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Abstract

Background: Technical limitations regarding bulk analysis of phytoplankton biomass limit our comprehension of
carbon fluxes in natural populations and, therefore, of carbon, nutrients and energy cycling in aquatic ecosystems.
In this study, we took advantage of Synchrotron FTIR micro-spectroscopy and the partial least square regression
(PLSr) algorithm to simultaneously quantify the protein, lipid and carbohydrate content at the single-cell level in a
mock phytoplankton community (composed by a cyanobacterium, a green-alga and a diatom) grown at two
temperatures (15 °C and 25 °C).

Results: The PLSr models generated to quantify cell macromolecules presented high quality fit (R2 ≥ 0.90) and low
error of prediction (RMSEP 2–6% of dry weight). The regression coefficients revealed that the prediction of each
macromolecule was not exclusively dependent on spectral features corresponding to that compound, but rather on
all major macromolecular pools, reflecting adjustments in the overall cell carbon balance.
The single-cell analysis, studied by means of Kernel density estimators, showed that the modes of density distribution
of macromolecules were different at 15 °C and 25 °C. However, a substantial proportion of cells was biochemically
identical at the two temperatures because of population heterogeneity.

Conclusions: The spectroscopic approach presented in this study allows the quantification of macromolecules in
single phytoplankton cells. This method showed that population heterogeneity most likely ensures a backup of non-
acclimated cells that may rapidly exploit new favourable niches. This finding may have important consequences for the
ecology of phytoplankton populations and shows that the “average cell” concept might substantially limit our
comprehension of population dynamics and biogeochemical cycles in aquatic ecosystems.

Keywords: Algae, Chemometrics, FTIR-spectroscopy, Macromolecules, Phytoplankton, PLSr, Single cell, Synchrotron
radiation, Temperature

Background
The assimilation of inorganic nutrients into organic mac-
romolecules allows phytoplankton growth. The genotype
and the environment define the macromolecular stoichi-
ometry (i.e. proteins:lipids:carbohydrates) of new cells and
therefore the electrons and carbon (C) required to pro-
duce them [1]. Thus, a precise quantification of cell

macromolecules would shed light on the cost of biomass
production and on its quality [2–4]. From a physiological
point of view, this may reveal interesting acclimation pat-
tern at different growth conditions, whereas from an eco-
logical perspective it could provide important information
concerning the energy transfer in food-webs and about
biogeochemical cycles in aquatic ecosystems [5–7].
Although the identification of common acclimation

strategies to environmental changes may help to model
primary production in nature [2], recent experimental
studies have reported that the adjustments in C-allocation
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pattern are strongly species-specific in response to a deter-
minate external perturbation [4, 7, 8]. It is also interesting
to notice that within a clonal phytoplankton population
relative macromolecular differences among cells have
been observed [9, 10], due to a drastic population hetero-
geneity in gene expression [11]. This in turn limits our
comprehension of phytoplankton dynamics in nature, as well
as our ability to model primary production. Predictive
models are indeed not considering such a high resolution of
adjustments. However, recent ecological theories have been
scaled down at the single-cell level (virus-phytoplankton,
bacteria-phytoplankton, phytoplankton-phytoplankton inter-
actions etc.), thus, information about the single biological
units of a population may be of great help to better under-
stand community dynamics [12]. This high resolution is
especially required when considering the great diversity of
C-allocation strategies adopted by different taxa (and even
species) in response to environmental changes [4, 7, 13, 14].
Up to date, the most used techniques to determine the

macromolecular composition of phytoplankton are
represented by standard biochemical assays [15] or incu-
bation of samples with C14 [16]. However, bulk measure-
ments only deliver the average biochemical profile of a
population and neglect the phenotypic variability among
single cells. Furthermore, biochemical assays are time
consuming and relatively expensive [17, 18]. Other
methods use statistics to correlate macromolecules to
more accessible cellular traits (i.e. cell characteristics
that may describe their growth rate or fitness in a spe-
cific environment). Recently, Finkel et al. [6] compiled
an updated estimate of the macromolecular composition
of phytoplankton and developed predictive linear models
for the quantification of macromolecules based on their
cellular volume [6]. This study provides an interesting
bridge between an easy-measurable trait (i.e. cell vol-
ume) and the more complex macromolecular compo-
nents of phytoplankton biomass.
Approaches such as flow cytometry as well as genomic

and transcriptomic analysis may have the potential to re-
solve phytoplankton traits at the single-cell level [19,
20]. However none of these approaches can provide an
overview of macromolecular composition in single
phytoplankton cells. On the other hand, Fourier Trans-
form Infrared (FTIR) spectroscopy has been extensively
used for the macromolecular characterization of phyto-
plankton in uni-algal cultures [17, 21, 22]. This spectro-
scopic technique allows to acquire a rapid and precise
snapshot of the total biochemical composition of phyto-
plankton samples, and presents many advantages with
respect to standard chemical bulk analysis [18, 23–25].
It is cheap, fast and can be performed at the single-cell
level, when using Synchrotron radiation as IR source in
combination with a microscope (Synchrotron FTIR
micro-spectroscopy) [7, 10, 14, 26].

