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Abstract

Background: Endo-β-1,4-xylanase1 (EA), the key endoxylanase in plants, is involved in the degradation of
arabinoxylan during grain germination. In barley (Hordeum vulgare L.), one gene (HvXYN-1) that encode a
endo-beta-1,4-xylanase, has been cloned. However, the single nucleotide polymorphisms (SNPs) that affect the
endoxylanase activity and total arabinoxylan (TAX) content have yet to be characterized. The investigation of
genetic variation in HvXYN1 may facilitate a better understanding of the relationship between TAX content and EA
activity in barley.

Results: In the current study, 56 polymorphisms were detected in HvXYN1 among 210 barley accessions collected
from 34 countries, with 10 distinct haplotypes identified. The SNPs at positions 110, 305, 1045, 1417, 1504, 1597,
1880 bp in the genomic region of HvXYN1 were significantly associated with EA activity (P < 0.0001), and the sites
110, 305, and 1045 were highly significantly associated with TAX content. The amount of phenotypic variation in a
given trait explained by each associated polymorphism ranged from 6.96 to 9.85%. Most notably, we found two
variants at positions 1504 bp and 1880 bp in the second exon that significantly (P < 0.0001) affected EA activity; this
result could be used in breeding programs to improve beer quality. In addition, African accessions had the highest
EA activity and TAX content, and the richest germplasm resources were from Asia, indicating the high potential
value of Asian barley.

Conclusion: This study provided insight into understanding the relationship, EA activity, TAX content with the SNPs
of HvXYN1 in barley. These SNPs can be applied as DNA markers in breeding programs to improve the quality of
barley for beer brewing after further validation.
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Background
Barley (Hordeum vulgare L.) is an ancient crop that is
distributed worldwide. Barley is an important raw mater-
ial in beer brewing [1], and its quality directly affects the
fermentation ability, flavor, turbidity or foam stability of
beer. Studies of the molecular mechanisms underlying
genetic and environmental variation and the quality dif-
ferences in grain protein content, β-glucan content,
β-amylase, limit dextrin enzyme activity and other traits

related to barley quality have been reported [2–9].
Arabinoxylan (AX) is the principal non-cellulosic
polysaccharide in the thick aleurone layer of the barley
grain cell wall [10]. AX has an important influence on
the brewing quality of barley, as it can affect the grain
hardness and water absorption of seeds, hindering the
release of endosperm substances. In the beer-brewing
process, insufficient degradation of AX will hinder the
release of hydrolytic enzymes from the thick aleurone
layer or nutrients from the endosperm, and almost the
non-degradable AX would flow into wort, increase
viscosity, block subsequent filtration and processing,
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increase the turbidity of beer and influenced the flavor
of beer or other beer qualities [11–13].
AX, which consists of a linear 1,4-linked backbone of

D-xylopyranosyl residues with various side chains, is the
main component of hemicellulose in cereals [14]. These
side chains in AXs have been found to increase wort
viscosity and decrease filterability [11, 12].. AXs are
mainly degraded by the glycosyl hydrolases
endo-β-1,4-xylanase (EA, further referred to as xylanase)
(EC3.2.1.8), which can hydrolyse β-1,4-linkages between
xylose residues in the backbone of these polysaccharides,
and exo-β-1,4-xylosidase (EC3.2.1.37) [15, 16]. In cereals,
these enzymes are involved in the depolymerization of
arabinoxylan during seed germination [17]. Particularly
in barley, xylanase can be synthesized and secreted in
the aleurone layer [18]. However, due to the activity of
xylanase in malt, a large amount of arabinoxylan is dis-
solved [13, 19], which in turn improves the viscosity,
foam stability and sensory characteristics of beer [20].
Three endo-β-1,4-xylanase isoenzymes have been

purified from germinating barley and shown to be
endo-hydrolases on the basis of product analysis [21]. A
cDNA which encoding endo-β-1,4-xylanase,with
molecular weight of 41,000 D (Mr41 000) has been
characterized during germinating barley [22, 23].
Caspers et al. [24] have identified the other major
endo-β-1,4-xylanase (XYN-1) in the aleurone of germin-
ating barley grains and the gene located in the long arm
of chromosome 5H. It is expressed as a precursor of mo-
lecular weight 61,500 D (Mr61 500) with both N- and
C-terminal pro-peptides and regulated the disintegration
of aleurone cell.
The ability of different crop species to meet people’s

needs is the result of sequence variation in genes in the
accessions of the given crop species. Single nucleotide
polymorphisms (SNPs) and small insertions and dele-
tions (indels) are the most common forms of genetic
variation in natural crop populations, and these poly-
morphisms may reflect the relationship of phenotypic
variation and plant adaptation in different environments,
thus playing a prominent role in the heritability of phe-
notypes [25]. Recently, association analysis has emerged
as a powerful approach to identify the role of genetic
polymorphisms in the phenotypic variation in beer
barley. For example, Mohsen et al. [26] collected 1862
barley breeding lines and evaluated in 97 field trials
about malting quality traits in barley through
genome-wide association study. They found 108 and 107
significant marker-trait associations malting quality in all
six-row and all two-row breeding programs and the
distribution of favorable alleles for marker-assisted
selection and germplasm exchange. Null LOX-1 activity
varieties with stable foam in beer and better flavor of
beer always were screened out as malting barley. Guo et

