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Abstract

Background: Although the genome of Chinese white pear (‘Dangshansuli’) has been released, little is known about
the functions, evolutionary history and expression patterns of NAC families in this species to date.

Results: In this study, we identified a total of 183 NAC transcription factors (TFs) in the pear genome, among which
146 pear NAC (PbNAC) members were mapped onto 16 chromosomes, and 37 PbNAC genes were located on
scaffold contigs. No PbNAC genes were mapped to chromosome 2. Based on gene structure, protein motif analysis,
and topology of the phylogenetic tree, the pear PbNAC family was classified into 33 groups. By comparing and
analyzing the unique NAC subgroups in Rosaceae, we identified 19 NAC subgroups specific to pear. We also found
that whole-genome duplication (WGD)/segmental duplication played critical roles in the expansion of the NAC
family in pear, such as the 83 PbNAC duplicated gene pairs dated back to the two WGD events. Further, we found
that purifying selection was the primary force driving the evolution of PbNAC family genes. Next, we used
transcriptomic data to study responses to drought and cold stresses in pear, and we found that genes in groups
C2f, C72b, and C100a were related to drought and cold stress response.

Conclusions: Through the phylogenetic, evolutionary, and expression analyses of the NAC gene family in Chinese
white pear, we indentified 11 PbNAC TFs associated with abiotic stress in pear.

Keywords: Evolutionary pattern, Expression divergence, Gene duplication, NAC gene family, Drought stress, Cold
stress

Background
Transcription factors (TFs) are essential for the regula-
tion of gene expression by binding to specific cis-acting
promoter elements, thereby activating or repressing the
rate of transcription of their target gene(s) [1, 2]. TFs
regulate many biological processes, including cellular
morphogenesis, signal transduction, and environmental
stress response [3, 4]. The identification and functional
characterization of TFs are essential for the reconstruc-
tion of transcriptional regulatory networks [5]. The

name of NAC gene family was derived from three tran-
scription factors: (i) NAM (no apical meristem), (ii)
ATAF1–2, and (iii) CUC2 (cup-shaped cotyledon), all of
which had the same DNA-binding domain [6]. NAC genes
encode plant-specific transcriptional regulators that con-
stitute a large transcription factor family in plants.
Considerable evidence has been collected regarding

the functions of NAC genes in plant growth and devel-
opment, and they play a role in enhancing tolerance to
abiotic stress, thus aiding adaptation to fluctuating envi-
ronments [7]. NAC genes were first found to be associ-
ated with shoot apical meristem and primordium
formation in Petunia [6]. Later studies identified other
NAC members, which are involved in transcriptional
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regulation of diverse biological processes, including
shoot apical meristem development [8–10], floral mor-
phogenesis [11], lateral root development [12, 13], leaf
senescence [14, 15], stress inducible flowering induction
[16, 17], embryogenesis [18], cell cycle control [19–21],
cell wall development [22], hormone signaling [23, 24],
grain nutrient remobilization [25], and shoot branching
determination [22]. In particular, some plant NAC TFs
have been found to be involved in plant responses to bi-
otic and abiotic stresses [26], including drought, salinity,
cold shock, mechanical wounding, and virus infection.
The stress-responsive ANAC096 had a synergistic relation-
ship with ABRE binding factors and increased plant sur-
vival rates under osmotic and drought stresses [27, 28]. In
addition, AtNAC019, AtNAC055, and AtNAC072 specific-
ally bound to NAC-recognized sites (NACRS) in the pro-
moter of the EARLY RESPONSIVE TO DEHYDRATION
STRESS 1 (ERD1) gene to enhance drought tolerance [29].
Arabidopsis NAC016 repressed transcription of ABSCISIC
ACID-RESPONSIVE ELEMENT BINDING PROTEIN 1
(AREB1), a key transcription factor involved in ABA-
dependent stress-signaling that facilitates responses to
drought stress [27, 30]. In soybean, 38 NAC genes were
found to be involved in the drought response [31, 32].
GmNAC11 and GmNAC20 were linked to different abiotic
stresses, and their expression in Arabidopsis conferred tol-
erance to both salt and freezing [33]. Similarly,
over-expression of horsegram MuNAC4 in transgenic
groundnut plants reduced damage to membrane structures,
and enhanced osmotic adjustment and antioxidative en-
zyme regulation under drought stress [34]. In wheat, trans-
genic lines over-expressing TaNAC69 produced more
biomass in the shoots and roots, when grown under
stress-inducing conditions [35, 36]. In maize, ZmNAC41
and ZmNAC100 were found to be related to the maize
defense network [37]. ZmSNAC1, a stress-response tran-
scription factor, enhanced tolerance to dehydration in
transgenic Arabidopsis [38, 39]. Furthermore, the StNAC
(Solanum tuberosum) gene was induced in response to Phy-
tophthora infestans infection and the BnNAC genes from
Brassica were induced by drought and cold [40, 41]. How-
ever, to date, little is known regarding how plant NAC TFs
reduced stress tolerance. Moreover, the molecular basis of
this function in white pear has not yet been identified.
Pear is one of the most widely distributed fruits in the

world, and has great value for commerce and health.
However, pear plants frequently experience abiotic
stresses, including drought and cold, which limit pear
growth and development, and have subsequent effects
on pear crop productivity [42]. Therefore, the identifica-
tion of genetic determinants associated with drought
and cold stresses tolerance in pear is important for agri-
cultural development. In plants, several NAC TFs are
transcriptionally induced by drought and cold, but few

