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Abstract

Background: Maize is a crop in high demand for food purposes and consumers worldwide are increasingly
concerned with food quality. However, breeding for improved quality is a complex task and therefore developing
tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour
particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a
genome-wide association study to identify genomic regions controlling compositional and pasting properties
of maize wholemeal flour.

Results: A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese
unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits,
flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait
associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions
were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were
detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity
of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1
gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize.

Conclusions: This study allowed for identifying relevant regions on the maize genome affecting maize kernel
composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic
regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency
of quality traits selection (such as “breadability”) within maize breeding programs.

Keywords: Zea mays L., Nutritional quality, Pasting behavior, Portuguese maize germplasm, Bread, Candidate
genes, Plant breeding

Background
Maize is one of the most important food crops world-
wide, and a staple crop for large populations in Latin
America, Africa, and Asia [1]. Maize breeding has pri-
marily focused on increasing stability and grain yield po-
tential. However, in the last decade, much effort has also
been made in improving maize for animal feed and hu-
man nutrition [2]. Maize food quality depends on the

raw material composition and the way that raw material
is processed, which varies greatly from country to coun-
try. For instance, in Spain or Portugal, wholemeal maize
flour is still frequently used for ethnic maize leavened
bread production for which the local maize populations
are usually preferred [3]. When using maize kernel for
baking purposes, the improvement of the end-product
quality can be achieved by taking into consideration the
upstream processes (e.g., harvest procedures, seed qual-
ity, pest control), but also the downstream processes
(e.g., milling type, baking procedure). Central to this im-
provement is the cultivated maize genotype, and directly
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related to this is its kernel composition and associated
technological ability for bread production (“breadabil-
ity”). A better understanding of the complex genetic
basis of maize kernel main components and techno-
logical/processing traits is essential for devising more ef-
ficient breeding tools to support the improvement of
this crop compositional quality.
The maize kernel’s high nutritional value is mainly due

to its starch (~ 72% of the kernel dry matter), protein (~
10% of the kernel dry matter), and fat in the form of oil
(~ 4% of the kernel dry matter) [4, 5]. The interactions
of these three major components and fiber in a
cereal-based food system are important to functionality
and quality [6–8].
Many maize mutants have been widely used to isolate

genes encoding key enzymes in starch metabolism, as well
as genes regulating zeins, maize primary storage proteins,
synthesis and deposition [9, 10]. Currently, high-throughput
genomics and post-genomics approaches are providing new
tools to better understand the genetic and biochemical
networks operating during maize kernel development,
contributing ultimately to its composition, and a high
degree of complexity and regulation has been found [9].
Linkage mapping and association mapping studies

have shown that kernel main components are controlled
by many genes having complex patterns of inheritance.
Examples are the works of Li et al. [11] and Li et al. [12]
that carried out genome-wide association studies
(GWAS) to study the genetic architecture of oil and
amylose biosynthesis in maize kernels, respectively. Also
the work conducted by Cook et al. [13] is to be men-
tioned, that used a joint-linkage mapping/GWAS ap-
proach to study the genetic architecture of kernel starch,
protein, and oil content. Despite the importance of
maize for food, fewer works have evaluated and identi-
fied genomic regions controlling pasting properties, con-
trary to what has already been described in rice [14, 15].
Wilson et al. [14], using a candidate gene approach with
maize genes from the starch biosynthesis pathway, iden-
tified haplotypes of brittle endosperm2 (bt2), shrunken1
(sh1), and shrunken2 (sh2) that were associated with sev-
eral kernel compositional traits, and haplotypes of amyl-
ose extender1 (ae1) and sh2 that were associated with
starch pasting properties.
The Portuguese maize germplasm is recognized for its

high diversity [16, 17] and associated potential quality
for food, in particular for the production of the ethnic
leavened maize-based broa [17], that might be associated
with their higher protein contents and lower breakdown
viscosities values than the values found in commercial
maize varieties [18]. However this national diversity was
never properly exploited for the development of efficient
tools/innovative approaches to support breeding for
these complex quality traits, such as “breadability”.

The present study was carried out to identify genomic
regions controlling the variation of maize kernel major
constituents (protein, fiber, fat, and starch content) and
parameters affecting the maize flour “breadability”
(starch pasting properties and flour’s mean particle size)
through a genome-wide association approach, using a
unique association panel constituted by a collection of
maize inbred lines in which a considerable amount of
the unexplored Portuguese maize germplasm is present.
This will allow for the understanding of the genetic

architecture of quality traits, the identification of candi-
date quality genes, and the development of molecular se-
lection tools for quality-related traits difficult to select
by conventional methods.

Results
Portuguese traditional maize varieties known for their
high “breadability” are overall characterized by lower vis-
cosities and higher protein content than the commercial
maize varieties. The present study was carried out to
identify genomic regions controlling the variation of
maize kernel major constituents (protein, fiber, fat, and
starch content) and parameters affecting the maize flour
“breadability” (starch pasting properties and flour’s mean
particle size) through a genome-wide association ap-
proach. For that a collection of 132 maize inbred lines,
with a significant representation of lines selected from
Portuguese traditional maize populations (obtained by
single seed descent), was trialed during two growing sea-
sons. The collection lines were genotyped with the Mai-
zeSNP50 BeadChip array and the samples harvested
from each field replicate characterized for main compos-
itional traits (protein, fiber, fat, and starch), flour pasting
parameters (viscosity profiles), and mean particle size.

Phenotypic variation of maize flour compositional and
pasting properties traits
Considering the data obtained across the two growing sea-
sons, fiber (FI) and protein content (PR) appeared strongly
and positively correlated with phenotypic and genetic cor-
relations coefficients superior to 0.8 (Additional file 1:
Table S1 and Additional file 2: Table S2). The high pair-
wise genetic correlation value (r > 0.8, Fig. 1) might indi-
cate a common genetic basis for the phenotypic variation
of these traits. Fiber content (FI) had the highest heritabil-
ity value (h2 = 65%, across growing seasons) and setback
from peak viscosity (SB2) the lowest (h2 = 31%, across
growing seasons) (Table 1), indicative that there will be
more difficulties in finding the genomic regions control-
ling SB2 than FI.
The analysis of the variance components was per-

formed to access the proportion of variance attributed
to differences among inbred lines and also to decide if
the GWAS would be carried out using the adjusted
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means across years (in case the genotypic variance com-
ponent was higher than the G × E interaction term) or
on a year’s base. As shown in Table 1, the highest per-
centage of variance was typically due to differences be-
tween the inbred lines (σ2g), except for mean particle
size (SIZEL), setback from trough viscosity (SB1), and
setback from peak viscosity (SB2), where the error
variance component was higher. The genotype-by-envir-
onment (G × E) interaction variance component (σ2g × y)
was higher for traits related to maize flour pasting prop-
erties (viscosity parameters). Nevertheless, and for all
traits analyzed, the variance component associated with
differences between inbred lines was far greater than the
variance component attributed to the effect of G × E
interaction term (σ2g / σ2g × y > 1), and so GWAS was
performed using the adjusted means across years. Add-
itional information on the collection of maize inbred
lines phenotypic values (range and mean ± standard
deviation) for the quality-related traits evaluated in
two growing seasons (2011 and 2012) can be found
in Additional file 3: Table S3.
The maize inbred lines derived entirely from Portuguese

traditional maize populations were characterized mainly
by low breakdown and peak viscosity values, low starch
content, and high protein, fiber, and mean particle size as
can be seen in the biplot of the PCA (Fig. 2). In this ana-
lysis, the first two principal components (explaining a total
of 69.74% of the variation) depicted a high diversity
among the inbred lines of the association panel for the
quality-related traits analyzed.