al. [20] identified a rare C/G mutation (SNP-61) in the
second intron which result in null LOX-1 activity
through an altered splicing acceptor site and the SNP
could be used in breeding programs for barley to be
used for malting. In general, superior malting quality re-
quires a high conversion of starch to fermentable sugars.
Gong et al. [27] selected one gene, encodingβ-amylase,
which could convert starch to sugars during malting as
an indicator to improve malting quality; their results
demonstrated that the broad variation in Bmy1 could
provide novel alleles for the improvement of diastatic
power and malting quality. Jin et al. [28] used
structure-based association analysis to demonstrate that
the key SNPs of HvLDI associated with limit dextrinase
(LD) activity could be used to increase the conversion
efficiency of conversion of starch to sugars during malt-
ing and improve the quality of beer. Hassan et al. [29]
revealed three significant quantitative trait loci (QTL)
associated with grain AX levels in barley through
genome-wide association analysis., while they did not
mentione the gene HvXYN1 The research conclusions
concerning AX content are quite clear, but there are few
studies of the relationship of EA activity and TAX con-
tent. To date, allelic variation of HvXYN1 in barley has
not been systematically examined. Exploration of genetic
variation in HvXYN1 may provide a better understand-
ing of the functions of HvXYN1 and may yield useful
information for improving the quality of barley.
In barley, only Caspers et al. [24] have cloned the

endo-beta-1,4-xylanase gene (XYN-1). However, the key
SNPs that were related to endo-xylanase activity and xy-
lan content have yet to be reported. Therefore, to evalu-
ate nucleotide diversity and to perform neutrality tests
of detected regions, we detected allelic variation in the
targeted region of HvXYN1 in 210 cultivated barley
micro-nucleus germplasms collected from diverse geo-
graphical areas. In addition, association analysis between
the allelic variations and EA activity and TAX content
was performed to identify the key SNPs that significantly
influencing TAX content and EA activity indifferent bar-
ley grain and to provide guidance for developing an
allele-specific marker and improving beer barley quality
by these key SNPs.

Results
Phenotypic variation
Significant amounts of genetic variation in EA activity
and TAX content were observed among the 210 barley
accessions (Fig. 1). The mean value of EA activity was
2.95 U/g, ranging from 1.97 U/g to 5.08 U/g; the value
for TAX content was 5.95%, ranging from 1.76 to
13.29%. Moreover, normal distributions of EA activity
and TAX content were observed (Fig. 1a, b), suggesting
that multiple genes/QTLs control the focal traits in
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barley. Large phenotypic variation was observed for all
traits; on the whole, the mean coefficient of variation
(CV value) of TAX content (36%) was much larger than
that of EA activity (19%), suggesting that the greater
variation in TAX content is mainly controlled by genetic
factors and is affected by environmental variation. In
addition, the TAX content variation reached 36%, which
further indicated that it was more vulnerable to environ-
mental variation. The values of the two traits were
significantly and positively correlated (R2 = 0.135*)
(Table 1).

Nucleotide polymorphisms in HvXYN1
By amplifying the genomic region of HvXYN1 which is
located in the long arm of chromosome 5H in barley,
142 natural variation sites were identified among the 210
accessions by sequencing analysis (Table 2). Nucleotide
diversity (π) of the targeted region of HvXYN1 was
0.00736 across 210 barley accessions. The π values dif-
fered among geographic regions, ranging from 0.0018
for east European accessions (4 accessions) to 0.0103 for
east Asia accessions (46 accessions) (Table 2). To test
whether the identified nucleotide polymorphisms were
selectively neutral, D*, F* and Tajima’s D statistics were
calculated. For the 210 barley accessions, Tajima’s D
value was − 1.48, but this was not significant (P > 0.05).
However, the values of D* and F* were highly significant.
Apart from the Asian and European accessions, other
subgroups were from Africa, Middle East Asia and
North East Asia, suggesting that the gene has not been

under strong selection. However, the values of Tajima’s
D from East Africa were statistically significant (P < 0.05)
(Table 2). This suggests that nucleotide variation in the
HvXYN1 gene in Africa did not result from standard
neutral evolution.