NAC TFs have been functionally characterized in pear.
In this study, we identified 183 PbNAC genes from the
pear genome and carried out phylogenetic analyses to
determine the relationships among these genes. Analyses
of protein motifs and intron/exon structures provided
support for family classification. Further, we identified
duplication events that likely contributed to the expan-
sion of the NAC family. In addition, RNA-Seq data
showed that the expression patterns of PbNACs differed
in response to drought and cold stress. This study pro-
vides an empirical basis for identifying factors that may
enhance the tolerance of pear in response to abiotic en-
vironmental stress.

Results
Identification and classification of NAC genes in Rosaceae
To obtain sequences of NAC genes for pear and four
other Rosaceae species, a HMMER-BLASTP-Inter-
ProScan strategy was used to search for genes encoding
proteins containing the Pfam PF02365 domain (http://
pfam.xfam.org/family/PF02365/). We searched the
Chinese white pear genome sequence (http://peargen-
ome.njau.edu.cn/) for genes that encode proteins with
NAC DNA-binding domains. The protein sequences of
Arabidopsis NAC were used as queries to perform
BLAST searches against the Chinese white pear gen-
ome database. In total, we identified 183 NAC genes in
Pyrus bretschneideri (PbNAC) (Additional file 1: Table
S1). We temporarily named them based on the hom-
ologous gene in Arabidopsis to better identify individ-
ual sequences (Additional file 1: Table S1); for example,
Pbr020642 and Pbr027956 the homologous gene in
Arabidopsis is ANAC002 (e-value of BLAST is
1.45E-151 and 1.62E-122, respectively), and therefore
these genes were named PbNAC2a and PbNAC2b, re-
spectively (Additional file 2: Table S2). Of the 183
PbNAC genes, 146 PbNAC members were mapped
onto 16 chromosomes (excluding chromosome 2); the
other 37 PbNAC genes were located on scaffold contigs
(Fig. 1). Chromosome 11 had the largest number of
PbNAC genes (20), followed by chromosome 10 with
17 genes. Chromosome 1 was the shortest and con-
tained four genes, while chromosome 7 contained only
three. The PbNAC genes were clustered in fragments
of the chromosome instead of being evenly distributed
throughout the chromosome. This may be due to un-
even duplication events of pear chromosome fragments
[43]. Similarly, we identified 171, 114, 113, and 127
NAC genes from the apple (Malus domestica), peach
(Prunus persica), Chinese plum (Prunus mume), and
strawberry (Fragaria vesca) genomes, respectively
(Additional file 1: Table S1). As for PbNAC genes, their
distribution in the four other Rosaceae genomes
appeared to be random.
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Gene structure and protein motif analysis of the NAC
gene family in Chinese white pear
To identify the structural diversity of the PbNAC genes,
we analyzed exon/intron content in the coding se-
quences of the individual PbNAC genes. Of the 183
PbNAC genes, 23 had no introns, while most other
genes contained at least one (Fig. 2), such as the

PbNAC44b that had the most (12 introns). A phylogen-
etic tree was generated from the complete protein se-
quences of all the PbNAC genes, which divided the NAC
genes into 33 subgroups (Fig. 2). Genes within the same
subgroup had a similar exon/intron structure in terms of
intron number and exon length. For example, the major-
ity of the PbNAC genes in subgroups C100a, C7b, C7c,

Fig. 1 Localization and duplication of the NAC genes in the P. bretschneideri genome. Circular visualization of NAC genes mapped onto different
chromosomes using Circos. Chromosome number is indicated on the chromosome. The synteny relationship between each pair of NAC genes
was detected using linear regression. Genes with a synteny relationship are linked by red lines
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C30b, C70c, C47a, C104c, C42b, C90e, and C83e had two in-
trons, while all members of subgroups C2f, C83j, and C26b
possessed only one intron, with the exception of two mem-
bers which harbored two. In contrast, members of subgroups
C14k, C81b, C20b, C8b, C78b, C91a, C14j, C40b, and C90f
had a highly variable member and distribution of introns.
To further examine the diversity of the PbNAC genes,

putative motifs were predicted by the program MEME.
Based on this program, 20 distinct motifs were identified.

This result is similar to that found in apple, which has 19
distinct motifs [44]. As expected, most closely related
members had similar motif compositions, which suggested
that there are functional similarities among the NAC pro-
teins within the same subgroup (Fig. 3).