The quantification of macromolecules in bulk phyto-
plankton samples by means of FTIR-spectroscopy has
been tested using several approaches [18]. However, an
absolute quantification in single-cells is missing so far,
indeed to the best of our knowledge the studies present
in the literature only reported relative changes in band
intensities of single cells [9, 10, 26, 27]. For this purpose,
particularly useful is the possibility of coupling
FTIR-spectroscopy to advanced statistical analysis (i.e.
chemometrics) for the construction of predictive models
[8, 23, 28, 29]. Chemometrics can be used to link
FTIR-spectra to a reference measurement, creating
multivariate calibrations aimed at predicting parameters
of unknown samples. In the field of applied phycology,
such models provide a fast and reliable method for the
estimation of specific cellular traits that would otherwise
be difficult to assess [23, 28, 29]. Several cellular traits
ranging from elemental ratios to more complex meta-
bolic processes (e.g. growth rate and C production), have
already been modeled on the base of FTIR-spectra [8,
23, 28, 29]. However, the applicability of such predictive
models has never been tested at the single-cell level.
In this study, we developed an approach that com-

bines both Synchrotron FTIR micro-spectroscopy and
chemometric predictive models based on the partial
least square regression algorithm (PLSr) [30, 31], to
quantify the whole macromolecular composition of
single phytoplankton cells. Since natural samples of
aquatic communities may contain high amount of or-
ganic matter, bacteria and other contaminants, as a
first trial to test the application of the method, la-
boratory cultures were preferred compared to natural
samples. In order to mimic the conditions of natural
communities, we used defined mixtures of three dif-
ferent phytoplankton species (a green alga, a cyano-
bacterium and a diatom) to establish mock
communities that were subjected to two temperatures.
Temperature was chosen as an external factor to in-
duce C-allocation changes because, in the context of
global warming, it will play a crucial role affecting
phytoplankton productivity and water quality. Never-
theless, the lack of information regarding the effects
of temperature on C-allocation among the pool of
macromolecules limits the precision of future predic-
tions [25, 32, 33]. Fanesi et al. [28] recently reported
temperature-related biochemical alterations of phyto-
plankton composition on a bulk basis. However, con-
sidering the higher resolution allowed by single-cell
spectroscopy, the present approach aims at revealing
interesting population and community patterns that
would otherwise remain unknown. For instance,
non-uniform gene expression and random level of
transcripts is typically translated in a variety of
physiological states and functions that cells may
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accomplish in a population [34]. We, therefore, hy-
pothesized that due to phenotypic heterogeneity, the
response of a population to temperature is not uni-
form but characterized by different sub-responses
arising from the diversity of phenotypes.
Therefore, the aim of this study is to use FTIR spectros-

copy to quantify, for the first time, the absolute content of
the main macromolecules in single phytoplankton cells,
and to determine sub-responses within a plankton
community.

Results
Macromolecule quantification by reference biochemical
methods
The dry weight (DW) of A. obliquus and M. aeruginosa
was not influenced by temperature. On the other hand,
temperature appears to affect more the DW of A. granu-
lata cells, which was significantly higher at 25 °C
(Table 1).
Irrespective of temperature changes, A. obliquus and M.

aeruginosa showed similar macromolecular compositions
(Table 1). Almost 15–35% of the biomass was represented
by carbohydrates, 27–46% of DW was constituted by pro-
teins and the remaining fraction was made up by lipids
(38–46% of DW). In A. granulata almost 40% of DW was
represented by Si. The organic fraction of the diatom bio-
mass presented similar amounts of lipids (~ 40% of DW)
compared to A. obliquus and M. aeruginosa but less pro-
teins (16–21% of DW) and carbohydrates (~ 5% of DW)
(Table 1).
Temperature induced relevant changes in the macro-

molecular composition of A. granulata and M. aerugi-
nosa but not in A. obliquus (Table 1). Carbohydrates
were significantly higher at 15 °C, with respect to 25 °C,
in A. granulata and M. aeruginosa. Proteins were signifi-
cantly higher in M. aeruginosa at 25 °C with respect to
15 °C. In all the species, the lipid pool was not affected
by temperature, the same was true for the silica content
of A. granulata that resulted unchanged at the two tem-
peratures (Table 1).