Fig. 1 Heatmaps of genetic correlations for 11 quality traits measured in 132 maize inbred lines. a 2011 growing season, b 2012 growing season.
Quality traits: PR – Protein content, FI – Fiber content, FT – Fat content, ST – Starch content in non-lyophilized flour, STL – Starch content in
lyophilized flour, SIZE – Mean particle size in non-lyophilized flour, SIZEL – Mean particle size in lyophilized flour, PV – Peak viscosity, TV
– Trough viscosity, FV – Final viscosity, BD_SqRt – Breakdown viscosity (squared-root-transformed), SB1 – Setback from trough viscosity,
and SB2 – Setback from peak viscosity

Table 1 Variance components and broad-sense heritability
estimates for 11 quality traits measured in 132 maize inbred lines

Trait
abbreviationa

Variance componentsb h2 heritability c(%)

σ2p σ2g σ2g×y σ2error
PR 1.253 0.733 0.074 0.447 58

FI 0.045 0.029 0.001 0.014 65

FT 0.050 0.028 0.004 0.018 55

STLd 5.636 3.064 0.000 2.572 54

SIZELd 615.987 238.055 46.222 331.710 39

PV 1.14E6 6.33E5 3.37E5 1.70E5 56

TV 2.74E5 1.19E5 3.77E4 1.18E5 43

FV 1.64E6 6.74E5 3.54E5 6.08E5 41

BD_SqRte 167.218 103.016 36.195 28.007 62

SB1 9.53E5 3.29E5 1.58E5 4.67E5 34

SB2 8.22E5 2.51E5 1.89E5 3.82E5 31

Quality traits measured in wholemeal maize flour from each of the 132 maize
inbred lines evaluated in two growing seasons (2011 and 2012)
aTraits: PR – Protein, in %; FI – Fiber, in %; FT – Fat, in %; STL – Starch, in %;
SIZEL – Mean particle size, in μm; PV – Peak (maximum) viscosity, in cP; TV –
Trough (minimum) viscosity, in cP; FV – Final viscosity, in cP; BD_SqRt – Breakdown,
in cP; SB1 – Setback from trough viscosity, in cP; SB2 – Setback from peak
viscosity, in cP
bVariance attributed to the individual terms of the statistical model: σ2p corresponds
to the phenotypic variance; σ2g corresponds to the genotypic variance; σ2g×y
corresponds to the interaction between inbred lines and growing seasons
variance; σ2error (%) corresponds to the variance attributed to the block, row,
column, and residual terms which altogether compose the error variance
ch2=broad-sense heritability estimates obtained by fitting inbred lines as random
terms in the statistical model across growing seasons
dTraits values obtained from lyophilized flour
eBreakdown values were squared-root transformed
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Association panel genetic structure
From the performed Eigenanalysis (Fig. 3) a wide disper-
sion of inbred lines was observed, with some separation
according to kernel type (flint vs. dent) along the first
principal component (PC1). The majority of the 29 lines
selected directly from Portuguese traditional maize pop-
ulations were clustered within the flint types.
The existence of strong genetic structure within the

association panel can led to the identification of false
positives in genome-wide association studies. In order to
avoid spurious associations the GWAS was performed
using a mixed linear model (MLM) and either kinship
relationship (K matrix) or population structure (Eigen-
analysis) was taken into account. The models that best
corrects for population structure will have the inflation
factor values closer to 1. After inspecting the observed
inflation factors obtained for each tested model, the
mixed linear model accounting for familial relatedness
(Kmatrix) was selected as the best model (Additional file 4:
Table S4). Therefore, the results reported below concern
the results obtained using this model.
For all the studied major constituents of maize kernel

(protein, fiber, fat, and starch content) and all the studied
parameters affecting maize flour “breadability” (starch

pasting properties and flour’s mean particle size), signifi-
cantly associated single nucleotide polymorphism (SNP)
markers were identified. In total, 72 unique SNPs were
identified as being associated with at least one of the 11
quality-related traits analyzed across the two grow-
ing seasons (2011 and 2012) using a threshold –
log10(P-value) = 4.
The 72 SNPs corresponded to 57 genomic regions

(Fig. 4). While some of the genomic regions were associ-
ated with several traits, the majority of the detected gen-
omic regions were associated with a single trait. The
number of regions identified for each quality trait varied
from nine for breakdown viscosity (BD_SqRt) to two
regions for setback from trough viscosity (SB1). Several
regions controlling multiple traits were also identified
(Fig. 4), which is consistent with the strong pairwise
genotypic correlations observed between some of the
traits, such as peak viscosity and breakdown viscosity,
final viscosity, and setback from tough viscosity or pro-
tein and fiber content (Fig. 1).
The strongest associations were found for protein con-

tent and for several viscosity parameters (Additional file 5:
Table S5). Specifically, the genomic region on chromo-
some 1 (32,314 kb to 32,548 kb) was strongly associated
with protein content (PR), the genomic region on
chromosome 5 (23,783,411 bp) was associated with set-
back from peak viscosity (SB2), and the genomic region
on chromosome 10 (60,092 kb to 60,351 kb) was associ-
ated with peak viscosity (PV) and breakdown viscosity
(BD_SqRt).
Five genomic regions were associated with multiple

quality-related traits (Fig. 4); many of those traits were
highly correlated (Fig. 1). Protein (PR) and fiber content
(FI) were simultaneously associated in two different gen-
omic regions on chromosome 1, one already described
for PR, between 32,313 kilobase pairs (kb) and 32,548 kb
and the other region between 267,849 kb and 267,886 kb
(Fig. 5). The second region was also associated with
breakdown viscosity (BD_SqRt) (Additional file 5:
Table S5). Three other genomic regions were simultan-
eously associated with different traits related to flour’s
pasting properties (viscosity profiles). Namely, one gen-
omic region associated with breakdown viscosity
(BD_SqRt) and peak viscosity (PV) on chromosome 10
(60,092 kb to 60,351 kb) (Fig. 6), and two other re-
gions associated both with setback from trough vis-
cosity (SB1) and final viscosity (FV) on chromosome
3 (173.419 kb to 173,420 kb) and chromosome 6
(34,978 kb to 35,091 kb) (Fig. 7).