Phylogenetic analysis of pear NAC genes
To investigate the phylogenetic relationships between
pear NAC genes, a rootless phylogenetic tree with 183

Fig. 2 Consensus phylogenetic tree of NAC genes in P. bretschneideri constructed from amino acid multiple sequence alignment using MrBayes software
(left). The numbers beside the branches represent bootstrap values based on 1000 replications. The groups of genes are shown in different colors.
Schematic representations of the conserved motifs of PbNAC genes (right). Lines connecting two exons represent an intron. NAC domain is marked in bule
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Fig. 3 Schematic representations of the conserved motifs and exon-intron compositions. Names of genes are indicated on the left and
conserved motifs in NAC proteins on the right. Different motifs are highlighted with different colored boxes with numbers 1 to 20. Lines
represent protein regions without detected motif
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complete NAC genes from multiple sequence alignments
of their NAC domains was constructed. We performed a
phylogenetic analysis of Chinese white pear (183 mem-
bers) PbNAC proteins based on Arabidopsis (100 mem-
bers) using the Fast Treeand Mr. Bayes tools. These
packages yielded similar results with high support values
obtained from both methods (Figs. 4 and 5). All PbNAC
proteins contained an NAC domain, but their protein
structures were highly diverse. The amino acid se-
quences of NAC proteins were used to construct a
phylogenetic tree to investigate the divergence of PbNAC
proteins. The phylogenetic tree was constructed with
conserved N-terminal NAC domains A to E, using the
same algorithm. The results of this analysis showed that
genes in each subgroup may originate from the same du-
plication event and possess similar functionality. The
topology of the phylogenetic tree allowed us to classify
the PbNAC proteins into 33 subgroups, with most clades
having high statistical support (pp > 0.90; bootstrap >
80%; Fig. 4). The internal relationship within the branch
was also highly guaranteed (pp = 1.00). We can infer that
the genes in each subgroup may originate from the same
duplication event, and therefore have similar functions.
However, 10 genes, including PbNAC89, PbNAC29,
PbNAC103c, PbNAC28d, PbNAC51c, PbNAC56a,
PbNAC56b, PbNAC25a, PbNAC55, and PbNAC17 did
not form a cluster in any identified clade or subgroup,
therefore the process of genome evolution may have
conferred special roles in these PbNAC proteins.

Comparative analysis to reveal unique NAC subgroups in
Rosaceae
Additional rootless trees were constructed using the same
method, which aligned the NAC protein sequences with
each of the four Rosaceae species (apple, peach, Chinese
plum and strawberry) as well as Arabidopsis, as shown in
Figs. 6-1 and 6-2. We identified 38 subgroups, including
species-specific NAC subgroups (R28d, C2h, C25c, C32b,
C14k, C26b, C91, R55, C7b, C47a, C14j, C41, R51c, C90f,
C81b, R89, R29, C38g, and C57) for which there are no
representatives in Arabidopsis (Additional file 3: Table S3),
suggesting that these proteins might have specialized roles
that were either lost in Arabidopsis, or were gained after
divergence from the last common ancestor. Genes in sub-
groups C2h, C14k, C81b, and R29 were found in all Rosa-
ceae plants except strawberry (Additional file 3: Table S3).
Therefore, we can speculate that these genes may play im-
portant roles in woody plants. Furthermore, we discovered
that subgroups C47a and C14j were present only in Chin-
ese white pear and apple. We can therefore infer that
genes from these subgroups have special functions in
Maloideae. Subgroup C38g did not include any NACs in
Arabidopsis or the other four Rosaceae species, but did in-
clude NAC members from Chinese white pear, indicating

that these genes may have been either lost in Arabidopsis
and the other four Rosaceae species or were acquired in
pear after its divergence from the last common ancestor.
This evolutionary divergence therefore suggests that these
genes may have essential roles in pear.

Whole-genome duplication and synteny analysis of
PbNAC genes
It is well documented that gene families have evolved by
whole genome duplication, segmental duplication, and
tandem duplication, accompanied by post-duplication
diversification [45–47]. Genes within a single genome
can be classified as singletons, dispersed duplicates,
proximal duplicates, tandem duplicates and segmental/
WGD duplicates depending on copy number and gen-
omic distribution [48]. In this study, we focused on tan-
dem and segmental/WGD duplications of NAC TFs in
the whole pear genome. Our results showed that, in
Chinese white pear 99 (54.10%) PbNAC gene pairs and
116 (63.39%) PbNAC genes were duplicated and retained
in WGD or segmental events, while only 16 (8.74%)
PbNAC genes were from gene clusters and 48 (26.23%)
PbNAC genes originated from tandem duplications
(Additional file 4: Table S4). Thus, our results showed
the proportion of WGD-type PbNAC gene duplication is
high in Chinese white pear, which may be due to recent
lineage-specific WGD events [30–45 million years ago
(MYA)]. With respect to WGD/segmental and tandem
duplication events in other Rosaceae plants, Chinese
white pear and apple showed different trends from
strawberry, plum, and peach. Our results suggest that
WGD was the main driver of the expansion of the NAC
gene family in both apple and Chinese white pear (Add-
itional file 4: Table S4).
In order to investigate the evolutionary mechanisms