Chemometric analysis of FTIR-spectra using PLSr
The calibration plots (Fig. 1) showed that the bench-top
FTIR-spectra of uni-algal cultures were highly correlated
to the protein, lipid and carbohydrate content of the
cells. Using 7 components the R2 of the models were
0.94 for proteins, 0.96 for carbohydrates and 0.91 for
lipids (Table 2, Fig. 1) and the RMSEC was lower than
3% of DW for all models. The prediction performance of
each model was assessed by the leave-one-out
cross-validation. The estimated error in predicting un-
known samples (RMSEP) was 6.27 (% of DW) for pro-
teins, 2.49 for carbohydrates and 4.89 for lipids (Table
2). The R2 of predicted estimates was 0.68 for proteins,
0.76 for carbohydrates and 0.70 for lipids (Additional file
1: Figure S1).
For each macromolecular pool, the first 7 PLSr princi-

pal components (PC) explained most (> 90%) of the vari-
ance both related to the descriptor matrix, i.e. the
spectral dataset and to the response variables (i.e. pro-
teins, lipids or carbohydrates) (Table 2, Additional file 2:
Table S2, Additional file 3: Table S3 and Additional file
4: Table S4).
The regression coefficients highlight which spectral

bands are mostly correlated with the macromolecular
changes of the cell composition, and therefore which are
the most important peaks for the modeling process. We
focused our analysis on the first three PLSr-PCs because
explaining the highest percentage of variance in the de-
scriptive and response matrix. The prediction of the
three macromolecules was mostly driven by the same
spectral features (Fig. 2, Table 2): asymmetric and sym-
metric CH2 stretching modes (2915 and 2848 cm− 1), the
band related to the stretching of the C=O bond of lipids
(at 1740 cm− 1), the Amide I (1658 cm− 1) and the Amide
II (1544 cm− 1) bands of proteins. At lower wavenumber,
peaks corresponding to carbohydrates (1153, 1108, 1080
and 1020 cm− 1) were also identified as important for the
models.
The contribution of the spectral features for the pre-

diction of the content of each macromolecule was spe-
cific. Protein prediction was driven by lipids (CH2 and

Table 1 Dry weight (pg cell− 1) and macromolecule contents (% cell dry weight), estimated by biochemical assays, of pure cultures
of M. aeruginosa, A. oliquus and A. granulata grown at 15 and 25 °C. Values in parentheses are the standard deviations (n = 5).
Different letters represent statistically different means (P < 0.05). Equal letters represent no significantly different means (P > 0.05)

M. aeruginosa A. obliquus A. granulata

15 °C 25 °C 15 °C 25 °C 15 °C 25 °C

Dry weight (pg cell−1) 13.2a (4.3) 9.6a (0.7) 29.1a (7.6) 21.2a (1.2) 137.9a (25.9) 192.6b (28.2)

Proteins (% DW) 26.9a (±9.9) 44.6b (±11.6) 46.4a (±13.8) 36.7a (±6.4) 16.5a (±8) 21.7a (±6.2)

Lipids (% DW) 38.4a (±9.1) 44.7a (±12.7) 38.8a (±16.9) 46.6a (±9.3) 33.7a (±14.8) 35.4a (±6.7)

Carbohydrates (% DW) 34.6a (±19.7) 10.6b (±1.8) 14.7a (±3.7) 16.6a (±2.8) 5.8a (±0.2) 4b (±1.4)

Silica (% DW) / / / / 43.8a (±11.4) 38.8a (±8.8)
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C=O stretching modes), proteins (Amide I and II) and
carbohydrates bands (C-O, and C-O-C). Carbohydrates
prediction was based mostly on C-O, and C-O-C bands
typical of polysaccharides. Finally, the lipid content esti-
mation was dependent on lipid CH2 stretching, Amide I
and C-O, C-O-C bands of polysaccharides (Fig. 1, Table
2).

FTIR 2nd derivative spectra and principal component
analysis (PCA)
Average spectra of the phytoplankton species grown in a
mixed assemblage at 15 °C and 25 °C obtained by Syn-
chrotron FTIR micro-spectroscopy provide useful infor-
mation on the biochemical composition of each
population, which is typically consistent with the results
of the biochemical assays. To highlight subtle changes
associated to growth temperatures, average 2nd deriva-
tive spectra are shown in Fig. 3. M. aeruginosa presented
stronger intensities of the bands found in the carbohy-
drate region at 15 °C, but just slightly different protein
bands at the two temperatures. The spectra of A. obli-
quus were essentially the same, except for small differ-
ences present at the carbohydrate frequencies, where

few peaks (1153 and 1020 cm− 1) were higher at 15 °C,
than at 25 °C. Similarly, in A. granulata, the cell spectra
differ mostly because of differences present in the spec-
tral window between 950 and 1250 cm− 1, which is char-
acteristic for carbohydrates and silica absorption (Fig. 3).
A PCA was performed on each species separately to

explore how the populations differ biochemically at the
two temperatures. In this case, the analysis is performed
on the whole cell population and each spectrum corre-
sponds to the overall composition of one single cell.
None of the considered populations showed a clear

separation in the scores plot. Instead, a progressive trend
could be recognized for all of them. This was more
evident for the populations of M. aeruginosa, where the
effect of the higher growth temperature was reflected in
a clustering of cells at negative scores along PC1.
Additionally, the loadings indicated that carbohydrates
are the responsible compounds for this trend (Fig. 4,
Additional file 5: Figure S2).
The trend is less evident but still detectable for A. obli-

quus and A. granulata. Here, a continuous gradient form
negative to positive PC1 scores as a function of the growth
temperature was observed. The loadings indicated that for