Proportion of variance explained and SNP effect size
For all the traits, each significant SNP-trait association
only explained a small portion of the observed pheno-
typic variance. The portion of the observed phenotypic

Fig. 2 Principal component analysis (PCA) biplot for 11 quality traits
measured in 132 maize inbred lines. PCA based on BLUP (best linear
unbiased prediction) values across growing seasons. Blue circles
correspond to inbred lines selected entirely from Portuguese
landraces. Quality traits: PR –percentage of protein; FI – percentage of
fiber; FT – percentage of fat; STL – percentage of starch in lyophilized
flour; SIZEL – mean particle size in lyophilized flour; PV – peak
(maximum) viscosity; TV – trough (minimum) viscosity; FV – final
viscosity; BD_SqRt – squared-root transformed values of the
breakdown viscosity; SB1 – setback from trough viscosity; SB2 –
setback from peak viscosity
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variance explained by each significant SNP-trait asso-
ciations was bigger in the case of setback from peak
viscosity (15.6%), and mean particle size (14.8%)
(Additional file 6: Table S6).
By inspecting the significantly associated SNP effect

sizes on the traits variation we were able to identify the
most promising SNPs for marker-assisted-selection
(SNPs with the strongest association with the traits and
with higher effect on the trait variation). Namely, for set-
back from peak viscosity selection, the SNP (rs131504732)
which can lead to a change in 18.89% in relation to the as-
sociation panel mean value would be the most logical se-
lection choice. For peak viscosity and breakdown viscosity,
the SNP (rs131765763) that can lead to a change in 12.53
and 16.30%, respectively, in relation to the association

panel mean value would be selected; and for protein, the
choice would be the SNP (rs131232105) which can lead to
a change in 4.53% in relation to the association panel
mean value.
When considering the effect of the most frequent al-

lele of the strongest SNPs associated with those quality
traits and/or the SNPs that explained the biggest propor-
tion of genetic variance on the maize inbred lines de-
rived entirely from Portuguese populations, we observed
that the frequency of the SNP variants in the Portuguese
inbred lines was indeed directed toward an increase in
protein, fiber, and mean particle size, and a decrease in
starch, breakdown viscosity, and peak viscosity, as de-
scribed before for the Portuguese derived lines. This can
indicate a positive selection in the Portuguese maize

Fig. 3 First three principal component scores plots from Eigenanalysis using 1821 SNPs in 132 maize inbred lines. Inbred lines coded by endosperm
type: dent (squares), flint (circles), and intermediate (triangles); and kernel color (white, yellow, yellow-orange, orange, and red). The variance explained
by each principal component is given in the axis heading
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germplasm toward the presence of the favorable alleles
for protein content (SNP ID rs131232105), for fiber con-
tent (SNP ID rs132587158), and mean particle size (SNP
ID rs131635762), and for alleles associated with a de-
crease in breakdown and peak viscosities values (SNP ID
rs128531960) and decrease in starch content (SNP ID
rs131186983). For example, in the strongest associated
SNP on chromosome 1 for protein content (SNP ID
rs131232105) that the unfavorable allele was only
present in ~ 10% of the Portuguese lines.

Identification of candidate genes
We further investigated the location of genomic regions
for putative candidate genes using the B73 reference
genome (Zea mays B73 RefGen_v3). The degree of link-
age disequilibrium in the association panel determines
the size of the genomic window to be considered when
looking for candidate genes as it established the degree

of mapping resolution. The average linkage disequilib-
rium (LD) decay for the genomic regions significantly
associated with the quality-related traits was for our as-
sociation panel 52.23 kb for LD r2 > 0.2. This value was
highly variable across the genome extended to a max-
imum of 457 kb in a region of chromosome 10, spanning
from 59,574 kb to 60,031 kb and identified as being
associated with breakdown viscosity trait (BD_SqRt)
(Additional file 5: Table S5). Using as reference the fil-
tered gene set from the B73 RefGen_v3 assembly, a
complete list of genes mapped within the significantly
associated genomic regions identified in the GWAS for the
11 quality-related traits can be found in Additional file 7. A
substantial proportion (66.67%) of the SNPs significantly as-
sociated with the quality-related traits was mapped within
genes (48 out of 72 SNPs significantly associated with any
trait; Additional file 7: Table S7). The degree of linkage
disequilibrium around the genomic regions identified by

Fig. 4 Chromosomal regions identified by genome-wide association for 11 quality traits measured in 132 maize inbred lines. Horizontal bars
represent each of the 10 maize chromosomes. Genomic regions labelled accordingly to the trait, followed by a number identifying each
individual region; vertical lines below correspond to the location of the genomic region associated with the trait variation in megabase
pairs using the B73 reference genome (Zea mays B73 RefGen_v3). Co-localized regions associated with multiple traits are highlighted in
blue. Quality traits: PR – percentage of protein; FI – percentage of fiber; FT – percentage of fat; STL – percentage of starch in lyophilized
flour; SIZEL – mean particle size in lyophilized flour; PV – peak (maximum) viscosity; TV – trough (minimum) viscosity; FV – final viscosity;
BD_SqRt – squared-root transformed values of the breakdown viscosity; SB1 – setback from trough viscosity; SB2 – setback from peak viscosity
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GWAS allowed achieving a mapping resolution to the gene
level in 40.35% of the cases (LD blocks where a single gene
was identified, Additional file 7: Table S7).
In the frame of this work, it was not possible to de-

scribe all candidate genes located within the associated
genomic regions in detail. We therefore restrict our-
selves to describe those that were (1) located within re-
gions where the strongest significant associations were
detected or (2) located within regions associated with
multiple quality-related traits.
The strongest SNP-trait associations detected, corre-

sponding to three different genomic regions, were

located on chromosomes 1, 5, and 10 (SNPs highlighted
in Additional file 5: Table S5). They are the genomic re-
gion on chromosome 1 (32,314 kb to 32,548 kb) associ-
ated with protein content (PR) and fiber (FI), the
genomic region on chromosome 5 (23,783,411 bp) asso-
ciated with setback from peak viscosity (SB2), and the
last on chromosome 10 (60,092 kb to 60,351 kb) associ-
ated with peak viscosity (PV) and breakdown viscosity
(BD_SqRt). Some of these genomic regions harbored po-
tential candidate genes for which we had no previous
validation of their involvement with the quality-related
traits analyzed. This was the case for the genomic

Fig. 5 Manhattan plot showing GWAS results for wholemeal maize flour protein and fiber content on chromosome 1. Y-axis shows the −log10
P-values of each SNP, and x-axis shows their chromosomal positions. Horizontal black and grey lines represent the threshold of P = 1.00 × 10− 4,
and the Bonferroni-corrected threshold of P = 6.45 × 10− 6, respectively

Fig. 6 Manhattan plot showing GWAS results for wholemeal maize flour peak and breakdown viscosity on chromosome 10. Y-axis shows the
−log10 P-values of each SNP, and x-axis shows their chromosomal positions. Horizontal black and grey lines represent the threshold of P = 1.00 ×
10− 4, and the Bonferroni-corrected threshold of P = 1.44 × 10− 5, respectively