responsible for the diversity in the PbNAC gene family,
we identified the mean Ks and duplicated type for each
pair of fragments, by using a similar method to that used
for the Plant Genome Duplication Database (PGDD).
We identified 98 pairs of collinear fragments (Add-
itional file 5: Table S5, Additional file 6: Figures. S1-S2).
For example, synteny was detected between fragments
PbNAC73a and PbNAC73b; these showed at least 18
pairs of homologous genes, aligned in the same way.
The linear regression coefficient (Q-value) after mapping
to a linear regression model was 0.99, showing that the
two chromosome segments containing the NAC gene
were generated by a chromosomal duplication event.
The average Ks value of the 18 pairs of homologous
genes was 0.04 (standard deviation: 0.03), indicating that
this replication event occurred relatively recently. These
results further demonstrate that recent lineage-specific
WGD events resulted in the expansion of the PbNAC
gene family in Chinese white pear.
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Historical duplication events
Typically, the evolutionary dates of WGD or segmental
duplication events are estimated by Ks values (i.e., syn-
onymous substitutions per site). Previous studies have
determined that there are two genome-wide duplication
events in the pear genome: an ancient WGD (Ks~ 1.5–
1.8) estimated to have taken place approximated 140
MYA [49], and a recent WGD (Ks~ 0.15–0.3) estimated
to have taken place at 30–45 MYA [43]. In this study,
the evolutionary dates of WGD or segmental duplication

events in the PbNAC gene family were estimated by Ks
values. Additional file 5: Table S5 showed the mean Ks
values of PbNAC duplicated gene pairs in syntenic re-
gions; Ks values ranged from 0.01 to 7.18. In addition,
88 (89.80%) repeat gene pairs were distributed in two
main peaks (Additional file 7: Figure S3). These duplica-
tions may derive from the recent WGD (30–45 MYA)
and ancient WGD (~ 140 MYA) reported previously, in-
dicating that the NAC is an ancient gene family that ex-
pand with the recent WGD. In addition, 10 (10.20%)

Fig. 4 Consensus phylogenetic tree of the NAC genes in P. bretschneideri constructed from amino acid multiple sequence alignments using
MrBayes. The number next to the branch indicates the boot value based on 1000 copies. The different colors mark the groups or subgroups of
the NACs
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duplicated gene pairs had even higher Ks values
(2.88–7.18).
Positive (Darwinian) selection is the process of accu-

mulating new favorable mutations and then spreading
throughout the population, while negative (purifying) se-
lection is the process of removing deleterious mutations
[50]. In order to detect which selection process drove
the evolution of the PbNAC gene family in Chinese
white pear, coding sequences (CDS) was used to calcu-
late the Ka/Ks ratio of homologs in the PbNAC gene
family. All Ka/Ks ratios obtained from 84 gene pairs
were < 1 (Additional file 8: Table S6), implying that the
primary force of the evolution of PbNAC family genes
was purifying selection. Thus, these 81 genes appear to
have undergone a recent WGD/segmental duplication,
while eight genes underwent positive selection after replica-
tion differentiation (p < 0.05) (Additional file 9: Table S7).
Moreover, the functionality of these eight genes under posi-
tive selection included: nucleic acid binding, DNA binding,
molecular function, transcription regulation, biological
process, and response to stress.

Expression of PbNAC genes under drought stress
Previous studies have reported that numerous NAC do-
main proteins are implicated in plant drought stress
[51–53], however, there is limited information on the re-
sponse of NAC TFs to the drought stress of Chinese
white pears. To study the response to drought stress in
pear, transcriptomic data of PbNAC genes was analyzed
in plants exposed to drought treatment. Only 109
PbNAC genes showed differential gene expression pat-
tern; six gene clusters were identified and visualized in a
heat map (Fig. 7). Cluster 1 contained 16 PbNAC genes
that experienced significant up-regulation after drought
treatment at 3 h. Cluster 2 contained 31 genes that were
highly induced at 6 h after drought treatment. Cluster 4
contained 18 genes that were highly induced after
re-watering at 24 h, although no transcriptional differ-
ences were evident for PbNAC81b, PbNAC14i,
PbNAC14b, PbNAC33a, or PbNAC104c. Cluster 6 con-
tained 23 genes whose transcription significantly in-
creased at 0 and 1 h of drought treatment, while some
genes experienced down-regulation at 6 h after drought
treatment. Most genes in Clusters 3 and 5 were
up-regulated in response to drought treatment, but their
relative expression levels were lower than genes in other
Clusters. We selected 36 genes that were up-regulated
by at least 1.5-fold after drought treatment and studied

Fig. 5 Evolutionary relationship among the pear PbNAC domain
sequences. The unrooted tree was generated basing on maximum
likelihood analysis. Bootstrap values from 1000 replicates are
indicated at each node. The different colors mark the groups or
subgroups of the NACs
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their expression patterns in other phylogenetic groups
(Additional file 10: Table S8).
We found that seven genes in C100a, five genes in

C90e, two genes in C47a, C2f, C72b, C8b, C83j, C83e, and
C91a, one gene in C42b, C14m, C14j, and C82, and six
genes which were not attributed to any group were
up-regulated in response to drought stress. Eighteen genes
in Cluster 2 were more significantly up-regulated at 6 h
than genes in other clusters, and most genes in Cluster 2
belonged to Groups C100a, C2f, C72b, and C90e. These
results indicate that water deficiency induced PbNAC
genes from different groups, and Groups C100a, C2f,
C72b, and C90e were primarily involved in biological
pathways that mediate drought stress responses.
An orthologous is a homologous gene that differentiates

after a speciation event. It is generally assumed that ortholo-
gous genes retain the same function in different organisms,
and share other key characteristics. Homology pairs (groups)
are produced by evolution; ancestral genes and their func-
tions are maintained by speciation events, and mutations
may occur within the genes after species differences. In
previous studies, 18 NAC TFs-including AtNAC002,
AtNAC081, AtNAC102, AtNAC055, AtNAC019, AtNAC072,
AtNAC098, AtNAC054, AtNAC031, AtNAC092, AtNAC078,