Population structure and genetic diversity
In the correlation analysis, the population structure was
taken into account to avoid false positive results.
Analysis of genetic distance and population structure
confirmed the presence of significant structure in the
barley population. The 35 SSR markers were used to
evaluate the subset of 210 varieties genotypes. Stratifica-
tion within the barley population was detected by
STRUCTURE. The largest value of the statistical index
ΔK was used as an indicator of the most probable num-
ber of subpopulations for all accessions (Fig. 2). The ΔK
value attained a clear maximum at K = 5, and the five
groups (or clusters) revealed relatively low levels of ad-
mixture, with groups G1, G2, G3, G4 and G5 containing
46,13,47,43 and 51 accessions, respectively (Fig. 3).

Species geographical information
The geographical distribution of the 210 cultivars used
in the analysis comprised 37 from Africa, 112 from Asia,
and 61 from Europe (Table 3). Analysis of regional infor-
mation of EA activity and TAX content revealed that EA
activity in cultivars from Africa (3.487 U/g) was signifi-
cantly higher than that of cultivars from Asia and
Europe. In addition, Europe (2.781 U/g) had the lowest
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Fig. 1 The frequency distribution of EA activity and TAX content of the examined barley accessions. The histogram indicates the phenotypic
distribution frequency, and the curve indicates the fitted normal curve. The X axis represents EA activity and TAX content; the Y axis represents
frequency of EA activity and TAX content. a The frequency distribution of EA activity. b The frequency distribution of TAX content

Table 1 Phenotypic scores of EA activity and TAX content for 210 barley accessions

Trait N Mean ± SD CV (%) Range skewness kurtosis R2 Spearman TAX

TAX (%) 210 5.95 ± 2.16 36 1.765 ± 13.297 1.065 1.328 –

EA (U/g) 210 2.94 ± 0.56 19 1.97 ± 5.085 0.955 1.542 0.135*

Note: The first column indicates the main traits of xylan. *Correlation (R2) of TAX and EA is significant at the 0.05 level (2 tailed). EA Endo-β-1,4-xylanase activity,
TAX Total arabinoxylan content, N number of barley accessions tested, SD standard deviation.*Correlation is significant at the 0.05 level (2-tailed)
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activity (Fig. 4a and Additional file 1: Table S1); African
cultivars had significantly higher TAX content than
those from Asia and Europe, with Asia being the lowest
(Fig. 4b and Additional file 1: Table S1).

Associated SNP loci and haplotypes
Association analysis was performed to find possible links
between nucleotide variation in HvXYN1 and barley
xylan-related traits. Sequencing identified 56 SNPs in the
targeted region of HvXYN1. Among the 56 SNPs, 53 were
from coding regions and three were from non-coding re-
gions. Of the former, three were significantly associated

with the two focal phenotypic traits. The SNPs at
positions 110, 305, 1045, 1417, 1504, 1597, 1880 bp in the
genomic region of HvXYN1 were significantly associated
with EA activity (P < 0. 001), and these explained 5.8, 5.8,
8.0, 8.8, 9.9, 6.3 and 7.0% of the phenotypic variation,
respectively (Table 4, Additional file 2: Figure S1 and
Additional file 3: Figure S3). Haplotype-trait associations
were restricted to haplotypes with a higher than 5%
frequency of minor alleles. The 210 barley accessions
analyzed contained ten haplotypes (EH1-EH10) (Fig. 5a)
according to the seven significant association SNPs
(Table 4). Among these, the EH8-EH10 haplotypes

Table 2 Barley HvXYN1 nucleotide diversity (π), haplotype diversity and selection (D* and F*, and Tajima’s D) statistics for each
geographic region

Population Number of
accessions

Number of polymorphic
sites (π)

Nucleotide
diversity

Number of
haplotypes

Haplotpe
diversity

D* F* Tajima’s D

Total 210 142 0.00736 80 0.923 4.642** −3.733** −1.484

EAF 30 19 0.00438 4 0.603 1.290* 1.823* 2.124*

NAF 7 32 0.00709 5 0.806 0.758 0.825 0.666

ASI 112 141 0.00903 60 0.954 −3.522** −3.133** −1.426

WAS 47 60 0.00709 23 0.909 −1.245 −1.034 −0.194

EAS 47 123 0.0103 30 0.952 −1.735 −1.830 − 1.186

SAS 16 53 0.00901 11 0.943 −0.051 −0.029 0.0416

WEU 9 21 0.00477 5 0.833 0.306 0.461 0.742

CEU 19 36 0.00573 10 0.915 −0.138 −0.102 0.032

EEU 5 8 0.0018 3 0.700 −0.807 − 0.845 −0.807

SEU 17 30 0.00473 6 0.743 −0.099 −0.130 − 0.145

EUR 61 39 0.00492 23 0.855 0.367 0.350 0.163

Note: AFR Africa, EUR Europe, ASI Asia; EAF East Africa, NAF North Africa, EAS East Asia, WAS West Asia, SAS South Asia, WEU West Europe, CEU Central Europe, EEU
East Europe, SEU South Europe, *, P < 0.05; **, P < 0.01

