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Abstract

sequences within the regulatory regions.

the reference, at low cost and with high accuracy.

Background: Only a small percentage of the genome sequence is involved in regulation of gene expression, but to
biochemically identify this portion is expensive and laborious. In species like maize, with diverse intergenic regions
and lots of repetitive elements, this is an especially challenging problem that limits the use of the data from one line
to the other. While regulatory regions are rare, they do have characteristic chromatin contexts and sequence
organization (the grammar) with which they can be identified.

Results: We developed a computational framework to exploit this sequence arrangement. The models learn to
classify regulatory regions based on sequence features - k-mers. To do this, we borrowed two approaches from the
field of natural language processing: (1) “bag-of-words” which is commonly used for differentially weighting key
words in tasks like sentiment analyses, and (2) a vector-space model using word2vec (vector-k-mers), that captures
semantic and linguistic relationships between words. We built “bag-of-k-mers” and “vector-k-mers” models that
distinguish between regulatory and non-regulatory regions with an average accuracy above 90%. Our “bag-of-k-mers”
achieved higher overall accuracy, while the “vector-k-mers” models were more useful in highlighting key groups of

Conclusions: These models now provide powerful tools to annotate regulatory regions in other maize lines beyond

Keywords: Gene regulatory regions, Machine learning models, Crops genomics

Background

The majority of sequence polymorphisms that are statis-
tically associated with phenotypic variation (GWAS) lie in
the non-genic portion of the genome, where they might
play regulatory roles [1, 2]. Recently biochemical charac-
terization of the open chromatin space in B73 (the maize
reference line), revealed that as much as 40% of the sig-
nificant sequence polymorphisms - as identified through
variance components analyses — overlap with regions in
which regulatory elements are expected [3]. These bio-
chemical assays are prohibitively expensive and time con-
suming at the scale of breeding programs for any crop
species. This is even more true for species, such as maize,
with high genomic diversity and a high rate of polymor-
phism. Similar to other crops, in maize, less than half of
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the genome sequence is expected to be shared between
inbred lines [4]. Building accurate models from expensive
data derived from reference line(s) will enable breeders
to project that information to other genotypes for use
in genomic selection models and to prioritize regions
of the genome to edit using strategies such as CRISPR
technology [5, 6].

The most common models to annotate a non-coding
sequence with a regulatory role is the use of collections
of transcription factor binding sites (TFBSs), or “motifs’,
usually in the form of Position Weight Matrices (PWMs).
Collections of PWMs are usually derived from large scale
experiments (in-vivo or in-vitro) capable of biochemi-
cally characterize the interactions between proteins and
the DNA. In plants, only in Arabidopsis, large collections
of PWMs describing TF:DNA interactions are available.
Franco-Zorrilla JM et al. and O’Malley RC et al. [7, 8].
For plant regulatory regions, a number of convenient tools
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to identify “motifs” from sets of sequences, or to iden-
tify candidate regulatory regions based on the presence
of PWMs are routinely used in molecular biology rely-
ing on Arabidopsis annotations across species [9, 10]. As
a shortcoming “motifs” are elusive, it is common to have
experimental data from TF:DNA interactions from which
a PWM can not be obtained [11]. When available, PWMs
are limited in their application to identify candidate reg-
ulatory regions, frequently achieving poor recognition
performance [12, 13].

Most of the experimental and computational
approaches used to annotate functional non-coding
regions focus on the regulatory role of TFBSs [14, 15].
However, it has been observed that patterns of sequence
organization (the grammar) and the chromatin context
in which TFBSs are located contribute to the regulatory
message [16—18]. For instance, the spatial arrangement
of poly(dA:dT) tracts within yeast promoter regions have
been identified as causal drivers of transcriptional pat-
terns at comparable levels to TFBSs [19]. More recently,
it was shown that developmental enhancers in Ciona
rely on the positioning, arrangement, and space between
TFBSs to counterbalance low TFBS affinity [20]. From
this emerging view, it appears that regulatory regions
have distinctive features that can be exploited for predic-
tion, identifying enriched key sequences and sequence
organization.

The frequency of oligomers of length k(ie., short k-
mers in the size range of TFBS) have been exploited to
build supervised models capable of discriminating reg-
ulatory regions from random genomic regions, as well
as to score sequence variation with few or no assump-
tions regarding to the role that a given k-mers might play
[21-23]. The early k-mers count-based classifiers have
been improved to count gapped k-mers, allowing explo-
ration of short and long k values without losing power
as the total number of k-mers increases [24]. Some lim-
itations of k-mers frequency-based methods include: (1)
they make poor or no use of the k-mers positional rela-
tionships in their models, and (2) they perform poorly in
the presence of repetitive regions, the frequencies of short
size k-mers are misleading, which might hamper the per-
formance of this methods for genomes with high repeat
content.

