and its
homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol. 2006;140(2):580–90.

39. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. Mutations 1 in
the F-box gene LARGER PANICLE improve the panicle architecture and enhance
the grain yield in rice. Plant Biotechnol J. 2011;9(9):1002–13.

40. Asano K, Miyao A, Hirochika H, Kitano H, Matsuoka M, Ashikari M. SSD1, which
encodes plant-specific novel protein, controls plant elongation by regulating
cell division in rice. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(3):265–73.

41. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is
required to prevent the formation of axillary meristems and to establish floral
meristem identity in rice spikelets. Development. 2003;130(16):3841–50.

42. Liu E, Liu Y, Wu G, Zeng S, Thi TGT, Liang L, Liang Y, Dong Z, She D, Wang
H, et al. Identification of a candidate gene for panicle length in rice (Oryza
sativa L.) via association and linkage analysis. Front Plant Sci. 2016;7:596.

43. Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J,
Li J, et al. Short panicle1 encodes a putative PTR family transporter and
determines rice panicle size. Plant J. 2009;58(4):592–605.

44. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain
length and weight and minor QTL for grain width and thickness in rice, encodes a
putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–71.

45. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T,
Ujiie K, Shimizu B, Onishi A, et al. Loss of function of the IAA-glucose hydrolase
gene TGW6 enhances rice grain weight and increases yield. Nat Genet. 2013;
45(6):707.

46. Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and weight
encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet. 2007;
39(5):623–30.

47. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, et
al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant.
2015;8(10):1455–65.

48. Xu F, Fang J, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, et
al. Variations in CYP78A13 coding region influence grain size and yield in
rice. Plant Cell Environ. 2015;38(4):800–11.

49. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, et al.
Natural variation in GS5 plays an important role in regulating grain size and
yield in rice. Nat Genet. 2011;43(12):1266–9.

50. Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C. GS6, a member of
the GRAS gene family, negatively regulates grain size in rice. J Integr Plant
Biol. 2013;55(10):938–49.

51. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q,
et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet.
2012;44(8):950.

52. Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C,
Hu J, et al. SLG controls grain size and leaf angle by modulating
brassinosteroid homeostasis in rice. J Exp Bot. 2016;67(14):4241–53.

53. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K,
et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain
width and weight in rice. Nat Plants. 2017;3:17043.

54. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, et al.
Copy numbe variation at the GL7 locus contributes to grain size diversity in
rice. Nat Genet. 2015;47(8):944.

55. FAO, The second report on the state of the world's plant genetic 1
resources for food and agriculture. Commission on genetic resources for
food and agriculture, 2010.

56. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C,
Eskin E. Variance component model to account for sample structure in
genome-wide association studies. Nat Genet. 2010;42(4):348–54.

57. Li H, Durbin R. Fast and accurate long-read alignment with burrows-
wheeler transform. Bioinformatics. 2010;26:589.

58. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,
Del Angel G, Rivas MA, et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat Genet. 2011;43:491.

59. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet. 2006;38(8):904–9.

60. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics
analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9.

61. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559–75.

62. Alexander DH, Novembre J, Lange K. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.

63. Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse
spatial genetic structure at the individual or population levels. Mol Ecol
Notes. 2002:618.

64. Goodman SN. Of p-values and Bayes: a modest proposal. Epidemiology.
2001;12:295–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Zhang et al. BMC Plant Biology          (2019) 19:259 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Comparison between Ting’s core collection and other populations used in GWASs
	Genome re-sequencing and SNP identification
	Phenotypic variation
	Population structure and LD estimation in Ting’s core collection
	Relative kinship among varieties in Ting’s core collection and the effect of controlling type I error using EMMAX
	GWAS of 12 agronomic traits

	Discussion
	Conclusions
	Methods
	Plant material
	Phenotyping
	DNA isolation and genome sequencing
	Population genetic analyses
	GWAS

	Additional files
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