AtNAC083, AtNAC018, AtNAC056, AtNAC025, AtNAC016,
AtNAC029, and AtNAC047 have been shown to be involved
in stress responses in Arabidopsis [54]. Here we found 46
orthologous PbNAC TFs, but only nine PbNAC genes, in-
cluding PbNAC17, PbNAC72a, PbNAC72b, PbNAC2a,
PbNAC2b, PbNAC100b, PbNAC87b, PbNAC21a, and
PbNAC21b that were up-regulated at 3 or 6 h after drought
treatment. These nine stress-response PbNAC genes may re-
tain equivalent functions to those found in Arabidopsis. In
summary, our results indicate that the functions of PbNAC
TFs are largely conserved.
We next performed a Gene Ontology (GO) analysis of

Group C2f, C72b, and C100a, which were the groups
with the greatest number of orthologous PbNAC TFs.
These genes were enriched for the following GO terms:
nucleic acid binding, transcription factor activity, multi-
cellular organismal processes, hormone-mediated signal-
ing pathways, developmental processes involved in
reproduction, gene expression, post-embryonic root de-
velopment, transcription regulator activity, response to
stress, abscisic acid mediated signaling pathways, re-
sponse to hormone stimuli, and response to carbohy-
drate stimuli. Furthermore, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment

Fig. 6-1 and 6-2 Phylogenetic trees of NAC genes in P. bretschneideri, M. domestica, P. persica, P. mume, F. vesca, and A. thaliana based on
maximum likelihood analysis of NAC domain amino acid sequence alignments. The number next to the branch indicates the boot value based
on 1000 copies and different colors mark the subgroups of the NACs
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analysis showed that the following terms were associated
with these genes: biosynthesis of secondary metabolites,
phenylpropanoid biosynthesis, and isoflavonoid biosyn-
thesis. These pathways have previously been shown to
be related to abiotic stresses [55, 56].
To verify that these genes were differentially expressed

under drought stress, the relative transcript abundance
of nine selected genes were analyzed by quantitative
real-time PCR (qRT-PCR). The results of this approach
depicted trends in relative gene expression that were
largely consistent with the previous approach. Seven
genes, including PbNAC17, PbNAC72a, PbNAC72b,
PbNAC2a, PbNAC2b, PbNAC100b, and PbNAC87b,
were up-regulated 3 or 6 h after drought treatment and
then down regulated 24 h of recovery. However, our
qRT-PCR results for PbNAC21a and PbNAC21b differed
from those shown in the heat map, as they were
up-regulated after 24 h of recovery (Fig. 8).

Expression of PbNAC genes under cold treatment
We used the same method to analyze the NAC TFs in
response to cold stress as we did in response to drought
stress. Our results suggested that 113 PbNAC genes
showed differential expression and the resulting heatmap
was divided into six clusters (Fig. 9). Cluster 1 (23 genes)
and Cluster 2 (20 genes) were significantly up-regulated
after returning to room temperature for 24 h. Cluster 3
contained 24 PbNAC genes that demonstrated obvious
up-regulation at 0 h. In Cluster 5 (20 genes) and Cluster
6 (14 genes), most genes were up-regulated at 5 and 12
h after cold treatment, except PbNAC74a, PbNAC56a,
and PbNAC91d. However, after cold treatment some
genes including PbNAC91b, PbNAC2b, PbNAC83g,
PbNAC2a, and PbNAC100c were down-regulated at 0 h.
The genes in Cluster 4 showed no obvious expression
differences in response to cold stress. We selected 26
genes which were up-regulated at least 1.5-fold after
cold treatment, to survey the expression patterns in
other phylogenetic groups (Additional file 11: Table S9).
We found four genes in C100a, three genes in C80b,

two genes in C47a, C2f, C72b, C42b, C83e, and C91a,
and one gene in C104c, C90e, C83j, and C14m. More-
over, three other genes, which were not assigned to any
group, were up-regulated in response to cold stress. Ten
genes in Clusters 5 and 6 were more significantly
up-regulated at 5 or 12 h, compared to genes in other
clusters, and most of these genes belonged to groups
C100a, C2f, and C72b. Thus, PbNAC genes from separ-
ate groups were induced by cold, and these same groups
were identified as being involved in biological pathways
responding to cold treatment. Similarly, we found seven
homologous genes PbNAC72a, PbNAC72b, PbNAC2a,
PbNAC2b, PbNAC87b, PbNAC21a, and PbNAC21b that
were strongly up-regulated not only at 3 or 6 h after

Fig. 7 Heat map of RNA-Seq expression of PbNAC gene in response
to drought. Color scale of the dendrogram represents the scale
value of RPKM
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drought treatment but also at 5 or 12 h after cold treat-
ment. In addition, PbNAC56b and PbNAC25a were also
found to respond to cold stress. The results of the GO
and KEGG pathway analyses were in agreement in this
study. To validate the expression patterns of the nine
genes in phylogenetic tree groups C100a, C2f, and C72b,
we performed qRT-PCR analysis on pear seedlings sub-
jected to short-term cold stress. The results were highly
consistent with our RNA-seq data (Fig. 10). The gene
expression levels of all nine genes increased to their
highest level either at 12 or 24 h, then decreased 24 h
after recovery.