Fig. 2 Estimation of the most probable number of clusters k, based on 10 independent runs and k ranging from1 to10. The delta K value
reached a peak at K = 5, indicates relatively low levels of the admixture with five subgroups in the panel. The X axis represents K, and the Y axis
represents delta K
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were present in much lower frequency and were
excluded from further analysis. Thus, only seven
haplotypes (EH1-EH7) were used in the association
analysis. The mean value of the EH6 haplotype for
EA was 3.63 U/g; this was higher than those of haplo-
types EH2 and EH3 (P < 0. 05) and was significantly
higher than those of haplotypes EH1, EH4, and EH5
(P < 0. 01) (Fig. 6a and Additional file 4: Table S2).
EH4 had the lowest endo-xylanase activity (2.644 U/
g), significantly lower than the values of haplotypes
EH1, EH2, EH3 and EH6 (P < 0.01). Further analysis
revealed that the highest-activity (EH6) and
lowest-activity (EH4) mutations were located at 1504
bp and 1880 bp, respectively, and that the activities of
EH1 and EH2 were also significantly higher than that
of EH3. The unique variation site was occurred at
1504 bp. This C-G transversion at 1504 bp may have

caused the decrease in EA activity. The EA activity at
1504 bp allele C was 3.07 U/g, which was significantly
higher than allele G (2.78 U/g) (Fig. 7a and
Additional file 5: Table S3). Thus, SNP 1504 was
considered as the candidate variant affecting EA
activity. The variation of allele G to C at 1880 bp
resulted in an amino acid mutation from valine to
leucine. The phenotypic analysis revealed that EA
activity at this site with G (3.01 U/g) was significantly
higher than with C (2.66 U/g); we therefore speculated
that the G/C mutation at 1880 bp resulted in the
changes of EA activity. The sites 110, 305, and 1045
consisting of three haplotypes (TH1-TH3) (Fig. 5b,
Additional file 6: Figure S2, and Additional file 3:
Figure S3) were highly significantly associated with
TAX content and explained 6.5, 6.5 and 5.4% of the
phenotypic variation for TAX content, respectively.
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Fig. 3 Population structure of 210 barley accessions based on 35 SSRs (K = 5). Five colors indicate the subpopulations G1, G2, G3, G4 and G5,
respectively. Each accession is represented by a thin vertical line with the lengths proportional to each of the subpopulations. The y-axis is the
subgroup membership, and the x-axis is the accessions in the five groups (G1, G2, G3, G4 and G5)

Table 3 Geographic origins of the barley accessions used in the study

Continent Geographical region Country

Africa (37) Northern (7) Morocco (1), Tunisia (2), Egypt (4)

Eastern (30) Ethiopia (30)

Asia (112) Western (47) Syria (4), Iran (7), Armenia (3), Georgia (2), Azerbaijan (3), Iraq (12), Turkey (16)

Middle (2) Afghanistan(2)

Eastern (47) Korea (20), China (13), Japan (14)

Southern (16) Pakistan (1), India (3), Nepal (12)

Europe (61) Western (13) France (5), United Kingdom (4)

Central (19) Germany (4), Switzerland (3), Czechoslovakia (7), Poland (4)

Eastern (5) Bulgaria (4), Union of Soviet Socialist Republics (1)

Southern (17) Italy (4), Yugoslavia (3), Rumania (5), Hungary (1), Spain (4)

Northern (7) Finland (3), Denmark (2), Sweden (2)

Note: Numbers in brackets indicate how many accessions from each country
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However, the TAX content of the three haplotypes
did not reach significant differences. The highest
(TH3) TAX content was 6.99% and the lowest (TH1)
was 5.96%; the two values were not significantly
different (P > 0.05) (Fig. 6b and Additional file 4:
Table S2). Three SNPs (110, 305, 1045) significantly
associated with EA activity and TAX content, which
would be the key SNPs that affect the traits of xylan.
There were seven SNPs significantly associated with
EA activity, while only one marker in 1880 bp is
biologically significant. Therefore, we speculate that
1880 bp can be used in marker-assisted selection to
improve the quality of beer barley but it still need be
further experiment validation.

Regional distribution of different haplotypes
Analyzing the distribution of haplotypes in different re-
gion, we found that the distributions of EH1, EH2, EH3,
EH4, and EH5 were nonrandom. The haplotype EH6
was mainly distributed in Africa (Fig. 8a) and had higher

enzyme activity (Fig. 6a). The lower-activity haplotype
EH4 was mainly distributed in Europe and western Asia.
This result was consistent with the EA active regional
distribution, supporting the hypothesis that the EH6
haplotype is correlated with the high EA activity
observed in Africa.
For the distribution of TAX traits, there were three

haplotypes (TH1, TH2, and TH3) that were distributed
in Africa, Europe, and Asia (Fig. 8b). TH1 had the most
extensive distribution; TH2 was most widely distributed
in Europe, followed by Africa and Asia; TH3 was less
widely distributed in the three regions. The TH1 haplo-
type with the lowest TAX content was the Maximum
distribution, while the TH3 haplotype with the highest
TAX content had only three varieties, indicating that the
TAX content in different regions was mainly affected by
the TH1 haplotype. The genotype of the TH1 haplotype
was consistent with the haplotypes EH1, EH2, EH3,
EH4, and EH6 affecting EA activity. Moreover, EH4 had
the lowest EA activity and EH6 had the highest,