Alves et al. BMC Plant Biology          (2019) 19:123 Page 7 of 17



regions on chromosome 1 strongly associated with PR
and FI. Among the six protein-coding genes within this
region, the SNP with the strongest association to both
traits, rs131232105, was located within the
GRMZM2G099528 gene. This gene codes for a putative
endoplasmic reticulum transmembrane protein involved
in the intracellular protein transport.
In the genomic region on chromosome 5, one SNP

was strongly associated with setback from peak viscosity
(SB2) (rs131504732, −log10 (P-value) = 5.846). This SNP
was located within the GRMZM2G376743 gene, coding
for a protein from the ARM repeat superfamily
(PTHR33836:SF1). Finally, on chromosome 10, two
SNPs were significantly associated with both peak vis-
cosity (PV) and breakdown viscosity (BD_SqRt)
(rs128531960 and rs131765763). Of those SNPs, the
strongest SNP associated was rs131765763 (−log10
(P-value) = 5.468, for peak viscosity; and –log10
(P-value) = 5.671, for breakdown viscosity). The SNPs as-
sociated with those two traits were not mapped within
any gene. Nevertheless, considering the LD decay
around those SNPs, several genes were identified within
the region: GRMZM2G079777, coding for a V-type
proton ATPase subunit D protein, involved in the
phagosome and in oxidative phosphorylation; GRMZ
M2G181192 (glx1), coding for glyoxylase1, involved in
the pyruvate metabolism; and GRMZM2G079925 and
GRMZM2G005938, both coding for pentatricopeptide
repeat-containing proteins.

Furthermore, candidate genes were identified for the
regions associated with multiple quality-related traits.
On chromosome 1, besides the region described in the
previous section strongly associated with protein con-
tent, another genomic region where several candidate
genes were located was associated simultaneously with
breakdown viscosity (BD_SqRt), fiber (FI), and protein
(PR) content. This region spanned from 267,849 kb to
267,886 kb. Examples are the GRMZM2G127656 gene,
which encodes a protein containing a zinc-finger domain
of monoamine-oxidase A repressor R1 for fiber con-
tent, and the GRMZM2G022787 gene, which encodes
for a pentatricopeptide repeat-containing protein for
protein content.
Two regions were simultaneously associated with final

viscosity (FV), and setback from trough viscosity (SB1),
one on chromosome 3 spanning from 173,419 to
173,420 kb and the other on chromosome 6 spanning
from 34,978 kb to 35,091 kb. In the first region (chromo-
some 3), the significant SNP (rs131180967, −log10
(P-value) = 4.571, for FV, and –log10 (P-value) = 4.103,
for SB1) was mapped within the GRMZM2G452630
gene, coding for a serine hydroxyl-methyl-transferase re-
lated protein. In the second region (chromosome 6), the
significant SNP (rs131176534, −log10 (P-value) = 4.675,
for FV, and -log10 (P-value) = 4.224, for SB1) was
mapped within the GRMZM2G045971 gene, coding
for a preprotein translocase Sec, Sec61-beta subunit
protein.

Fig. 7 Manhattan plots showing GWAS results for setback from trough viscosity and final viscosity on chromosomes 3 and 6. Y-axis shows the
−log10 P-values of each SNP, and x-axis shows their chromosomal positions. The horizontal black line represents the threshold of P = 1.00 × 10− 4
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Discussion
Breeding for maize improved quality is a complex task of
great economic importance presently. The development
of tools, such as molecular tools, to increase efficacy and
efficiency of quality selection within breeding programs is
becoming crucial. In the present study and by taking ad-
vantage for the first time of the underexplored Portuguese
maize germplasm selected over centuries for food uses
such as bread production, we conducted a genome-wide
association study, identifying 57 genomic regions and can-
didate genes for 11 different maize kernel constituents
and parameters affecting the maize flour “breadability”.
These can now be used to support breeding programs for
complex quality traits, difficult to select by conventional
methods such as “breadability”.
Starch, proteins, and lipids are the three major food

components in cereal-based food products, and interac-
tions among them in a food system are of importance to
functionality and quality [7, 8]. In a previous work we
showed that Portuguese traditional maize populations
considered to have high “breadability” were character-
ized among others by high levels of protein and fiber,
and low breakdown viscosity values [19]. Additionally,
the maize populations that produce better-quality bread
have higher protein values and lower breakdown values
when compared to commercial maize varieties [18].
Similarly, in the present work, the inbred lines derived
from Portuguese maize populations were overall charac-
terized by having a low breakdown and peak viscosity,
and starch content; and a high fiber and protein content.
Pasting properties of maize flour are considered import-
ant parameters in the preparation of different food prod-
ucts as they are related to starch swelling and
gelatinization ability [20]. Besides starch, fiber and pro-
tein also influence the end-product quality. The higher
protein content can potentially induce increased
amounts of flour water absorption ratio and correspond-
ing higher bread moisture. In fact, the crumb moisture
has been identified [21] as a relevant attribute for con-
sumer acceptability of maize-based bread. Fiber content
can also have an impact on baked goods quality, contrib-
uting to dough viscosity, air entrapment and the im-
provement of loaf volume and texture [6].
The Portuguese inbred lines where mainly grouped

with the lines with flint endosperm. This type of endo-
sperm is usually associated to harder kernels. The endo-
sperm or kernel hardness has been described as having a
major impact on quality [21–23]. The size of the parti-
cles that are released from flour is directly related to the
kernel hardness. Harder kernels or those richer in vitre-
ous endosperm will yield larger particles than those that
are softer [24]. With regard to the biochemical contribu-
tion to maize kernel hardness, both protein and starch
composition are implicated, and specifically, the

variation in zein classes has been linked to differences in
hardness [23]. And both the content and composition of
zeins are the key determinants to the protein quality and
texture-related traits of the kernel [25].

Putative pleiotropic regions associated with flour
compositional and pasting properties
Pleiotropic effects (different traits affected by the same
locus/loci) can hamper breeding efforts. In this work
several regions controlling multiple traits were identified,
which is consistent with the observation of strong pair-
wise phenotypic and genotypic correlations between
some of the traits (such as peak viscosity and breakdown
viscosity, final viscosity, and setback from tough viscosity
or protein and fiber content). This detection of genomic
regions associated with multiple traits variation could be
due to pleiotropic effects. However, since several genes
are mapped within some of those regions, as mentioned,
for instance, in Karn et al. [26], fine mapping within
these regions is still required in order to properly ad-
dress whether a pleiotropic gene is responsible for both
traits variation or whether the traits’ variation is due to
two closely linked genes, and to investigate the possibil-
ity of independent selection among the correlated traits.