Discussion
As NAC TFs play important roles in diverse processes,
including developmental programs, defense, and abiotic
stress responses, research on these proteins has pro-
gressed considerably [57, 58]. Many NAC TFs have been
identified and functionally characterized in both model
and crop plants, including Arabidopsis, rice, soybean,
and wheat. Moreover, NAC TFs have been identified in
apple, but no large dataset of NAC TFs exists for Chin-
ese white pear [44].

In this study, we performed genome-wide analyses to
identify a total of 183 PbNAC genes and larger than 163
in Populus [4], 151 in rice [59] and 101 in Brachypodium
distachyon [60]. The NAC gene family is the larger fam-
ily within plant species, due to an expansion of the NAC
gene family. It can be speculated that the presence of
additional NAC genes in the pear genome. Through
genome-wide duplication, homologous and historical
duplication events, our analyses of the PbNAC gene re-
vealed that NAC was an ancient gene family that was ex-
panded during the recent WGD. Previous studies have
reported a recent WGD incident in China pear and oc-
curred around 30–45 MYA [43, 61]. Su et al. (2013)
found the expansion of the apple NAC gene occurred in
a recent WGD of 60–65 MYA [44] and has been earlier
than the pear. In addition, we found evidence that puri-
fiying selection was a major force driving the evolution
of the PbNAC family of genes.
Based on gene structure and protein motif analyses,

the PbNAC family was classified into 33 major groups.
Motif and exon/intron analyses showed that the most
closely related members in the phylogenetic tree had
common motif compositions, which points to the exist-
ence of functional similarities among NAC proteins

Fig. 8 Relative expression of PbNAC2a (a), PbNAC2b (b), PbNAC17 (c), PbNAC21a (d), PbNAC21b (e), PbNAC72a (f), PbNAC72b (g), PbNAC87b (h) and
PbNAC100b (i) under drought stress. Three biological replicates were used, reference genes were in Additional file 12: Table S10, and bars
represent the relative expression of different genes under drought stress. *,**, significant at P ≤ 0.05 or 0.01, respectively
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within the same subfamily. The motif and exon/intron were
similar as Brachypodium distachyon and apple [44, 60]. To
examine the phylogenetic relationships among the NAC
proteins in Chinese white pear, we identified unique
PbNAC subgroups in different Rosaceae species and con-
structed a rootless phylogenetic tree from the alignments of
the NAC protein sequences. The different naming and clas-
sification methods may be the main reason for some differ-
ences between the phylogenetic tree in this study and the
phylogenetic tree obtained in previous studies [44, 59, 60].
It could also be explained by different algorithms used in
phylogenetic analysis. Although there were some differ-
ences, the phylogenetic tree obtained in this study was ba-
sically consistent with previous studies. Through the
phylogenetic tree, Subgroup C38g was found only in Chin-
ese white pear and members of this group may have spe-
cialized roles gained after divergence from closely related
species. And the specialized roles of this subgroup need fur-
ther examine.
Abiotic stresses, such as drought and cold, can cause

loss of yield and reduce the quality of fruit trees [62, 63].
The expression of PbNAC genes in response to drought
and cold stress was investigated by using RNA-Seq data.
We found that 36 PbNAC genes were up-regulated at
least 1.5-fold under drought treatment and 26 PbNAC
genes under cold treatment. In addition, groups C100a,
C2f, and C72b were found to be involved in biological
pathways in drought and cold stress responses. Overexpres-
sion of AtNOC019, AtNAC055, AtNAC016, AtNAC096
and AtNAC072 increase the stress tolerance in Arabidopsis
[27, 64]. Moreover, AtNAC019, AtNAC055, and AtNAC072
could specifically bind to the promoter of ERD1 of the
NAC recognition site (NACRS), and enhanced drought tol-
erance [29]. In rice, 40 NAC genes responded to drought or
salt stress, and overexpression of SNAC3 (ONAC003),
ONAC022, OsNAC5, OsNAC2, and OsNAC6 improved
drought tolerance in transgenic plants [51, 65]. In wheat,
overexpression of TaNAC29, TaNAC2, TaNAC2a, and
TaNAC67 was also found to increase tolerance to cold, high
salinity, and drought stresses [66, 67]. In this study, 11
PbNAC TFs orthologs of NAC TFs (identified as being in-
volved in the abiotic stress response) in Arabidopsis were
found to be responsive to drought and cold stresses in pear.
We speculate that these PbNAC TFs may have functions in
pear that are equivalent to those of their Arabidopsis ortho-
logs. Since gene expression patterns can provide important
clues for their functions, we examined the expression of se-
lected 11 PbNAC genes in drought and cold treatments by
using qRT-PCR. Interestingly, these genes are all shown to
be involved in the regulation of drought and cold. In future,
more researches will be needed to determine the functions
of the PbNAC genes in pear.
To date, many studies have investigated the important