Africa Europe Asia
0

2

4

6

8

10

12

14

Africa Europe Asia

E
A

 A
ct

iv
it

y 
(U

/g
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5a b
**

**

Regions Regions

T
A

X
 C

on
te

nt
 (

)

Fig. 4 Comparisons of the EA activity and TAX content in different regions. a EA activity contrasts in different geographic regions. b TAX content
contrasts in different geographic regions. ** indicates highly significant (P < 0.01) difference between means. The Duncan multiple range test and
critical test were conducted if the analyses were significant (P < 0.05)

Table 4 Significant associations between SNPs of HvXYN1 and EA activity and TAX content of barley

Trait Marker Position F P R2 nucleotide amino acid

EA 1504 Exon 20.885 8.29E-06 ** 0.099 C/G G

EA 1417 Exon 18.675 2.39E-05** 0.088 A/G V

EA 1045 Exon 16.908 5.62E-05** 0.080 C/T N

EA 1597 Exon 13.454 3.09E-04** 0.063 A/G A

EA 110 Intron 12.278 5.60E-04** 0.058 G/C –

EA 305 Exon 12.278 5.60E-04** 0.058 G/A P

EA 1880 Exon 7.374 8.03E-04** 0.070 G/− V/L

TAX 110 Intron 13.750 2.68E-04** 0.065 G/C –

TAX 305 Exon 13.750 2.68E-04** 0.065 G/A P

TAX 1045 Exon 11.457 8.50E-04** 0.055 C/T N

Note: The ‘Marker’ representing the nucleotide acid position in the genomic sequences of HvXYN1. R2 is the fraction of the total variation explained by the marker.
* Indicates SNP significantly (P < 0.0001) associated with traits. ** Indicates SNP highly significantly (P < 0.00001) associated with traits
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<Haplotype> 110 305 1045 1417 1504 1597 1880 No.accession

EH1 G G C A C G G 60
EH2 G G C A C A G 54
EH3 G G C G G G G 38
EH4 G G C G G G C 29
EH5 C A T G G G G 12
EH6 G G C G C G G 9
EH7 G G T G G G G 3
EH8 G G C G G G - 2
EH9 G G C A C A - 2
EH10 C A T G G G - 1

Protein - P N V G A V/L -

<Haplotype> 110 305 1045 No.accession

TH1 G G C 194
TH2 C A T 13
TH3 G G T 3

Protein - P N

a

b

1

ATG
34  116 640                731 1926bp

Exon
Intron

TGA

Fig. 5 Haplotype analysis of the HvXYN1 gene region in the 210 accessions of EA activity and TAX content. The XYN1 sequence contained three
exons (indicated in black boxes), two introns (indicated in white boxes) and the full length of 1926 bp genome is shown at the top of the
diagram. The position of each SNP is shown in the first row as described in Table 4 (SNP frequency > 5%). Ten haplotypes (EH1-EH10) were detected in
the EA activity (a) and three were detected in the TAX activity (b) among all the accessions. The number of accessions (No. accession) in different
haplotypes is shown in the far right columns, and amino acid change variation corresponding to the SNPs is shown in the last row. Capital letters in
this row represent the amino acid as follows P: Proline; N: Asparagine; V: Valine; G: Glycine; A: Alanine; V: Valine; L: Leucine
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had the highest EA activity, significantly greater than the other haplotypes (P < 0.05). EH4 had the lowest EA activity, significantly lower than the
other haplotypes except for EH5 (P < 0.05). b TAX content contrasts in different haplotypes (TH1-TH3). TH3 had the highest mean TAX content,
and TH1 had the lowest mean TAX content, but neither reached significance level. The X-axis shows the haplotype of EA and TAX described in
Fig. 4, and the Y-axis shows the corresponding EA activity and TAX content

Lu et al. BMC Plant Biology          (2019) 19:170 Page 7 of 13



indicating that EA activity had little effect on TAX
content. TH3 had three accessions, so the result is not
representative.