Strong candidate genes for protein and fiber content in
wholemeal maize flour
Although for the further development of selection tools
is not necessary to identify the direct causal variant, be-
ing sufficient to identify the genomic region, the identifi-
cation of strong candidate gene(s) with strong evidence
of direct implication on a trait variation would reinforce
the overall biological results. Several of the SNP-trait as-
sociations detected in the present study were located
within or near an a priori candidate gene, which
strengthened and validated the usefulness of the used as-
sociation panel. For instance, in the current work the al-
lelic variation for SNP ID rs128946933 (chromosome 1
at 267,974,184 bp; −log10 (P-value) = 4.002) was signifi-
cantly associated with protein variation. This SNP is
located within the GRMZM2G066749 gene. Recently,
Chen et al. [27] demonstrated that this particular
GRMZM2G066749 gene is the causative gene for dek35
mutants. The mature dek35 seeds have their protein
content altered, exhibiting a significant decrease in seed
dry weight and zein protein content [27]. Furthermore,
the neighboring region to dek35 was previously identi-
fied by Cook et al. [13] as being associated with the
maize kernel protein content.
Also the SNP with the strongest association to both

protein content and fiber content (Chr1: 32,313 kb to
32,548 kb; rs131232105) was located within the GRM
ZM2G099528 gene. This gene codes for a putative endo-
plasmic reticulum transmembrane protein involved in
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the intracellular protein transport. The intracellular
transport of proteins into the lumen of the endoplasmic
reticulum is crucial for the protein accumulation in the
kernel. Maize kernel primary storage proteins are first
sequestered and accumulated in the lumen of the endo-
plasmic reticulum, and are afterwards directly assembled
into protein bodies [25]. This region is an example of a
regions identified in this work harbored putative candi-
date genes for which we had no previous indication of
their involvement with the quality-related traits ana-
lyzed. These “novel” regions with unforeseen candidate
genes, not previously described as associated to the stud-
ied traits, might be due to the present use of a different
association panel, harboring different genetic variability.
Several a priori candidate genes previously identified

by others as associated with maize kernel compositional
traits and starch pasting properties (e.g., [13–15]) were
not detected in the present study. Examples are the
amylose extender1 (ae1) and shrunken2 (sh2), known
also for their significant association with starch pasting
properties [14]; brittle endosperm2 (bt2); shrunken1
(sh1); and dull endosperm 1 (du1), known for a signifi-
cant association with kernel compositional traits. The
latter, dull endosperm 1 gene (GRMZM2G141399, du1),
encodes a starch synthase and is a determinant of the
structure of endosperm starch in maize [28, 29]. This
gene was found on chromosome 10 at a distance of ap-
proximately 46 kb and 564 kb downstream of two identi-
fied associated genomic regions with breakdown
viscosity, one of the flour pasting properties studied in
this work, and therefore not within the confidence inter-
vals (59,574–60,031 kb and 60,092–60,351 kb, respect-
ively). This observation may suggest that, at least for
some regions, the rapid rate of LD decay observed in the
present panel can partially explain the difficulty of de-
tecting previously identified candidate genes named in
other similar studies. Another example of a potential
candidate gene for starch content, but not identified in
the present study, is brittle endosperm1 gene (GRM
ZM2G144081, bt1), coding a protein Brittle1 (Bt1) pro-
tein, involved in ADP-glucose transport into endosperm
plastids and playing a role in starch biosynthesis [15]; or
in the case of oil content in maize kernels, the
acyl-CoA:diacylglycerol acyltransferase gene (GRMZ
M2G169089, DGAT1–2) [13, 30]. Indeed, the genotyping
platform used on the current work screened several
SNPs located within all the aforementioned candidate
genes. Nevertheless, no association was detected be-
tween those SNPs and the maize kernel compositional
traits or starch pasting properties on the present associ-
ation panel. As pointed out by [13], several factors could
be responsible for differences in position and quantity of
quantitative trait loci (QTLs) detected between studies,
including variation in allelic frequency, mapping

resolution influenced by the magnitude of linkage dis-
equilibrium in a population, marker density, environ-
mental effects, and QTL analysis methods.
The rapid rate of LD decay observed in the present

study in the SNPs associated with the quality-related
traits evaluated suggests that a higher marker density
would have been beneficial in the detection of other re-
gions putatively linked to maize flour’s quality. More-
over, it is important to mention that the size of the
collection of maize inbred lines used in this work most
likely affected the power to detect significant marker-
trait associations and the subsequent identification of
genomic regions controlling the analyzed traits associ-
ation. As reported in Yang et al. [31], using simulation
studies, a collection of 155 diverse maize lines for associ-
ation mapping was suitable for studying traits mainly
controlled by major QTLs. Similarly, in the present
work, the collection size should have been extended in
order to increase the power to detect significant markers
with moderate or even minor effects on the traits.

Challenges and opportunities
This work reports the identification of 57 genomic re-
gions associated with 11 different quality-related traits
evaluated in wholemeal maize flour, highlighting candi-
date genes for the majority of those regions. However,
novel regions, with no clear candidate genes, were also
identified, which were not previously acknowledged
using other germplasm collections studies.
Findings from GWAS provide valuable genetic infor-

mation of trait architecture or candidate loci for subse-
quent validation [32]. Preliminary GWAS analysis
should be complemented by statistical procedures to
help prioritize GWAS results [33], such as pathway ana-
lysis of GWAS results to rank genes and pathways
within a biological context. Additional follow-up ana-
lyses and experiments may even be required to pinpoint
the causal genes [34]. In the present study, the SNPs
strongly associated with the traits analyzed and/or the
SNPs from which the allelic variant was found to contrib-
ute to the larger phenotypic effects should be priori-
tized as candidate genomic regions for marker
development to support selection activities, especially
for the quality-related traits difficult to measure/as-
sess. The final objective is to develop the necessary
expedited tools to implement routine quality selection
(such as for “breadability”) into maize breeding pro-
grams. As an example, by using marker-assisted selec-
tion, a few nutritional trait-associated genes or QTLs
(for maize protein quality, oil content and provitamin
A levels) have been recently introgressed into elite
maize lines for their quality improvement [5].
Nevertheless, prior to that, the significant marker-trait

associations detected in the current work need to be
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validated. Future work will concentrate on the validation
of the results retrieved in this work by sequencing those
regions on contrasting maize populations for the given
trait. Since the actual materials used for the manufactur-
ing of maize-based bread are the traditional maize popu-
lations, these are the ideal independent materials to
proceed with the sequencing validation.

