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Abstract

Background: Some broccoli (Brassica oleracea L. italic) accessions have purple sepals and cold weather would
deepen the purple color, while the sepals of other broccoli lines are always green even in cold winter. The related
locus or gene is still unknown. In this study, a high-density genetic map was constructed based on specific locus
amplified fragment (SLAF) sequencing in a doubled-haploid segregation population with 127 individuals. And
mapping of the purple sepal trait in flower heads based on phenotypic data collected during three seasons was
performed.

Results: A genetic map was constructed, which contained 6694 SLAF markers with an average sequencing depth
of 81.37-fold in the maternal line, 84-fold in the paternal line, and 15.76-fold in each individual population studied.
In all of the annual data recorded, three quantitative trait loci (QTLs) were identified that were all distributed within
the linkage group (LG) 1. Among them, a major locus, gPH.C0O1-2, located at 36.393 cM LG1, was consistently
detected in all analysis. Besides this locus, another two minor loci, gPH.COT-4 and gPH.CO1-5, were identified near
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gPH.C01-2, based on the phenotypic data from spring of 2018.

Conclusion: The purple sepal trait could be controlled by a major single locus and two minor loci. The genetic
map and location of the purple sepal trait of flower heads provide an important foundation for mapping other
compound traits and the identification of the genes related to purple sepal trait in broccoli.

Background

Flavonoid, carotenoid and betalain together with chloro-
phyll in plants endow them with all kinds of colors [1-5].
Purple color is the pigment display of betalain or anthocya-
nin (one kind of Flavonoid). Betalain is a tyrosine-derived
red-purple and yellow pigments which exist exclusively in
Caryophyllales [2, 6], while anthocyanin is an abundant
pigment in many different plant species and they can
change color from red to purple and blue [4]. In Brassica
plants, purple color which was caused by anthocyanin
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accumulation was associated with the induction of its bio-
synthesis genes or transcription factors [7-11]. The muta-
tion in the upstream regulatory region of R2R3 MYB
transcription factor led to increased expression levels of the
transcription factor gene, which then up regulated the ex-
pression of the structural genes involved in anthocyanin
biosynthesis and endowed cauliflower with vivid purple
color [7]. The promoter substitution or deletion of
BoMYBL2-1 resulted in a purple coloration of cabbage
(Brassica oleracea var. capitata F. rubra) [12]. Purple leaf
genes in ornamental kale and purple stem genes in Chinese
kale have been fine mapped [13, 14]. However, it is not re-
ported that a gene or locus controlling purple sepals which
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are affected by low temperature in broccoli (Brassica
oleracea var. italica, 2n = 2x = 18).

Some broccoli accessions have purple sepals, and the
purple color intensifies during cold weather. Other ac-
cessions have green sepals even in cold winter. The pur-
ple sepals bring out dull color to flower heads of
broccoli. So the broccoli flower heads with green sepals
are more welcome and have higher price than those with
purple sepals in Chinese market. And breeders tend to
breed the broccoli new cultivars which have flower
heads with ever-green sepals. It is important to discover
the genetic rule, the locus and the gene of the purple se-
pals for broccoli breeding. We tried to map the locus
controlling purple sepals in broccoli by a previous
high-dense genetic map which was constructed by refer-
ring to TO1000 whole genomic sequences [15]. But it
failed to detect a locus. In this study, we mapped the loci
controlling the purple sepals by reconstructing a
no-reference genetic map based on the previous se-
quence data submitted to the National Center of Bio-
technology Information (NCBI) (the BioProject ID:
PRJNA449775) .