roles of NAC TFs in plant growth and development, as

Fig. 9 Heat map of RNA-Seq expression of PbNAC gene in response
to cold. Color scale of the dendrogram represents the scale value
of RPKM
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well as their response to abiotic stresses. Therefore, the
NAC TF family has become the subject of continued at-
tention because of its potential involvement in plant tol-
erance engineering [68–72]. Our results demonstrated
that the eleven PbNAC genes examined in this study
play essential roles in plant responses to abiotic stress,
and therefore may be suitable candidate genes for the
engineering of pear plants with improved stress resist-
ance. Overall, in this study, we provide a comprehensive
analysis of the NAC family in Chinese white pear, and
we discuss the relationship of this family to abiotic stress
responsiveness. The results presented in this report may
facilitate the functional characterization of the NAC gene
family and further understand the relationship among
NAC family members. Alternatively, our results could
also improve our understanding of the molecular basis
of important agronomic traits in pear, including fruit de-
velopment and their abiotic stress response. Taken to-
gether, our results may be useful for identifying new
candidate NAC family genes for genetic engineering of
novel pear germplasms with enhanced stress tolerance.
We will verify the cold and drought tolerance of these
11 genes in future studies.

Conclusions
A total of 183 PbNAC genes were identified from the
pear genome. Based on the phylogenetic relationships
between these genes, we divided the 183 PbNAC genes
into 33 subgroups. The analyses of conserved domains
suggested that PbNAC genes in the same group had
similar functions. NAC genes from pear and Arabidopsis
were present in most subgroups, indicating that these
members had a recent common ancestor. Thus, the
function of most NAC genes might be conserved during
angiosperm evolution. Collinearity analysis showed that
the recent WGD (30–45 MYA) may have contributed to
the large-scale amplification of the NAC gene family in
Chinese white pear. Purifying selection was found to be
major force acting on NAC family genes; eight genes
underwent positive selection after replication differenti-
ation. Transcriptome sequencing analysis identified
PbNAC genes likely to play an important role in re-
sponses to drought and cold stress. Expression and func-
tional data for AtNAC genes supported the hypothesis
that PbNAC genes possess a variety of unique functions
under drought and cold stress. In conclusion, we found
eleven PbNAC genes that play a key role in the response

Fig. 10 Relative expression of PbNAC2a (a), PbNAC2b (b), PbNAC21a (c), PbNAC21b (d), PbNAC25a (e), PbNAC56b (f), PbNAC72a (g), PbNAC72b (h)
and PbNAC87b (i) under cold stress. Three biological replicates were used, reference genes were in Additional file 12: Table S10, and bars
represent the relative expression of different genes under cold stress. *,**, significant at P ≤ 0.05 or 0.01, respectively
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to abiotic stresses. This will facilitate further research on
the biological functions of NAC TFs in pear, while the
functions of these genes are an important topic for fur-
ther research on this species.

Methods
Identification of NAC genes in the white pear genome
The complete genome, proteome sequences, and GFF of
pear (Pyrus bretschneideri) were obtained from http://
peargenome.njau.edu.cn [43]. The corresponding protein
sequences in A. thaliana were downloaded from the
Arabidopsis Information Resource (TAIR) (http://www.
arabidopsis.org/) [73]. In both proteome datasets, if two
or more protein sequences at the same locus were iden-
tical, we selected the longest sequence where they over-
lapped. A HMM profile for the NAM domain (PF02365)
was downloaded from Pfam (http://pfam.xfam.org/fam-
ily/PF02365/). HMMER was used to search a customized
database containing the proteome with the threshold set to
the Pfam GA gathering cutoff [74]. The HMMER-selected
proteins were used for a BLASTp query of the original pro-
tein database. Finally, the BLASTp hits were scanned for
NAM domains using InterPro (http://www.ebi.ac.uk/inter-
pro/) [75]. We used the same strategies to identify the NAC
genes from four other Rosaceae plants. The genome se-
quences of apple, peach, and strawberry were downloaded
from Phytozome (http://phytozome.jgi.doe.gov/pz/portal.
html#) and the Chinese plum genome sequence was down-
loaded from the Prunus mume Genome Project (http://pru-
nusmumegenome.bjfu.edu.cn) [76].

Chromosome location, gene structure, and conserved
motifs in the PbNAC family
We obtained information on the detailed chromosome
location of each PbNAC gene from genome annotation
documents [43]. These data were then integrated and
plotted by using Circos software [77]. The gene structure
of each PbNAC gene was drawn by using the Gene
Structure Display Server online software package (http://
gsds.cbi.pku.edu.cn/) [78]. To investigate detailed infor-
mation regarding protein motifs, the MEME tool was
used to identify conserved motifs shared among PbNAC
proteins [79]. The analysis parameters were set as fol-
lows: maximum number of different motifs: 30; mini-
mum motif width: 6; and maximum motif width: 50.

Phylogenetic analysis
We performed multiple sequence alignment on the NAC do-
mains of the protein sequences by using MUSCLE set at de-
fault parameters [80]. And we constructed phylogenetic trees
by using a Maximum Likelihood approach via FastTree [81].
MrBayes 3.2 was also used to build phylogenetic trees, with
parameters set as follows: lset rates = gamma, ngen =
1,000,000, samplefreq = 100, nchains = 4, stopval = 0.01,

stoprule = yes and sumtburnin = 100 [82]. Classification of
PbNAC genes was performed according to their phylogenetic
relationship with corresponding Arabidopsis AtNAC genes.