Table 2 PLSr summary statistics. R2; coefficient of determination obtained from the training set; RMSEC: root mean squared error of
calibration obtained from the training set; RMSEP: root mean squared error of prediction obtained after LOOV

n° of
species

Temperature (°
C)

n° of
calibration spectra

R2 RMSEC
(% of DW)

RMSEP
(% of DW)

n° of
factors

% variance
explained

Most relevant spectral predictors

Proteins 3 15 & 25 30 0.95 2.6 6.27 7 94.65 CH2 and C=O (lipids); Amide I and II
(proteins); C-O-C (carbohydrates)

Carbohydrates 3 15 & 25 30 0.96 2 4.84 7 96.03 C-O-C (carbohydrates)

Lipids 3 15 & 25 30 0.92 1.34 2.49 7 91.54 CH2 (lipids); Amide I (proteins); C-O-C
(carbohydrates)

(a) (b) (c)

Fig. 1 Calibration plot obtained from the PLSr models developed for the determination of proteins (a), carbohydrates (b) and lipids (c) calibrated
using bench-top FTIR-spectra and “wet” biochemical assays as a reference method. Open symbols correspond to 15 °C, closed symbols to 25 °C.
Each model was calibrated using three phytoplankton species (a diatom [circle], a cyanobacterium [square] and a green alga [triangle]) grown at
two temperatures (15 °C and 25 °C). The macromolecule content is expressed as % of dry weight and the R2 for each regression is reported. The
number of PLSr-PCs used was 7
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both species, the protein bands were responsible for the
separations of the cells along the PC1 (Additional file 5:
Figure S2).

Kernel density estimates for macromolecule-frequency
distribution
Once calibrated and validated, the PLSr models were
used to estimate the biochemical composition of single
phytoplankton cell grown in a mock community. The
frequency distributions of the results obtained by the
predictive models were then studied by means of Kernel

density estimates to characterize the heterogeneity of the
community in macromolecular terms.
The distribution of macromolecules was typically sym-

metric uni-modal, except for the protein content in A.
obliquus at 15 °C and 25 °C, the protein content of M.
aeruginosa at 25 °C and its carbohydrate content at 15 °
C, where a secondary mode was observed (Fig. 5).
For each macromolecule, the mode of the predicted

values resembled the quantification performed by refer-
ence methods, but it also emerged that the density pro-
files where mostly overlapping at the two temperatures
(Fig. 5). Consistent with the results obtained from

(a)

(b)

(c)

Fig. 2 Regression coefficients for the first three PC components of the PLSr models calibrated to predict protein (a), carbohydrate (b) and lipid (c)
content in phytoplankton cells. The wavenumbers of the most important coefficients are reported together with the macromolecular assignment
of the corresponding bands
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biochemistry and FTIR-spectroscopy, M. aeruginosa
underwent the greatest changes in composition (i.e. the
largest shift and separation of the density distributions),
compared to all other species. The protein density distri-
bution shifted towards higher values when the cells were
grown at 25 °C. The opposite trend was observed for the
carbohydrate content. The lipid distributions overlapped
at the two temperatures (Fig. 5).
A. obliquus presented density distribution changes as a

function of temperature resembling those of M.

aeruginosa. At 15 °C, the distribution of proteins was bi-
modal, with the two modes being similar in intensity
(Fig. 5). At 25 °C, the main mode was shifted towards
higher protein contents the second mode was still
present, but decreased in intensity. The mode of the car-
bohydrates was slightly higher at 15 °C, with respect to
that of the cells grown at 25 °C, although a great propor-
tion of cells exhibited similar carbohydrate contents (Fig.
5). Furthermore, at 25 °C the distribution was bimodal.
The main mode of lipids was the same at 15 and 25 °C,

(a)

(b)

(c)

Fig. 3 Average 2nd derivative spectra of M. aeruginosa (a), A. oliquus (b) and A. granulata (c) grown in the mock mixed community at 15 °C and
25 °C obtained by Synchrotron FTIR micro-spectroscopy. The vertical dashed lines identify the most biologically relevant bands of cell spectra, the
corresponding wavenumbers are labelled. It must be kept in mind that different macromolecules may have overlapping absorption bands. For
instance, although we refer to carbohydrates when considering the spectral window 950-1200 cm-1, other important macromolecules, such as
nucleic acids, may contribute to spectral features present in this region
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but at 15 °C a second, less intense mode was also
present.
A. granulata presented less prominent adjustments at

the two temperatures (Fig. 5). Interesting, although pro-
tein and carbohydrate density distributions were mostly
overlapping, the lipid one seemed to be more affected.
At 25 °C, the distribution was bimodal and both

modes were higher, with respect to the main one
present at 15 °C.