Results

SLAF markers

SLAF markers were developed based on alignment and
clustering of all clean sequence reads using BLAT
(BLAST-Like Alignment Tool) software. A total of
182,813 SLAFs were obtained with 61.20-fold average
sequencing depth in the maternal line, 65.98-fold in the
paternal line, and 15.82-fold in each individual offspring
(Table 1). Based on the allele numbers and the sequence
differences, SLAF markers could be classified into three
types: polymorphic, non-polymorphic and repetitive
(Table 2). Of these, 20.77% (37,969 SLAF markers) of
the markers were polymorphic. As the segregation group
contained DH (doubled haploid) lines, the genotypes
that were not aa x bb genotype, and those that lacked
parental information were abandoned. This provided us

Table 1 Sequencing depth of specific locus amplified fragment
(SLAF) markers

High-quality SLAF markers

No. of SLAFs 182,813
Average depth in maternal line 61.20x
Average depth in paternal line 65.98%
Average depth in offspring individuals 15.82x
Polymorphic SLAF markers of maps

No. of SLAFs 6694
Average depth in maternal line 81.37x
Average depth in paternal line 84.00x
Average depth in offspring individuals 15.76x
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Table 2 Types of specific locus amplified fragment (SLAF)
markers identified based on clustering

Type Polymorphic  Non-polymorphic  Repetitive  Total SLAF
SLAF SLAF SLAF

Number 37,969 143,775 1069 182,813

Percentage  20.77% 78.65% 0.58% 100%

Note: Polymorphic SLAF indicates the presence of a polymorphism site in the
SLAF tag. The polymorphism site mostly includes SNPs and InDels. Non-
polymorphic SLAF refers to the absence of a polymorphic locus in the SLAF
tag. Repetitive SLAF refers to SLAF tags located in the repetitive sequence
regions. Total SLAF refers to all types of SLAF tags

with a high-quality collection of SLAF markers. To-
gether 18,295 SLAF markers out of 37,969 belonged to
the aaxbb genotype. Polymorphic SLAF markers with
lower-quality or severe partial separation or more than 3
SNPs (single nucleotide polymorphism) or covering less
70% separate individuals were filtered. A final set with
6694 markers was used to construct the genetic map
with an average sequencing depth of 81.37-fold in the
maternal line, 84-fold in the paternal line, and 15.76-fold
in each individual population (Table 1).

Construction of the genetic map

A genetic map with 9 linkage groups (LGs) was obtained
from 6694 SLAFs containing 12,980 SNPs, with a total
genetic distance 880.78 cM, an average genetic distance
of 0.16 cM, a maximum gap of 8.41 cM on the LG8. We
identified 1358 markers that indicate segregation distor-
tion, with 0.04% of singletons and 23.41% of miss (Fig. 1;
Table 3). The individual integrity of the markers in the
map was 97.88% (Additional file 1).

Collinearity analysis between the genetic map and the
reference genome

The sequences of SLAF markers on the map and the se-
quences of reference genome TO1000 were aligned. Ap-
proximately, 95.35% (6383) of the markers from a total
of 6694 SLAF markers were mapped to corresponding
positions in the reference genome. Only 311 SLAF
markers (4.65% of 6694 SLAFs) present in the map
could not be assigned to positions in the reference gen-
ome. Therefore, the markers in the map show high col-
linearity to the reference genome (Fig. 2).

Purple sepal trait of flower head and its inheritance
model

The purple sepal trait of flower heads in the DH popula-
tion and their parents were surveyed in the autumn of
2015 and 2017 and in the spring of 2018. The sepal
color of the maternal line is purple, and low temperature
intensifies the purple coloration; while the sepal color of
the paternal line never turned purple, even at sub-zero
temperatures (Fig. 3). The sepal color of the F; hybrid
was purple. Of the 309 genotypes in the F, population,



Yu et al. BMIC Plant Biology (2019) 19:228 Page 3 of 8
p
Genetic Map
a I = = = =
50 §1 §% = 1
% == ——
=S = =
g ——
S — —
o §
150 —
T \ T T T T T T T
1 2 3 4 5 6 7 8 9
Linkage Group
Fig. 1 Genetic map of broccoli

the sepals of 236 individuals were purple, and sepals of
73 were not purple. A x* test indicated that the fitness of
the segregation to the expected ratio of 3:1. From the re-
sults, we can infer that the purple sepal trait is likely
controlled by a single locus.