Conclusions
In this work, a genome-wide association approach was
carried out to identify genomic regions controlling the
variation of maize kernel major constituents (protein,
fiber, fat, and starch content) and parameters affecting
the maize flour “breadability” (starch pasting properties
and flour’s mean particle size). For that, a unique maize
inbred collection containing lines partially derived from
Portuguese maize populations was used given that
Portuguese traditional maize populations have been
developed through centuries adapted both to the local
environment and food uses, in particular, for broa
production.
The inbred lines derived from Portuguese maize popu-

lations were overall characterized by having a low break-
down and peak viscosity, and starch content; and a high
fiber and protein content. A putative positive selection
toward the presence of the favorable alleles for protein
content, for fiber content, and mean particle size, and
for alleles associated with a decrease in breakdown and
peak viscosities values and a decrease in starch content
was observed in the inbred lines derived from Portu-
guese traditional maize populations.
This work allowed for identifying relevant regions on

the maize genome affecting maize kernel composition
and flour pasting behavior, and identifying candidate
genes for the majority of the flagged genomic regions. A
total of 57 genomic regions were detected and candidate
genes underlying the majority of those regions were
identified. Moreover it was observed that the majority of
the detected genomic regions were associated with a sin-
gle trait. The traits for which the strongest and stable as-
sociations were found were protein, breakdown viscosity
and peak viscosity. For those the strongest SNP-trait as-
sociation could result in changes from more than 4% in
protein content to more than 10% in the case of the vis-
cosity parameters. Importantly, this work allowed redu-
cing the gap towards the development of selection tools
to support breeding for these complex quality traits,
such as “breadability”.

Methods
Plant material selection
In this work, we took advantage of the diverse inbred
lines developed in the past by the extinct NUMI (Núcleo
de Melhoramento de Milho) combining Portuguese

germplasm with foreign (mainly US) germplasm. These
inbred lines (developed by single seed descent) are
currently conserved at the National Portuguese Plant
Germplasm Bank (Banco Português de Germoplasma
Vegetal - BPGV, Braga, Portugal). The maize inbred
line collection used in this study was assembled ob-
serving a significant representation of lines selected
from Portuguese traditional maize populations (29
lines) and lines with a mixed Portuguese × foreign
origin (Additional file 8: Table S8).
From a total of 164 different maize inbred lines sowed

on the field trials, only 132 yielded sufficient kernels to
proceed with their quality analysis. Additional details on
their recorded pedigree can be found in Additional file
8: Table S8. Thirty-six of the yielding lines have white
kernel, further divided into 20 with flint endosperm,
three intermediate and 13 with dent endosperm. The
remaining 96 inbred lines have a kernel color ranging
from yellow to red, further divided into 37 with flint
endosperm, eight intermediate, and 51 with dent endo-
sperm (Additional file 9: Table S9).

Field characterization and experimental design
The inbred lines were evaluated at the Coimbra site (40°
13′0.22″N, 8°26′47.69″W) in Portugal during the 2011
and 2012 growing seasons, using an organic agriculture
converted field. The conversion started in 2011 and the
field was considered to be fully managed under an or-
ganic agriculture system by 2012. This site is part of the
Mondego River irrigation perimeter, a very high-yielding
maize area where the average maize hybrids yield is 14.5
Mg.ha− 1 [35]. It is located 50 km from the seacoast, with
an altitude of 25 m. Its alluvial soils are characterized at
0–20 cm and 20–40 cm, respectively, by a pH of 5.65
and 5.75; a percentage of soil with a particle size less
than 0.2 mm diameter of 83.37 and 82.84%; and an or-
ganic matter percentage of 2.91 and 2.55%. Agricultural
practices were similar in both growing seasons, but sow-
ing and harvest dates differed between growing seasons.
Sowing took place on April 28 and May 11 and the har-
vests took place on September 28 and November 6 in
2011 and 2012, respectively.
In each year, the maize inbred lines were evaluated

using a randomized complete block design, with two
blocks (replicates). Information on the spatial distribu-
tion of the plots was also recorded (field row and col-
umns coordinates). Each plot consisted of two rows 7.2
m long (6.4 m planted row plus 0.8 m border space be-
tween two planted rows), with an inter-row distance of
0.75 m. Each plot was overplanted by hand and thinned
at the V7 growth developmental stage to achieve a plant
density of approximately 50,000 plants ha− 1. Plots were
both mechanically weeded and hand-weeded when
needed and managed following common agricultural
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practices for maize in the region. Pollination was con-
trolled within each plot. All the plots were harvested by
hand. After harvest, ears were dried at 30–35 °C in an
oven (Memmert Model UFE 800, Memmert GmbH +
Co. KG, Germany) until a ~ 15% in moisture was
reached. The ears were then shelled, and the kernel col-
lected per plot basis was packed in paper bags and kept
at 4 °C until further analysis.

Sample preparation and phenotypic data acquisition
A seed sample from each of the harvested plots was
used for quality determinations in the two years/growing
seasons. Eleven nutritional-related and technological-re-
lated traits were measured in wholemeal maize flour.
Wholemeal maize flour was obtained from all the seed
samples using a Falling number 3100 mill (Perten Inc.,
Sweden) with a 0.8 mm screen. In order to prevent/
minimize the enzymatic action and subsequent alter-
ation of the flour properties, flour samples were also ly-
ophilized using Cientificolab® equipment built for
pilot-scale lyophilization of food commodities. For that,
each sample was individually placed in a flask (height
3.7 cm, diameter 4.2 cm) and then freeze-dried for
long-term preservation.

Nutritional-related traits
Flour protein (PR), fiber (FI), and fat (FT) content were
determined for each non-lyophilized sample by near-in-
frared reflectance (NIR) spectroscopy (Percon Inframatic
8620, Perten Inc., Sweden), with calibrations for
non-lyophilized samples supplied by the manufacturer.
Values for protein, fiber, and fat corresponded to the
mean value of up to two technical replicates. The total
starch content was determined in lyophilized (STL)
(both 2011 and 2012 growing seasons) and non-lyophi-
lized (ST) (only the 2012 growing season) samples using
Fourier Transform Near-Infrared Reflectance (FT-NIR)
spectroscopy (FT-NIR MPA, Bruker Optics, Germany),
with calibrations for non-lyophilized samples supplied
by the manufacturer. Values for total starch content ob-
tained from the 2012 growing season lyophilized and
non-lyophilized samples were further used to test
whether both datasets were correlated (phenotypic cor-
relation between datasets). Values for total starch con-
tent (non-lyophilized (ST) and lyophilized (STL)
samples) corresponded to the mean value of two to four
technical replicates. Protein, fiber, fat, and starch content
was expressed as a percentage (%).