Discussion
The XYN1 gene has been cloned in several grass plant
species [22, 30, 31], but its key SNPs have not been char-
acterized. In this study, 56 natural variation sites were
identified from 1892 bp of the DNA sequence of
HvXYN1 across 210 barley accessions. The SNPs were
distributed unevenly along the DNA sequence, with 53
and 3 variation sites in the exon and intron regions, re-
spectively. Notably, the third exon contained the greatest

nucleotide variation. Several studies have demonstrated
a low level of polymorphism in exon regions and a high
level in non-coding regions of barley [32–35], but the
opposite result was observed in our research. There was
a high level of polymorphism in exon regions of
HvXYN1. It might be due to that the increased yield or
disease resistance genes have gone through stronger
selective pressures during domestication and breeding
[36, 37]. HvXYN1 encodes endo-beta-1,4-xylanase which
mainly degraded xylan during germinating barley from
the aleurone layer. Endo-beta-1,4-xylanase have an influ-
ence one content of xylan during seed germination,
while it contributes little influences to the germination
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of seed or the growth of plants. The other reason is that,
the domestication of barley, gene flow was not an iso-
lated event but probably a continuous process. Indeed,
the genome of a 6000-yr-old barley landrace carried
signatures of the wild barley introgressions [38].
Tajima’s D measures the deviation from neutral evolu-

tion by comparing diversity estimates based on nucleo-
tide diversity and average pairwise nucleotide diversity
(π). In this study, the Tajima’s D test was performed on
the HvXYN1 sequence, yielding a value of − 1.44863
(Table 2). While this was below the significant statisti-
cally level, the values of D* and F* were significant, indi-
cating that the evolution of the gene is basically in
accord with the principle of neutral evolution. However,
a negative Tajima’s D indicates population size expansion
(for example, following a bottleneck or a selective
sweep) or purifying selection [39–41]. This may be the
reason for the low number of SNPs observed, in accord
with previous research on other functional genes in bar-
ley [42–44]. However, in east Africa, the percent poly-
morphism was 0.0438, and the value of Tajima’s D was
2.123* and was statistically significant at the P < 0.05
level, suggesting that the gene may be experiencing
negative selection to maintain a lower mutation rate, so
that favorable alleles have been strongly positively se-
lected [39–41]. Compared to previous research on barley
[42, 45, 46], nucleotide diversity (π = 0.00736) and haplo-
type diversity (Hd = 0.923) of HvXYN1 were relatively
high in this study. The differences in SNP frequency
among studies may be due to differences in genomic re-
gions assayed, or the number, content and geographic
origins of the germplasm used [47–49]. In comparing
the gene polymorphisms of HvXYN1 from different re-
gions, the barley germplasm from East Asia showed the
highest level of nucleic acid polymorphism (π = 0.0103),
consistent with previous research results [44, 50, 51].
One probable reason is that these geographic regions
were the main distribution areas of wild barley [52].
Association analysis is one powerful method to explore

the relationship between sequence polymorphisms and
phenotype variation [53]. In the present study, seven
variants of HvXYN1 were significantly (P < 0.001) associ-
ated with xylan-related traits in barley. Among these,
one variant at 110 bp of HvXYN1 was within an intron
region, while the other six at positions 305 bp, 1045 bp,
1417 bp, 1504 bp, 1597 bp and 1880 bp were within
exons. Meanwhile, three variants (at positions 110 bp,
305 bp and 1045 bp) were associated with TAX content
but were not significant. Xia et al. [44] discovered a
synonymous mutation associated with phenotypic traits.
In our study, there was also one SNP at 1504 bp, a
synonymous mutation of G to C, that significantly in-
creased EA activity (Fig. 7a), although this did not cause
structural change of the gene product. A reasonable

explanation for this phenomenon was the hitchhiking
effect of a locus undergoing positive selection [54] or
a false positive association. Thus, the SNPs identified
by the association analysis should be validated before
they can be applied to marker-assisted selection in
the progeny [55, 56]. In addition, epigenetic or
post-transcriptional regulation presumably affected the
change in EA activity. Notably, a nonsynonymous
amino acid substitution in the third exon of the
HvXYN1 gene at 1880 bp (C) has contributed to the
low EA activity phenotype (Fig. 7b). Thus, the
changes in the functional properties of the enzyme
were likely caused by the change of bases [20, 57].
How the amino acid substitutions of different se-
quences impact the EA activity remains unclear. Fur-
ther research using a quantitative xylanase method
will be required to understand the relationship be-
tween non-synonymous mutations and EA activity.
The change of V to L at this site may also indicate
that it was an important SNP and that it can provide
an important genetic resource for barley breeding
research.
In agreement with the results of previous studies [58],

TAX content had a greater CV (36%) in barley malt.
One possible reason is that TAX content may be greatly
affected by environmental factors. EA activity and TAX
content were significantly and positively correlated (R2