Location of the purple sepal allele

Based on the genetic map and using the phenotype data
collected during the autumn of 2015 and 2017, a single
locus on LG1 was identified. Both the loci were qPH.C01-
1 (30.093-39.543 ¢cM) and qPH.C01-2 (36.393—36.393 cM),
respectively. The locus qPH.CO1-1 contains qPH.CO1-2.
That's, the same single locus region was found based on the
data of 2015 and 2017. While three loci, qPH.C01-4
(24.58-24.58 cM), qPH.CO1-5 (32.455-32.455cM), and
qPH.C01-3 (36.393-40.331 cM) were found in LG1, based
on the data from spring of 2018 (Table 4). These three loci
were close to each other in LG1. Apparently, the locus at

Table 3 Basic information of the genetic map

36.393 ¢cM on LG1, which accounts for 10.3% of the pheno-
typic variation, was common in all the three analyses
performed.

Discussion

Broccoli is one varietas in B. oleracea [16]. The ge-
nomes of other two varietas in this species, B. olera-
cea var. capitata line 02-12 and kale-like TO1000
DH, have been sequenced and successfully assembled
[17, 18]. They are very important for genetic research
in B. oleracea crops, and their genomes have been
referenced in the construction of a genetic map in
cauliflower, and for fine mapping in ornamental kale
and Chinese kale [13, 14, 19-21]. However, there are
assembly errors and mis-anchored sequence scaffolds
in the cabbage genome ‘02-12" and kale-like genome
TO1000 [14, 22]. Actually, such gaps and misassem-
blies are common in whole-genome assembly of many

LG ID 1 2 3 4 5 6 7 8 9 Total
Total SLAFs 498 922 1539 972 867 469 571 675 181 6694
Total SNPs %1 1963 2745 1949 1625 920 1221 1241 355 12,980
Size (cM) 12127 99.92 153.12 12606 7824 61.7 9307 88.02 5938 880.78
Average Distance 024 0.11 0.1 0.13 0.09 0.13 0.16 0.13 033 0.16
Gaps<=5 1 09989 09987 1 1 09979 09965 09985 09833 09971
Max Gap 444 553 575 425 461 633 713 841 7.63 841
Total DS 303 10 276 70 540 16 83 18 42 1358
Singleton(%) 0 001 0 0 0 0 001 0 002 004
Miss (%) 202 058 078 059 566 279 127 436 536 2341
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species [13, 22-24]. Biological complexities, especially
the Brassicaceae-specific triplication events and con-
tinuous amplification of transposable elements in B.
oleracea, have complicated the assembly of the ge-
nomes, resulting in gaps and misassemblies [25-27].
These errors lead to incorrect mapping, failure to ac-
curately identify and clone gene(s) based on a related
genetic map, inability to identify a related locus, and
inefficient marker-assisted selection [13, 14]. More-
over, one or even several genotypes sequenced at a
high resolution may not contain all the sequences for
that particular species. For example, there were huge
structural variations including inversions, transloca-
tions, and presence/absence variations between the
two genomes of elite ‘indica’ rice varieties’ ZS97RS1
and MH63RS1. Besides, there were some genes
present in variety ZS97RS1 that were absent in
MH63RS1, and vice-versa [28]. In our previous study,
no locus related to the purple sepal trait was found
in that genetic mapping exercise, which was con-
structed based on the reference genome TO1000.

Broccoli and the kale-like line TO1000, between
which the main phenotypic difference is that the
former has a big flower head, are two different varie-
tas of B. oleracea. It is possible that sequences differ-
ences and structural variations exist between the two
varietas, making the identification of the purple sepal
allele in the genetic map difficult, particularly, if
based on the TO1000 reference genome. So, it was
necessary to reconstruct a non-reference genetic map
for mapping the purple sepal loci.

One locus related to the purple sepal trait on the map,
which was located at 36.393 cM in LG1 was identified
based on the phenotypic data collected during two au-
tumn seasons, while the three loci located at intervals of
15.751 cM, 24.58 cM, and 40.331 cM from LGI1, were
found based on the phenotypic data from the spring of
2018. The identification of three loci seems inconsistent
with the results from the x> test, which, indicates that
the purple sepal trait may be controlled by a single
locus. As the purple sepal color in the maternal line in-
tensifies during low temperature, potential regulatory

Fig. 3 Flower head colors of paternal (a), maternal (b) lines and hybrid F1 (c)
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Table 4 Position of the purple sepal allele of flower heads in
the two maps

QTL LG  Range (cM) LOD %PVE® ADD®  Season®

gPH.COT-1 1 30.093-39.543 360 165 0.19 2014 Aut.
gPH.CO1-2 1 36.393-36393 250 103 0.16 2017 Aut.
gPH.CO1-3 1 36.393-40331 305 109 0.16 2018 Spr.
gPH.CO1-4 1 24.58-24.58 266 96 0.15 2018 Spr.
gPH.CO1-5 1 32455-32455 272 98 0.15 2018 Spr.