Technological-related traits
The maize flour Particle Size Index (PSI) was also deter-
mined using FT-NIR spectroscopy (FT-NIR MPA, Bruker
Optics, Germany). For the 2011 growing season, only the
mean for particle size in lyophilized samples (SIZEL) was

measured. For the 2012 growing season, both mean par-
ticle size in non-lyophilized (SIZE) and lyophilized flours
(SIZEL) were determined. Values for mean particle size
(non-lyophilized (SIZE) and lyophilized (SIZEL) samples)
corresponded to the mean value of two to four technical
replicates. The calibration models for PSI FT-NIR analysis
were obtained using the particle size values measured in a
subset of 30 non-lyophilized samples according to the
AACC method 55–40.01:1999 [36], with a Malvern
multi-channel laser light-scatter instrument (Malvern In-
struments Ltd., England). Values for mean particle size ob-
tained from lyophilized and non-lyophilized samples from
the 2012 growing season were further used to test whether
both datasets were correlated (phenotypic correlation be-
tween datasets). After calibration, the mean particle size
volume value, or D [3, 4], retrieved from the particle size
distribution, was used as an average measure of the par-
ticle size of each sample and was expressed in μmeters.
Maize flour pasting properties were evaluated by re-

cording their viscosity profiles using a Rapid Visco Ana-
lyser (RVA) (Newport Scientific, Australia). The viscosity
profiles were obtained on non-lyophilized samples ac-
cording to [37] at 15% solids, using the following heating
and cooling cycle set: (1) holding at 50 °C for 2 min, (2)
heating to 95 °C for 4.5 min, (3) holding at 95 °C for 4.5
min, (4) cooling to 50 °C for 4 min, (5) holding at 50 °C
for 10 min. The RVA paddle speed was set at 960 rpm
for the first 10 s of the test, after which the speed was
changed to 160 rpm. The following traits were recorded:
Peak (or maximum) (PV), trough (or minimum) (TV),
and final (FV) viscosities. The breakdown (BD) was calcu-
lated as peak viscosity-trough viscosity, setback from
trough viscosity (SB1) as final viscosity - trough viscosity,
and setback from peak viscosity (SB2) as final viscosity -
peak viscosity. Up to two technical replicates of the viscos-
ity profiles were taken for each sample. All the viscosity
and viscosity-related traits were expressed in cPoise units.

Phenotypic data analysis
Phenotypic data quality control
Quality control was performed for each year/growing
season, on the data collected per genotype individually
from each of the two replicated plots. Graphical inspec-
tion of residuals was used to assess normality (Q-Q
plot), homogeneity of variance (residuals versus fitted
values), and identify outliers. Observations were flagged
for closer inspection when they exceeded 1.5 times the
interquartile range, and when the standardized residuals
after mixed model analysis were extreme. One of the traits
(breakdown viscosity, BD) required a squared-root-trans-
formation to stabilize the variance. All analyses were done
using Breeding View software [38], available through the
IBP Breeding Management System (IBP Breeding Man-
agement System Version 3.0.9, 2015).
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Single/individual growing season analysis
A phenotypic analysis was performed per single environ-
ment trial: 1) the estimates of genetic variances (and co-
variances between traits) and of heritability were
obtained according to Oakey et al. [39], and 2) adjusted
trait means for all the inbred lines were calculated.
In detail, single trait-single growing season analysis,

using mixed models, was performed using the “Single
trait field trial analysis” pipeline of Breeding View, select-
ing the model for resolvable row-column design as im-
plemented in the software. The statistical model
includes an intercept, a fixed block effect, a random row
and column effects (nested within blocks), a genotypic
effect (fixed or random; see the explanation that fol-
lows), and a residual. The Field trial analysis node in
Breeding View performs two mixed model analyses: In
the first step (Step 1) the inbred lines (genotypes) were
fitted as a random term, while in the second step (Step
2) the inbred lines were fitted as a fixed term. The Step
1 model is used to obtain estimates of variance parame-
ters. From Step 1 the heritability, as well as the best lin-
ear unbiased predictors (BLUPs), was calculated for each
inbred line (and correlations between BLUPs of different
traits used to obtain estimates of genetic correlations be-
tween traits). In Step 2, structural variance components
(rows and column variances) are fixed to those estimated
in Step 1, and by including the inbred lines as a fixed
term, the best linear unbiased estimators (BLUEs) for
each inbred line were produced.

Multi-environment/growing seasons trial analysis
For each quality trait, a multi-environment trial analysis
was also performed to assess the consistency across
growing seasons. The analysis of variance was carried
out using the residual maximum likelihood (REML) vari-
ance components analysis procedure in Genstat software
(Genstat® for Windows, 18th edition, [40]). The mixed
model included growing seasons (fixed), maize inbred
lines, and season by line interaction (fixed or random)
while blocks, rows, and columns were treated as random
terms and nested within growing seasons. Similar to
what was already described for the single trial analysis,
in the multi-environment trial analysis, BLUPs and
BLUEs were calculated for each inbred line across grow-
ing seasons. BLUPs were used on principal component
analysis (PCA) to assess genetic correlations between
traits and BLUEs were used as input phenotypic data in
the association mapping analysis, for the combined ana-
lysis across growing seasons.

Genotypic data acquisition
DNA was isolated from adult leaves from each maize in-
bred line using a modified CTAB procedure described in
[41]. DNA quality was accessed using a 0.8% SeaKem®

LE Agarose gel (Cambrex Bio Science Rockland, Inc.,
USA) stained with SYBR® Safe (Invitrogen, USA). DNA
quantification was done using a spectrophotometer
Nanodrop ND-2000C (Thermo Scientific, USA). An
additional step for polysaccharides removal [42] was
added when the ratio 260/230 nm wavelength was infer-
ior to 1.6 to avoid the interference of these contaminants
on Single Nucleotide Polymorphism (SNP) genotyping.
DNA concentration for all inbred lines was set to 50 ng/
μl and genotyped with the Illumina MaizeSNP50 Bead-
Chip array [43]. The genotyping array procedure and al-
leles scoring was conducted by the genotypic service
provider (TraitGenetics GmbH, Gatersleben, Germany).
This array allowed the screening of 17,520 genes (since
33,417 of the SNPs present in this array are located on
17,520 genes and 16,168 SNPs are located in intergenic
regions) [43].
The position of each marker along the maize B73 ref-

erence genome was updated from the markers’ coordi-
nates available when the MaizeSNP50 BeadChip was
originally designed (B73 reference genome version 1) to
the coordinates in the released B73 reference genome
version 3. These coordinates were taken from the maize
genome browser, via the MaizeGDB database ([44],
www.maizegdb.org).

Genotypic data analysis
Genotypic data quality control
Genotypic data quality control was performed by remov-
ing SNP markers and inbred lines with more than 25%
of missing data. SNPs called as heterozygous were set as
missing data (0.93% of the total SNP calls). Moreover,
markers with a minor allele frequency (MAF) smaller
than 5% were removed. After this filter, a total of 48,772
SNPs remained and were used for the association map-
ping analysis.

Genetic structure analysis
A subset of 1821 SNPs, evenly distributed across the
genome (corresponding approximately to 1 SNP per
Megabase pairs, Mb), was used to calculate principal
components to study the population structure among
inbred lines and to calculate the kinship matrix to esti-
mate pairwise genetic relatedness among inbred lines as
implemented in Genstat software (Genstat® for Win-
dows, 18th edition, [40]).