= 0.135*) (Table 1) and the result suggest that EA activ-
ity and TAX content would be controlled by a common
factor. We examined the geographical distribution of
these haplotypes and found that there was no signifi-
cant difference among the three haplotypes of TAX, but
there was significantly higher diversity in Africa than in
Europe and Asia. This may be due to the tropical loca-
tion of Africa; for example, water deficiency and
drought-induced stress could increase TAX content
[59]. The EH6 haplotype with the highest EA activity
(3.628 U/g) was mainly distributed in Africa, while the
lowest (EH4) haplotype was mainly distributed in Eur-
ope. The current results suggested that AX content in
malt could be not only related to EA but also be con-
trolled by specific enzymes. Previous reports concerning
the hydrolysis of AX during malting found that endoxyla-
nase activity rose sharply after 72 h germination [60].
Thus, it is not difficult to understand why the accumula-
tion of TAX content in African varieties induced
enhanced EA activity in our study. In addition, barley has
different uses in different regions. In European regions,
barley is mostly used for beer brewing, which requires a
lower TAX content; however, in Africa, barley is still an
important food crop. Therefore, the EH6 haplotype that
leads to high EA activity is mainly distributed in Africa,
while the H4 haplotype with low EA activity is mainly
found in Europe and Asia.
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Conclusion
This study identified 10 unique haplotypes based on 56
variations in HvXYN1 among 210 barley accessions
collected from 34 countries. Seven SNPs and seven hap-
lotypes were significantly (P < 0.001) associated with EA
activity and TAX content in barley. These SNPs can be
applied as DNA markers in breeding programs to im-
prove the quality of barley for beer brewing after further
validation.

Methods
Plant materials and planting
A set of 210 barley (Hordeum vulgare L.) accessions
sourced from 34 countries in three adjacent geographic
regions, including Asia, Africa and Europe, (Table 3 and
Additional file 7: Table S4). The 210 barley accessions
were planted in Hangzhou Normal University (N30°19′
7.12′′ N, E 120°23′7.89′′ E) test field. The sowing date
were mid-November in 2014 and 2015, respectively.
Each cultivar was grown in a plot, consisting of three
lines. The plots were arranged by a randomized block
design with three replications. At maturity, the middle
line of each plot was harvested. After dried in an oven,
about 20 g seeds from each plot were ground with a
sample mill (Tesite instrument company, Tianjin, China)
to pass through a 0.5-mm sieve and stored at ambient
temperature for further chemical assay.

PCR amplification and sequencing
Genomic DNA was extracted from leaf of each accession
using CTAB method [61]. The primers used for DNA
amplification were designed using the primer 3 online
tool (http://primer3.ut.ee/). Through the primer walking
technique, three overlapping oligos were designed to
amplify 1926 bp of the gene. Details of primers were
given in Additional file 8: Table S5. The PCR reactions
were completed as following: 25 μL of 10 × KOD buffer,
10 μL of 2 mM dNTPs, 2.5 μL of 10 μM forward primers,
2.5 μL of 10 μM reverse primer, 4 μL of genomic DNA
and 5 μL of ddH2O for each sample. The PCR amplifica-
tion programs were as follows: initial denaturation at 94
°C for 2 min, followed by 34 cycles of denaturation at 98
°C for 10 s, annealing at 56 °C for 30 s, and extension at
68 °C for 1.0 min followed by final extension at 72 °C for
10 min. The PCR products were analyzed by 5% agarose
gel electrophoresis in 0.5 × TBE buffer. All the product
was sent to Hangzhou Zhixiu Technology Co. Ltd. for
sequencing. Then the SeqMan program in the Lasergene
software was used for splicing.

Determination of total arabinoxylan (TAX) content in barley
Determination of total arabinoxylan (TAX) content,
referred to the methods described by previous studies
[58, 62, 63] with slightly improvements: 0.1 g sample

mixed with 4 mL H2SO4 (1 mol L-1) in 1.5 mL centri-
fuge tube, then extracted in boiled water for 10 min, and
cooled to room temperature. Centrifuged at 6000
rmp·min-1 for 5 min, took 1 mL of supernatant into a
15mL centrifuge tube, added an equal volume of H2O,
then added 10mL of reaction solution (110 mL glacial
acetic acid, 2 mL conc. HCL, 1 mL 1.75 g (1 mL glucose,
5 mL of 10% phloroglucinol-ethanol solution) and
mixed. After reacted for 25 min in boiling water, cooled
rapidly to room temperature and stopped the reaction.
Determine by dual wavelength method (552 nm and 510
nm) and the difference in absorbance of the reaction
solution was calculated, the total arabinoxylan content
in the sample was calculated according to the standard
curve. Each measurement was done with three
replications.