#Percentage of the phenotypic variation explained by the QTL (Quantitative
trait locus); °Additive effect; “time of phenotype survey

genes related to the purple color could be induced by
cold. In addition, the proximity of all the three loci in
LG1, may indicate the presence of a regulatory network
involved in controlling the purple coloration, and per-
haps is active and sensitive to low temperature, yet the
related trait is difficult for the human eye to visualize. In
autumn, the temperature reaches 30 °C, coinciding with
the beginning of growth, after which the temperature
decreases. The temperature during the whole growth
period stays above zero. In contrast, the temperature
during spring increases gradually and reaches a high
point. Assuming that the purple color is regulated by
low temperature, it may be easier to observe the purple
sepal color of broccoli flower heads in spring. These two
loci could be related to low temperature inducing purple
coloration of sepals in the flower heads of broccoli. So
the purple sepal might be controlled by a single major
locus and two minor loci, which would be confirmed by
fine mapping, for the other both loci had low LOD
values and low phenotypic variation explained by the
QTLs.

Anthocyanins are catalytically synthesized by a
series of enzymes encoded by corresponding genes,
such as chalcone synthase (CHS), chalcone isomerase
(CHI), flavanone 3-hydroxylase (F3H), flavanone
3’-hydroxylase (F3’H), flavonol synthase (FLS), dihydrofla-
vonol 4-reductase (DFR), encoding glutathione-S-trans-
ferases (GST), leucoanthocyaniidin oxgenase (LDOX),
anthocyanidin reductase (ANR), UDP-glucose: flavonoid
3-O-glucosyltransferase (UD3GT) [12, 29, 30]. While,
anthocyanin biosynthesis also is regulated by transcription
factors such as MYB, bHLH, WD40, and ZAT6 [7, 30—
33]. Anthocyanins biosynthesis and regulation not only in-
volve many structural genes and transcription factors, but
also are influenced by environmental factors, such as light,
temperature and other substances [12, 34-36]. The ex-
pression of structural genes of anthocyanins biosynthesis
such as CHS, DFR, and GST were higher in low
temperature conditions [37-39]. Light could induce the
expression of the transcription factor genes (such as
MYB75 and MYB90), the structural genes (such as CHS,
DFR, F3H, and LDOX), the kinase gene (such as MAP
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KINASE4) and ethylene response factor genes which are
involved in anthocyanin biosynthesis [40-42]. A PA1-type
MYB transcription factor, MAMYBPA1l was identified
from red-fleshed apple and it redirected the flavonoid bio-
synthetic pathway by its promoter’s
low-temperature-responsive (LTR) cis-element directly
binging MdbHLH33 in low temperature conditions [43].
In purple cabbage, a MYB transcript factors, BOMYBL2—
1, negatively regulated anthocyanin synthesis [12]. Substi-
tution or deletion of its promoter resulted in different de-
gree of purple coloration and different sensitivity to low
temperature [12]. A R2R3 MYB transcription factor,
BoPAP1, might be responsible for purple leaves and up
regulated by low temperature in purple kale [10]. These
researches show that different plants have different mo-
lecular regulation mechanism in anthocyanins accumula-
tion induced by low temperature. Anthocyanins are
obviously accumulated in leaves and induced by low
temperature in the cabbage and the kale [10, 12]. In this
study, no obvious purple color are observed in leaves of
the broccoli line DH16-2, but its sepals are purple and be-
come deep purple in cold conditions. What’s more, the
genes for the purple traits in kale, cabbage and kohlrabi
were all mapped to the chromosome 6 which was the
same locus as the BoMYB2 gene in cauliflower [44]. While
the loci controlling the purple sepals in broccoli was lo-
cated on the LG1 in this study. It is still unknown which
genes are responsible for that. Further study will be
exerted for better understanding of anthyocanins biosyn-
thesis and regulation in purple sepals of broccoli.