Association mapping analysis
Given that for all the quality-related traits under study,
the variance components for genotype-by-environment
(G × E) interaction (σ2g × y) were much smaller than the
genotype variance component (σ2g), univariate associ-
ation analysis was carried out using the adjusted means
for field trial design (BLUEs) obtained across growing
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seasons. Genome-wide association studies were con-
ducted with the Genstat software using the available
genotypic (SNPs scored with the MaizeSNP50 BeadChip
array) and quality data (11 quality-related traits) mea-
sured in 132 maize inbred lines. The Genstat software
performs association mapping in the mixed model
framework, fitting markers as fixed and inbred lines as
random terms using REML [45].
Three different models were tested to detect signifi-

cant marker-trait associations: the naïve model [Pheno-
type = SNP + (Genotype + Error)], that neither accounts
for population structure nor familial relatedness; a
model accounting for population structure (Q) using 15
principal components from PCA [Phenotype =Q + SNP
+ (Genotype + Error)]; and a model accounting for famil-
iar relatedness (K) [Phenotype = SNP +Genotype + Error]
with Genotype random effects structured following a
kinship matrix K. For each chromosome, a different kin-
ship matrix was calculated where only the SNPs located
on the other nine maize chromosomes were used to cal-
culate the kinship matrix [46, 47].
The inspection of the inflation values for each model

and the quantile-quantile (Q-Q) plots of the respective
P-values allowed to informally assess to what extent the
models accounted for genetic structure/relatedness
among the inbred lines and therefore guarded against
false discoveries. Models resulting in an inflation factor
near 1 perform better, and quantile-quantile (Q-Q) plots
should show few P-values that deviate from the expected
uniform distribution that holds under the null hypoth-
esis (i.e., no association). The observed P-values (on a –
log10 scale) of each SNP were plotted against their
chromosomal positions so they produce Manhattan
plots. A threshold of –log10 (P-value) = 4 was set to iden-
tify significant marker-trait associations. Given that the
association panel used was not that large and looking at
the background noise in the obtained Manhattan plots,
the threshold of -log10 (P-value) = 4 seemed reasonable
not to avoid losing potentially interesting regions, at the
expense of applying a more conservative type of correc-
tion such as Bonferroni. Examples of other maize studies
with similar association panel sizes and number of
markers using the same threshold are the works of Liu
et al. [48, 49]. The effect of the minor frequency SNP
variant, reported in relation to the most frequent allele
reference, was calculated.

Post-GWAS procedures
Local linkage disequilibrium and candidate genes
identification
A local linkage disequilibrium (LD) study was performed
to define chromosomal regions to search for candidate
genes for the traits under analysis.

This procedure was done in two steps: In Step 1, the
average intra-chromosomal LD was estimated as the
squared correlation coefficient r2, after correcting for
population structure using the principal component
scores from Eigenanalysis, as implemented in Genstat
software. For this calculation, the same subset of 1821
SNPs previously used for the genetic structure analysis
was employed. LD decay was visualized per chromosome
by plotting r2 against the physical mapping distance in
Mb. A threshold for LD decay (r2 = 0.1) was used to esti-
mate the average genetic distance for which markers
were considered to be no longer correlated. In Step 2, a
genomic window around each SNP location significantly
associated with the traits analyzed was established by
subtracting and adding the average genetic distance for
LD decay (r2 > 0.1), estimated in Step 1. All the SNP
markers located within those windows were then used
to estimate the local LD decay. At this point, a stricter
threshold of r2 = 0.2 was considered. The markers’ posi-
tions flanking each local LD block were further used as
query positions on the maize genome browser, via
MaizeGDB (https://www.maizegdb.org/gbrowse/), to
retrieve the list of candidate genes mapped within
those genomic regions.
The genome sequence of the maize inbred line B73

(Zea mays B73 RefGen_v3) was used as the reference
genome for candidate gene analyses [50]. The functional
annotation of the genes under the identified genomic re-
gions was retrieved via Phytozome ([51], Phytozome 11,
version AGPv3 - Zea mays Ensembl-18) using the gene
model identifier as the query. KEGG: Kyoto Encyclopedia
of Genes and Genomes database [52] was used to retrieve
information on the pathways where the candidate genes
could be involved.

Additional files

Additional file 1: Table S1. Pearson correlation coefficients among
quality traits measured in wholemeal flour of 132 maize inbred lines.
In Table S1 one can find the pairwise Pearson correlations coefficients
between the 11 quality trait evaluated and the P-value of the 2-tailed test
for each growing season. (DOCX 28 kb)

Additional file 2: Table S2. Estimated genetic correlations among
quality traits measured in wholemeal flour of a collection of 132
maize inbred lines. In Table S2 one can find the estimated pairwise
genetic correlation between the 11 quality trait evaluated for each
growing season. (DOCX 22 kb)

Additional file 3: Table S3. Phenotypic values (range, and mean ±
standard deviation) for 11 quality traits measured in 132 maize inbred
lines. In Table S3 one can find for the 11 quality trait evaluated the summary
statistics on phenotypic data for each growing season and across growing
seasons. (DOCX 24 kb)

Additional file 4: Table S4. Observed inflation factors for the models
tested in genome-wide association (GWAS) analysis. In Table S4 one can
find the inflation factors for each of the three different models that were
tested to detect significant marker-trait associations: the naïve model, a
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model accounting for population structure; and a model accounting for
familiar relatedness. (DOCX 21 kb)

Additional file 5: Table S5. Significant SNP-trait associations from a
genome-wide association study for 11 quality traits in wholemeal maize
flour. In Table S5 one can find the genome-wide association study results
for the 11 quality trait evaluated based on the information combining
the phenotypic data obtained in two growing seasons with the genotypic
data obtained from the Illumina MaizeSNP50 BeadChip array using 132
maize inbred lines. Additionally, Table S5 also encloses information on the
genomic regions associated to quality-related traits previously identified by
other authors. (XLSX 22 kb)

Additional file 6: Table S6. Percentage of associated SNPs with opposite
effects on each traits value, and the range of phenotypic variance explained.
In Additional file 6: Table S6 one can find the summarized information on
the overall abundance of alleles increasing and decreasing the trait value in
the inbred line collection; information on the range of phenotypic variance
explained by significantly associated SNPs; information on the effect of rare
allele explaining the largest phenotypic variance. (DOCX 23 kb)

Additional file 7: Table S7. Candidate genes underlying the genomic
regions associated with 11 quality traits in wholemeal maize flour. In
Additional file 7: Table S7 one can find the information on the candidate
gene annotations and information on its function. (XLSX 29 kb)

Additional file 8: Table S8. Maize inbred lines with available quality
data, known pedigree, kernel color, and endosperm type. In Additional
file 8: Table S8 one can find the list of 132 inbred lines that yielded
sufficient kernels to proceed for quality analysis. The underlined inbred
lines correspond to the lines derived entirely from Portuguese traditional
maize populations, according to the Portuguese Plant Germplasm Bank
records. (DOCX 34 kb)

Additional file 9: Table S9. Number of maize inbred lines grouped
accordingly to their kernel color and endosperm type. In Additional
file 9: Table S9 one can find the summary of the number of inbred
lines with the different kernel colors and endosperm types. (DOCX 21
kb)
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