Determination of EA activity
Sprouted barley samples were homogenized in a mortar
and grind rapidly in ice-cold homogenisation buffer (50
mM sodium acetate pH 5.0 containing 250 mM NaCl,
0.1% (w/v) polyvinyl polypyrrolidine (PVPP) and 0.5%
(v/v) protease inhibitor cocktail (Sigma product P9599)
at 2.5 ml/g malt [64]. The addition of 250 mM NaCl and
PVPP enhanced recovery of endoxylanase activity. After
leaving for 20 min at 0 °C, insoluble material was re-
moved by centrifugation. The supernatant homogenate
was filtered through Whatman GF/C glass fibre filters.
Prior to analysis by dinitrosalicylic acid (DNS), fractional
precipitation of the soluble extracted overnight against
10 mM sodium acetate pH 5.0. The dialysates were
applied to a cation exchange column (Resource-S,
Amersham Pharmacia Biotech Ltd) pre-equilibrated in
10mM sodium acetate pH 5.0 and eluted with a gradient
of 0–500 mM NaCl in the same buffer over 25 min.
The activity of endoxylanase was determined using

dinitrosalicylic acid (DNS) [65, 66] with the commercial
xylose (Sigma) as a standard curve. The basic principle
of the method is that xylanase could catalyze xylanase to
produce reduced sugars such as xylose under certain
conditions. Reducing sugar with DNS could produce
chromogenic reaction. 1.0% birchwood 4-O-methyl glu-
curonoxylan (Roth 7500) in 0.05M Na-citrate buffer,
pH 5.3. 1.0 g of xylan fully dissolved in 80ml buffer at
60 °C and heated to the boiling point. Then cooled with
continued stirring, covered and mixt slowly overnight.
The following day made up to 100 ml with buffer. Store
at 4 °C for a maximum of 1 week or freeze aliquots of
e.g. 25 ml at − 20 °C~ Mix well after thawing. First added
1.8 ml oat xylan as substrate solution and 200 μL enzyme
diluted appropriately in citrate buffer to a 15 ml test
tube. Incubated the mixture for 5 min, at 50 °C. Then
added 3.0 ml DNS, mixed and removed the tube to the
water bath. Boil for 5 min, then cool quickly in cold
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water. Measure the colour produced at 540 nm against
the reagent blank. Corrected the absorbance for
background colour in the enzyme blank (add 200 μL
buffer) if necessary. Used the standard line, convert the
corrected absorbance to enzyme activity units (1 μmol/
min). Calculate the activity, which is mean the amount
of enzyme to generate 1 μmol xylose in one minute.

Population structure analysis
The barley germplasm collection was structured into
geographical groups in which some individuals were
possibly related, so background genetic effects needed to
be controlled to avoid spurious associations. Incor-
porating structure components as covariates in associ-
ation analysis helps to reduce the false associations [67].
All of the accessions were genotyped using 35 SSR
markers assigned to seven chromosomes of barley
(Additional file 9: Table S6). Amplification of the SSRs
was carried out as described by Hayden et al. [68]. Amp-
lified PCR products were scored by comparing sizes be-
tween PCR products and a molecular weight ladder.
Data from the 35 SSR markers were used to determine
the population structure. Program STRUCTURE version
2.3.3 [69, 70] was used for population structure analysis,
in which the number of clusters (k) was set from 2 to
11, and ten iterations were performed in an admixture
model with a 10,000 iteration burn-in period and
100,000 MCMC (Markov Chain Monte Carlo) iterations.
The most probable number of clusters (k) was estimated
according to the value of ΔK. When ΔK had the highest
value, the value of k indicated the number of clusters
[71]. The optimal number of subpopulations was deter-
mined by the statistic ΔK based on the rate of change of
the likelihood value [72].

Association analysis and statistical analysis
The multiple genomic sequences were aligned by Clus-
talW 2.0.9 [73]. Sequence start and end adjustment was
performed using the BioEdit V7.2.5 software, and the
alignment results were used as input into TASSEL 3.0
[74], where the SNP was considered as a fixed effect.
Association analysis between SNP markers in XYN1 and
EA activity and TAX content related traits was evaluated
using a general linear model (GLM_Q) in TASSEL v3.0
(http://www.maizegenetics.net/tassel), where the SNP
was considered as a fixed effect and the factor matrix of
subpopulation membership (Q matrix) was used as a co-
factor to account for population structure. The signifi-
cance of associations between markers and traits was
tested using an F-test. The association between a marker
and a trait is represented by its R2 value, an estimate of
the percentage of phenotypic variation explained by the
marker. Haplotypes with a frequency < 5% were dis-
carded to avoid biased associations. Nucleotide diversity

(π), haplotype diversity, Tajima’s D [41] and D* and F*
[39] values were calculated using the DnaSP 5.0 program
[75]. Linkage disequilibrium (LD) was estimated by using
standardized disequilibrium coefficients (D’) and squared
allele-frequency correlations (R2) for pairs of SNP loci
according to the TASSEL program. Polymorphism
information content (PIC) was calculated as described in
Kota et al. [76]. TASSEL was also used to identify SNP
trait associations by generating a general linear model
(GLM). The Duncan multiple range test and critical
test were conducted if the analyses were significant
(P < 0.05). Correlations between three traits and gene
expression levels were examined by the Spearman
correlation coefficient test. Statistical analysis was per-
formed using the SPSS software. Phylogenetic analyses
were conducted using the MEGA7 software with the
following parameters: tested neighbor joining tree,
Poisson correction, pairwise deletion, and bootstrap
analysis with 1000 replicates [77].
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