Conclusions

In this study, we constructed a high-density genetic map
using a DH segregation population of a cross between
DH16-2 and DH28-4. Based on this map, a major locus
and two minor loci of the purple sepal using phenotypic
data collected from three seasons was detected on LG1.

Methods

Plant materials

The maternal line DH16-2 (purple sepals), paternal line
DH28-4 (green sepals), their hybrid and the segregating
population with 127 DH lines was generated using the
microspore culturing methods. The parental lines and
segregating population individuals were planted in the
Yangdu Experimental Greenhouse of the Zhejiang Acad-
emy of Agricultural Sciences in August 2014, August
2017 and January 2018. The purple sepal trait was sur-
veyed when the flower heads were mature during the
crop season. During the period of cultivation, every plant
was checked to make sure no leave covering on the
flower head in order to avoid the effect of light on the
sepals color.
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SLAF markers and genotyping

Based on the raw data from BioProject (PRJNA449775),
SLAF markers were identified, and genotyping was per-
formed as described in [45]. Initially, all the low-quality
reads were removed and high-quality raw reads were
sorted to each progeny according to the duplex bar-
codes. Clean reads were then clustered based on similar-
ity over 90% after the barcodes and the terminal 5bp
positions were trimmed from each high-quality read.
The sequences that were clustered together were defined
as one SLAF locus [46]. SNP loci for each SLAF locus
was identified between the parents. SLAF markers with
more than 3 SNPs were deleted. Alleles of every SLAF
locus were recognized on the basis of the reads from the
parents. Diploid broccoli plants were used in this study,
so, each SLAF locus could include a maximum of 4 ge-
notypes. Only SLAF loci with two to four alleles were re-
served as potential markers and those SLAF loci with
more than 4 alleles were categorized as repetitive SLAF
markers and rejected. All polymorphic SLAF marker loci
consistent both, in the parental and offspring SNP loci
were genotyped. The marker codes of the polymorphic
SLAF markers were analyzed on the basis of the popula-
tion type, such as DH with only one segregation type (aa
x bb).

Genotype scoring was done using a Bayesian approach
to guarantee consistent genotyping quality [45]. First, a
posterior conditional probability was calculated based on
the coverage of each allele and the number of SNPs.
Genotyping quality score based on the probability was
used to select qualified markers for the succeeding ana-
lysis. Low-quality markers or individuals were discarded
in the dynamic process. When the average genotype
quality values of all SLAF markers reached the critical
value, the process stopped. High-quality SLAF markers
for constructing the genetic map were screened using
the following criteria: Sequences with more than 10-fold
depth of the parents, markers covering more than 70%
genotypes of all offspring, and the segregation distortion
as examined by the y* test.

Genetic map construction and QTL mapping

The HighMap software developed by Beijing Biomarker
Technologies Corporation, was utilized to construct a
high-density and high-quality map [47]. Recombinant
frequencies and the maximum likelihood method
(MLOD) scores between markers were used to deduce
the linkage phases and two-point analysis was used. Mo-
lecular markers were divided into different linkage
groups based on the MLOD score, and each linkage
group was regarded as a chromosome. A genetic map
was preliminarily constructed, and the initial sequence
of the markers was obtained based on the MLOD score.
As the genotyping results contain certain errors related
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to the molecular markers, genotype correction was per-
formed based on the sequence of the markers in the
map. A high-quality genetic map was finally constructed
using the Kosambi mapping function after several
rounds of correction [48]. MapQTL 5.0 was used to
analyze the phenotypic data for interval mapping.

Comparison between the genetic map and the reference
genome

In order to compare the linearity between markers on
the genetic map and the reference genome, SLAF
markers sequences of the map were positioned on the
reference genome, kale-like line TO1000. The physical
locations of the SLAF markers in the map were identi-
fied. These physical locations in the map were compared
to their positions in the reference genome and a linear
analysis was conducted.

Additional file

Additional file 1: Individual integrity of specific locus amplified
fragment (SLAF) markers in the genetic map. (PNG 15 kb)
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