Synteny analysis and tests for positive selection
A method similar to PGDD (http://chibba.agtec.uga.edu/
duplication/) was used to perform synteny analysis [83].
First, we identified potential homologous gene pairs
where the E-value was less than 1e-5. Next, 15 genes
were extracted from the left and right side of NAC
genes. The minimum number of homologous gene pairs
in synteny was 3, and the E-value of the common linear
section was 0.01. The Q-value was 0.9. If the alignment
of the homologous pairs between these two chromo-
somal segments were considered to follow a linear rela-
tionship (determined by the correlation coefficient of the
linear regression), we concluded that there was a collin-
ear relationship between the two fragments, which was
presumably due to WGD or segmental duplication.
MCScanX downstream analysis tools were used to anno-
tate the Ka and Ks substitution rates of syntenic gene
pairs. The average Ks value of homologous pairs in the
collinear section reflected the approximate time of repli-
cation. We took Ka/Ks < 1 to be indicative of negative
selection, while a value equal to 1 indicated neutral se-
lection, and > 1 indicated positive selection. We selected
collinear segments where the Ks value was < 0.3 with its
sub-family as the background. A program package for
phylogenetic analysis by maximum likelihood (PAML)
was then used to inspect branch sites [84].

Illumina sequencing and data analysis
Three-month-old Pyrus ussuriensis seedlings were col-
lected from an experimental nursery at National Center
of Pear Engineering Technology Research, Nanjing Agri-
cultural University. In order to remove physiological and
environment influences, shoots of similar length and age
of seedling were chosen. Uniform and healthy plants
were carefully and extensively washed and placed in a
growth chamber at 26 °C with a 16 h light/8 h dark
photoperiod for 2 d. For the drought treatment, the
seedlings were put on clean filter papers (90 × 90mm)
and allowed to dry for 0, 1, 3 and 6 h in an ambient en-
vironment at 26 °C, followed by recovery in water at 26 °
C for 24 h. For the cold treatment, the plants were trans-
ferred to 4 °C growth chambers for continuous treat-
ment for 0, 5, 12 and 24 h, followed by recovery at 26 °C
for 24 h. For each time point, at least 30 seedlings were
used, and the collected samples and stored at − 80 °C
until use. Total RNA from samples was isolated as de-
scribed by Huang et al. (2015) [85]. Solexa/Illumina se-
quencing was done as described by Qi et al. (2013) [86].
There was one biological replicate in RNA-seq. The raw
sequence data analysis and base calling was performed
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by an Illumina instrument software Analyzer at
BGI-Shenzhen. Next, clean sequencing reads were
mapped onto the pear genome reference reported by Wu
et al. (2013) [43]. An improved ultrafast tool for short
read alignment (SOAP) aligner/SOAP2 was subsequently
used to identify continuous gene regions [87]. To obtain
high quality transcriptomic data, a maximum of two
mismatches in clean reads was permitted, and unique
mapped reads were used for further analysis. Reads per
kb per million reads (RPKM) were used to obtain gene
expression levels [88]. Differentially expressed genes
(DEGs) were evaluated by using the XYZ R package,
with the threshold of significance requiring an FDR
≤0.001 and an absolute value of log2

(fold-change) ≥ 1. Inter-
Pro domains [89] were annotated by InterProScan Re-
lease 36.0 [90] to investigate gene expression profiling,
and functional assignments were mapped onto GO
terms [91]. GO enrichment analysis of genes in this
study was performed using WEGO [92]. Enriched KEGG
pathways were investigated according to their P-values
and enrichment factors [93]. This was performed by
conducting a BLAST search against the KEGG database,
and then indicating the relevant KEGG pathway.

Real-time PCR
To validate expression patterns obtained by the digital
transcript abundance measurements, eleven genes were
analyzed using qRT-PCR and the primers were in
Additional file 12: Table S10. The RNA samples for digital
transcript abundance measurements were also used for
qRT-PCR. Total RNA was treated with DNase I to remove
genomic DNA contamination. Approximately 1 μg of total
RNA was used as a template for reverse transcription
using ReverTra Ace- α First Strand cDNA Synthesis Kit
(TOYOBO, TOYOBO Biotech, Japan) according to the
manufacturers’ instructions. QRT-PCR was performed on
a Lightcycler480 (Roche), by using the SYBR® Green Pre-
mix kit (TaKaRa Biotechnology, Dalian, China) [43]. The
composition of the PCR mix was as follows: 10 μl 2 X
SYBR Premix ExTaq™, 2.5 μl each primer, and 1 μl of
cDNA template in a final volume of 20 μl [84]. All reac-
tions were run as duplicates in 96-well plates. Three repli-
cates of each technique were used and the data was
shown as mean ± standard error (SE) (n = 3). Relative ex-
pression levels were calculated by using the 2-ΔΔCt method
and normalizing to expression of the pear tubulin gene
(AB239681) was used as an internal control [94]. The
protocol for real-time PCR was as follows: initiation with
a 10min denaturation at 95 °C, followed by 55 cycles of
amplification with 15 s of denaturation at 95 °C, 15 s of an-
nealing at 58 °C and 20 s of extension at 72 °C. Reads for
fluorescence data collection occurred at 60 °C. A melting
curve was performed from 60 to 95 °C to check the speci-
ficity of the amplified product [86].
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