Discussion
Macromolecular composition modeling
The developed PLSr models presented very high preci-
sion in the estimation of new samples (±2–6% of the

(a)

(b)

(c)

Fig. 4 Scores plot of the PCA performed on single-cell FTIR spectra of M. aeruginosa (a), A. oliquus (b) and A. granulata (c) grown in the mixed
assemblage at 15 °C and 25 °C
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predicted value) (Fig. 1, Table 2), reflecting the fact that
FTIR-spectra contain major information regarding the
macromolecular composition of phytoplankton [17].
From the analysis of the regression coefficients, it

emerged that the prediction of each macromolecule was
not exclusively dependent on spectral features related to
that specific compound (e.g. the Amide I and II for pro-
teins). Instead, the prediction of each compound was

based on spectral bands corresponding to all major
macromolecular pools present in the cells (Fig. 2). In
our experiments, the prediction of protein, lipid and
carbohydrate content relied on variations of the Amide I
and II, on the C-O-C bonds of carbohydrates, as well as
on the CH2 bonds in the acyl-chains of lipids (Fig. 2).
This multiple-band dependency of macromolecule pre-
diction is explained by the fact that an FTIR-spectrum

(a)

(b)

(c)

Fig. 5 Kernel density distribution for the macromolecule contents of M. aeruginosa (a), A. oliquus (b) and A. granulata (c) grown in the mixed
assemblage at 15 °C and 25 °C. The probability distributions are reported for the single species and for the whole community
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represents a snapshot of the overall C-metabolism of a
cell [23]. External perturbations typically induce a reallo-
cation of C among all the major organic pools [3, 4, 29,
35]. For instance, under N-limitation a decrease in the
protein content is generally accompanied by an increase
of carbohydrates and/or lipids [3, 4]. It follows that the
prediction of proteins may benefit, besides changes in
the Amide I and II bands, also from changes in the spec-
tral bands corresponding to lipids or carbohydrates. A
similar finding was reported by Sackett et al. [23], which
used spectral windows corresponding to lipids (CH2

stretching) and carbohydrates to predict the protein con-
tent in an Antarctic diatom. Finally, macromolecules
present different vibrational extinction coefficients [15].
Therefore, the prediction of lipids, for example, is influ-
enced more by changes in the protein content, because
the Amides I and II present higher extinction coefficient
with respect to the C=O bonds of lipids. Even if sub-
jected to similar quantitative changes, those compounds
will exhibit non-comparable changes in peak intensity.

Single-cell analysis and population trait dynamics
Although Dean et al. [9, 26, 35] and Sackett et al. [14]
used FTIR-spectroscopy on field samples, predictive
models created in the laboratory have not been applied
to natural samples yet. Here, a mock phytoplankton
community was utilized to simulate the complexity of
natural samples and to test for the first time the effi-
ciency of the approach under controlled conditions.
Once calibrated and validated, the PLSr models were
used to estimate the absolute macromolecule contents
in single phytoplankton cell scanned by Synchrotron
FTIR micro-spectroscopy. The frequency distribution of
the results obtained using the predictive models was
then studied by means of Kernel density estimates to
characterize the heterogeneity of the community in
macromolecular terms.
From a quantitative point of view, the mode of each

distribution resembles the changes identified by bio-
chemistry and was in accordance with recent studies in-
vestigating the biochemical responses of phytoplankton
to temperature (Fig. 5). The protein content appeared to
be positively correlated to temperature, whereas storage
and structural compounds, such as carbohydrates, had
an opposite behavior [7, 25, 28, 36].
Interestingly, interspecific differences, in terms of

macromolecular plasticity, emerged as a function of
temperature (Fig. 5). M. aeruginosa and A. obliquus were
the most plastic species whereas A. granulata underwent
only minor changes in the distribution of macromole-
cules. As reported by Sackett et al. [14] this
taxon-specific macromolecular plasticity is likely the
consequence of different ecological niches occupied by
the species. In support to this observation, Fanesi et al.

[32] found for the same species comparable results
about the photo-biology acclimation strategies in re-
sponse to temperature.
A different picture emerged when considering the

intra-population variability. As we hypothesized, the Ker-
nel density estimations revealed that each phytoplankton
population did not elect a uniform response with respect
to temperature (Fig. 5). Similar results have been also
reported earlier [10, 26], though the analysis of these
authors refer to relative amount of macromolecules
and not to absolute quantification. At the population
level, the response seemed to be rather complex, ran-
ging from curve shifts, to changes in skewedness and
number of modes. Only a small proportion of cells
presented temperature-specific phenotypes. Most of
the remaining cells exhibited instead a pool of shared
phenotypes at 15 °C and 25 °C. Therefore, the results
from an averaged population could lead to erroneous
interpretations, or, they will fail to represent the
whole population dynamic with respect to an external
cue [37, 38].
With the evolving of single-cell techniques, population

heterogeneity has been interpreted as a functional trait,
more than only as “black noise” resulting from stochastic
events at the gene expression and translation levels [39–
41]. For instance, there is evidence supporting the “bet
hedging” theory: the coexistence of multiple phenotypes
in a population, but only one suited for a specific set of
conditions. Such a strategy confers resilience to external
perturbations and/or access to multiple niches, rather
than being just a passive consequence of biology nonlin-
earities [38]. This can be particularly advantageous in
those environments characterized by rapid fluctuations
of the external conditions (such as freshwater ecosys-
tems), where a multitude of cell phenotypes may ensure
a continuum of niches that can be occupied by a popula-
tion. In these terms, the phenotypic heterogeneity of a
population might be seen as a strategy, beside acclima-
tion [41] and homeostasis [35, 42], aimed at maximizing
species fitness with respect to the external milieu. We
cannot exclude that the differences in growth and meta-
bolic rates at the two temperatures (see Additional file 6:
Table S1) might be responsible for some of the patterns
identified by the single-cell analysis. For instance, at 25 °
C the high synthetic rates for proteins [36] could in turn
be affected by expression and translation errors, increas-
ing the probability of generating and accumulating dif-
ferent phenotypes over-time.
Although our observations are based on microcosms

and have to be further tested in natural habitats, they
already provide important implications on what we
know about communities modeling based on functional
traits [43–45]. For example, the identification of multiple
phenotypes (and therefore of multiple functional units)
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in a clonal population may make it more difficult to in-
clude a specie in a defined functional group [6]. It is evi-
dent that what bulk analysis reflects just the tip of the
iceberg hiding complex population dynamics. More re-
search will be necessary to understand to which extent
cell functionality is overlapping with the heterogeneity of
a population and to deeply understand the role played in
the response of phytoplankton populations to external
perturbations.

Conclusions
In this study we used the PLSr algorithm to correlate
FTIR-spectra to the main macromolecules that make-up
phytoplankton cells (i.e. proteins, lipids and carbohy-
drates). The models were used to predict the macromol-
ecular content of single-cells (scanned by Synchrotron
micro FTIR spectroscopy), in a mock phytoplankton as-
semblage to study the effect of temperature on
C-allocation. The results showed that a great proportion
of cells was expressing a chemical phenotype specifically
acclimated to the growth temperature. At the same time,
another multitude of “non-acclimated” phenotypes were
present in the same population. This wide population
heterogeneity may be of advantage in response to rapid
and drastic changes of the external conditions. Indeed,
the presence of cells with a chemical phenotype that fits
already with new physical settings can allow a fast re-
sponse avoiding the acclimation steps of pre-existing
cells.
From a technical point of view, this approach may find

application in ecological studies of phytoplankton dy-
namics. Indeed, a single spectral dataset may be cali-
brated to predict several different phenotypic traits (e.g.
macromolecules, elemental ratios, growth rate etc.),
opening the opportunity to obtain a complete
“check-up” of single-cells in field samples and better re-
solve biomass quality and production in aquatic
ecosystems.

Methods
Culture maintenance
The species used in this study were selected as a func-
tion of their ecological importance and ability to grow
under laboratory conditions. Stock cultures of Microcys-
tis aeruginosa, Acutodesmus obliquus and Aulacoseira
granulata were grown semi-continuously in 1 L Erlen-
meyer flasks filled with 500 mL of WC growth medium
[46] and maintained at 15 and 25 °C at a photon flux
density of 140 μmol photons m− 2 s− 1 in a light:dark
cycle of 14:10 h. The WC medium was modified respect
to the original recipe by adding the vitamin solution of
the Diatom medium [47] and double amount of silica.
To simulate the conditions of a natural-like phyto-

plankton community, the stock mono cultures of the

three species were diluted to a Chla concentration of
0.01 mg L− 1, and then mixed together in equal amounts
to a final volume of 500 mL in 1 L Erlenmeyer flasks to
create a mock community. For all the experiments, the
cultures were grown in batch for no longer than 1 week
and the cells were harvested in the early-mid exponen-
tial phase (typically after 5–6 days from the initial inocu-
lum). Growth was followed by daily microscopic cell
counts of each species both in the monoculture and in
the mixed communities. Growth rate was determined as
the slope of a linear regression of the natural logarithm
of cell counts against time (Additional file 6: Table S1).

Biochemical characterization of phytoplankton cells by
“wet methods”
The biochemical quantification of macromolecules was
performed on pure cultures of each single species and
for each growth condition. The assays were repeated on
5 independent biological replicates (i.e. on 5 distinct cul-
tures). Statistically different means were identified by
t-test with a significance level set at 95%.

Dry weight quantification
For the determination of cell dry weight, 400 mL of cell
suspension were centrifuged at 2000×g for 10 min at 20 °
C. The pellet was washed in 2mL of distilled water and
centrifuged in pre-weighted Eppendorf tubes (mini-spin,
Eppendorf, Germany) at 5000×g for 10 min at room
temperature. Cell pellet was then frozen in liquid nitro-
gen and freeze-dried overnight. The Eppendorf tubes
containing the dry cell pellet were then weighted in an
analytical balance for the estimation of the dry weight.

Protein quantification
30mL of cell suspension (approximately 0.5–1 mg DW)
were centrifuged at 2000×g for 10 min at 20 °C. The pel-
let was washed in 2 mL of distilled water and centrifuged
(mini-spin, Eppendorf, Germany) at 5000×g for 10 min
at room temperature. Cells were finally frozen in liquid
nitrogen and subsequently freeze-dried overnight and
stored in closed Eppendorf tubes inside a desiccator
until the measurements were performed.
The samples were resuspended in 1 mL HCl (18%; 6

N) in 2mL Eppendorf tubes and hydrolyzed in a
thermo-shaker at 100 °C, 800 rpm for 24 h. After centri-
fugation (12,000×g for 10 min at room temperature), the
supernatant was transferred to another Eppendorf tube.
Aliquots of 100 μL were transferred to fresh tubes and
the acid evaporated in a vacuum concentrator for 1.5 h.
Protein quantification was performed according to the
Ninhydrin-based assay of Starcher [48] using bovine
serum albumin (Carl Roth GmbH, Germany) as a
calibration standard. Absorption was measured
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spectrophotometrically at 575 nm (Specord 250, Analytic
Jena, Germany).

Carbohydrate quantification
30mL of cell suspension were harvested as described
above. Carbohydrates were quantified according to the
phenol-sulfuric acid method described in Dubois et al.
[49]. The samples were resuspended in 1 mL of H2SO4

(98%; v/v) in 2 mL Eppendorf tubes and hydrolyzed in a
thermo-shaker at 80 °C, 800 rpm for 2 h. Aliquots (10 μL
or 100 μL) of the samples were then transferred to new
Eppendorf tubes and diluted (1:10 or 1:100, final volume
= 1mL) depending on the initial cells density. Finally,
100 μL of phenol (0.1%; w/v) were added to the samples
and cooled down at room temperature. Absorption was
measured spectrophotometrically at 485 nm (Specord
250, Analytic Jena, Germany) using glucose as a calibra-
tion standard.

Lipid quantification
The lipid quantification was carried out gravimetrically ac-
cording to Lee et al. [50]. Cells were harvested as de-
scribed above but starting with 400mL of cultures
(approximately 7–10mg DW). The freeze-dried pellet was
first resuspended in 2mL of phosphate buffer (0.1M and
pH 7.4) to avoid side-reactions. Samples were than cooled
down in ice and then disrupted with glass beads in a cell
homogenizer for 40 s at 6000 rpm (Precellys 24, Bertin
Technologies, Erlangen, Germany). The process was re-
peated 3 times. The suspension was then cooled and
maintained in ice in the dark to avoid photo-oxidation.
The extract was transferred into sealed glass tubes and or-
ganic solvent (approx. 4–5mL of a mixture of chloro-
form:methanol 2:1 v/v) was added to create a phase
separation. The mixture was mixed vigorously and centri-
fuged at 2400×g for 10min to obtain a clean phase separ-
ation. After the centrifugation step, the lower phase
(containing the lipids extract) was removed with a
Hamilton syringe, transferred into sealed glass tubes and
maintained in the dark and in ice. The extraction step was
repeated (typically two times) until the cell pellet inter-
posed between the organic solvent and the water phase re-
sulted completely bleached.
Finally, the organic solvent was evaporated to dryness

in a chemical cabinet under a stream of N2 and the
lipids quantified gravimetrically in an analytical balance.

Biogenic silica (frustules of A. granulata) quantification
For the quantification of silica (Si), a protocol based on a
gravimetric quantification was developed. 50–70mL of
culture suspension (approximately 1.5–2 mg DW) was
harvested as described above. The pellet was resus-
pended in 1mL of distilled water and further diluted
with NaClO (12% v/v) to a final concentration of 6% (v/

v) in 2 mL final volume. The suspension was then mixed
and maintained at room temperature in the dark for no
more than 1.5 h. During this step, all the organic com-
pounds are detached from frustules. The frustules were
separated from the organic suspension by a short centri-
fugation spin, the supernatant discharged, and the pellet
resuspended and washed in distilled water 5–6 times to
get rid of the residual organic material and NaClO. A
further washing step was performed in 100% Acetone
(v/v) and finally the sample was washed in distilled
water, centrifuged and the frustule pellet dried in an
oven at 40 °C.

Biochemical characterization of phytoplankton cells by
FTIR-spectroscopy
Bench-top FTIR-spectroscopy measurements: sample
preparation and spectra acquisition
In order to generate predictive models for the macro-
molecule quantification, the same samples that were
assayed by “wet” biochemical methods were also mea-
sured using a bench-top FTIR-spectrometer. Bench-top
FTIR measurements have been performed as described
in detail elsewhere [28]. Briefly, 1.5–2 mL of cell suspen-
sion were harvested by gentle filtration, resuspended and
washed in distilled water to remove salts and cell debris.
The sample were then centrifuged (8000 g for 8 min.)
and resuspended in 10–20 μL of distilled water. Finally,
2 μL of the algal suspension were deposited on a silicon
micro plate (384 wells, Bruker) and dried in a cabinet
drier. Spectra were recorded in transmission mode with
32 scans co-added and averaged in the spectral range
4000–700 cm− 1 with a resolution of 4 cm− 1. Background
signal was measured scanning an empty well using the
same acquisition settings.

Chemometric analysis of FTIR-spectra: the PLSr predictive
models
The quantitative relationship between FTIR-spectra and
macromolecule contents, as determined by reference
methods (i.e. the biochemical assays), was established
calibrating three PLSr models [31], one for each macro-
molecular pool (i.e. proteins, lipids and carbohydrates).
Each PLSr model was calibrated using the spectra ob-
tained from FTIR bench-top measurements of three
phytoplankton pure cultures grown at 15 °C and 25 °C as
the predictor matrix, and the respective biochemistry
data as the response one [28, 29]. The development of
models based on different taxa was preferred to the use
of species-specific ones because they would incorporate
different C partitioning strategies resulting from the evo-
lutionary trajectory of phytoplankton taxa [4].
Spectra pre-processing was performed as described in

detail in Fanesi et al. [28]. Briefly, the spectra were
exported from the OPUS software (v.5.0; Bruker Optics,
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Ettlingen, Germany) onto the R environment (version
3.2.3) [51], cut in the spectral ranges 3019–2819 and
1800–950 cm− 1, converted to 2nd derivatives by the
Savitzky-Golay algorithm [52] using a quadratic polyno-
mial function with nine smoothing points and finally
mean centered.
The PLSr has been implemented in the R software using

the “pls” package developed by Mevik and Wehrens [53].
The orthogonal scores algorithm was used for the PLSr.
The model fit quality was studied calculating the R2 and
the root mean squared error of calibration (RMSEC) of
each macromolecular pool. The prediction performance
of the model was inferred from the root mean squared
error of prediction (RMSEP, expressed in % of DW) calcu-
lated from the leave-one-out cross-validation (LOOCV).
The regression coefficients were analyzed to relate spectral
features to the macromolecule content in the cells.

Application of the PLSr predictive models for single-cell
analysis
Synchrotron FTIR micro-spectroscopy measurements:
sample preparation and spectra acquisition
Once calibrated and validated, the PLSr predictive
models were applied to a mock phytoplankton commu-
nity grown at two temperatures (15 °C and 25 °C) to
study the effect of temperature on the macromolecular
content of single cells. However, since standard
bench-top FTIR-spectrometers do not have the reso-
lution required for single-cell measurements, the single
phytoplankton cell spectra were acquired by means of
Synchrotron FTIR micro-spectroscopy at the Italian Syn-
chrotron in Trieste (Elettra-Sincrotrone Trieste, proposal
number 20145158, Beamline SISSI, Chemical and Life
Sciences branch, Basovizza, Trieste, Italy) [54].
Aliquots (2 mL) of the mock community were centri-

fuged and then fixed in a phosphate buffered saline solu-
tion (2 mL of PBS; 0.1 M, pH 7.4) and 2% (v/v) formalin
and maintained in the dark at 4 °C until the measure-
ment were performed (less than 2 month). Before the
measurements, all samples were washed twice in dis-
tilled water to remove PBS residuals and formalin from
the cells. The cells were finally resuspended in 100 μL of
distilled water; an aliquot of 2 μL was deposited on a
CaF2/Si sample holder and dried at room temperature
under a sterile bench.
Spectra were recorded with a Hyperion 3000 IR micro-

scope coupled to a Bruker Vertex 70 interferometer (Bru-
ker Optics, Ettlingen, Germany) connected to the
synchrotron IR beamline. Spectra were acquired in trans-
mission mode with 256 scans co-added and averaged in
the spectral range 4000–700 cm− 1 with a spectral reso-
lution of 4 cm− 1 and a lateral resolution set according to
the cell dimension (from 8 × 8 μm to 10 × 10 μm). The
measurement of an empty spot was used as a background,

collected with the same instrumental settings. Mixed com-
munity experiments were repeated in duplicate for each
growth condition (i.e. two distinct cultures). At least 50
cells per sample (i.e. each species at each condition) were
measured, resulting in a total of 998 spectra for the whole
mock community dataset.
Spectra preprocessing for the mixed community data-

set was performed as described above. The macromol-
ecular composition of the single cells was then estimated
based on the PLSr models using the function “predic-
tion” present in the “pls” package. In this way for each
single-cell spectrum obtained at the Synchrotron, the
protein, carbohydrate and lipid contents could be
assessed.
The single-cell spectra of each species present in the

mixed assemblage were further analyzed by PCA (pack-
age “vegan”) [55] to explore the dataset and highlight
qualitative differences as a function of temperature.

Kernel density estimator for the mock community analysis
The Kernel density estimator (KDE) [56, 57] was applied
on the values (i.e. the single-cell protein, carbohydrate and
lipid contents) predicted by the PLSr models to study the
macromolecule-frequency distribution as a function of
temperature in the mock community. The KDE has been
used because it confers more resolved frequency distribu-
tions in comparison to standard methods, such as histo-
grams. The KDE was computed using the basic statistic
package present in the R software setting the standard de-
viation of the smoothing kernel (Gaussian) as the smooth-
ing bandwidth.
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