Recently however, a growing set of computational tools
using Neural Networks (NNs) have shown success in
learning to recognize simple sequence patterns, similar
to PWMs. These approaches have been able to further
integrate those patterns into more complex features to dis-
criminate regulatory regions [25-27]. Generally, the NNs
implemented for genomic data are Convolutional Neural
Networks (CNNs), a type of architecture that shows state-
of-the-art performance for key phrase recognition tasks
in Natural Language Processing (NLP), but not Recurrent

Page 2 of 17

Neural Networks (RNNs) which are preferred for compre-
hension of whole sentence semantics given their power
in modeling long-span relations [28, 29]. Despite their
power, CNNs are often implemented in a black-box con-
text and interpretation of their output is challenging;
thus it remains unclear how much of their performance
is derived from recognizing key motifs, motif relation-
ships, and the general sequence context. For these reasons
we choose to implement k-mer approaches rather than
CNN'’s or RNN’s.

To define sequence arrangements with putative regu-
latory roles, we analyzed the architecture of regulatory
regions at the k-mer level, focusing on weighted indi-
vidual frequencies and co-occurrences, while consider-
ing a genome environment with high repeat content.
The core of the analysis builds on machine learning
approaches commonly applied in the natural language
processing (NLP) community. These methods are eas-
ily interpretable and rely on word statistics to recover
semantic and syntactic cues [30-33]. We evaluated the
accuracy and precision of these approaches with a diverse
set of functional genomics experiments to provide a com-
prehensive description of the regulatory landscape of
the maize genome. The software implementation that
allows to select control regions, train and test mod-
els, is open source and available in a public Bitbucket
repository.

Results
Weighted frequencies and co-occurrences of short
sequences can accurately discriminate regulatory from
random genomic regions
To build accurate classifiers we collected a compre-
hensive set of regions enriched in regulatory func-
tion (hereafter, regulatory regions’), as identified in
B73 (maize reference genome) through different bio-
chemical assays. We included in the open chromatin
regions by MNA-seq derived from two tissues [3], bind-
ing loci from ChIP-seq peaks of two TFs (i.e., Home-
obox KNOTTED 1 — KN1, bZIP FASCIATED EAR4 —
FEA4) [34, 35], and core promoter regions around TSSs
[36—38] (Additional file 1: Table S1). Because the specific
background signals from each individual experiment are
not available, regulatory regions were paired with ran-
domly chosen regions controlling for G+C content and
genomic distribution. Each group of sequence (regula-
tory regions and their control) was separated into train-
ing and holdout sets for model evaluation. In total we
analyzed 52,292,705 base pairs of regulatory regions cor-
responding to ~2.5% of the effective genome size of the
B73 genome.

The first part of the analysis involved the training
of “bag-of-k-mers” and “vector-k-mers” models (Fig. 1).
The “bag-of-k-mers” captures information from the k-
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Fig. 1 Schematic of the steps to generate "bag-of-k-mers” and “vector-k-mers” models. The workflow shows the steps from data preprocessing to
model output. We fitted “bag-of-k-mers” and “vector-k-mers” models for k values between 5 to 10 bp (within the common range in which
regulatory elements have been observed). Training and evaluation of both methods happened on the same portion of the data to facilitate
comparisons. The common pre-processing step involved the collapsing of complementary k-mers as the same token to reduce the noise of k-mer

counts and the effective vocabulary for feature selection. The final outputs are both the classifiers and learned features

mer individual frequencies and fits a logistic regres-
sion to a matrix filled with the TF*IDF (i.e., the term
frequency—inverse document frequency) transformation
of the raw counts per sequence [30]. Thus, the 8 coef-
ficients of the logistic regression can be interpreted as
weights of the contribution of each k-mer to the clas-
sifier decision and of its enrichment in regulatory and
random regions. By contrast, the “vector-k-mers” captures
information from the k-mer co-occurrences by train-
ing a shallow NN that learns the probability for each
k-mer given its context (window = 5). The output is
n-dimensional vectors Vg — One per k-mer - indepen-
dently generated for regulatory regions and their respec-
tive control (Vyeguiatory and Vyandom) to denote different
geometric spaces containing Vi-mer- Next, Vieguiatory and

Vyandom are utilized to determine the likelihood of
groups of k-mers being observed in regulatory or con-
trol regions [32, 33]. Put together, these two models aim
to learn the importance of key sequence features and
sequence feature relationships as descriptors of regulatory
architecture.

We choose to compare our models against a “motif”
collection approach. For this we used the MEME-ChIP
pipeline [10]. In brief, MEME-ChIP combines several of
the most popular algorithms of the MEME suite to gen-
erate PWMs (de novo) in a discriminative mode using
the sequences in the training set. MEME-ChIP also
scan sequences against a motif database from Arabidop-
sis [8]. The goal of this analysis was to obtain PWMs
capable to differentiate between regulatory regions and
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control to contrast against the models. We obtained
five collections, one for each type of regulatory region,
of PWMs, and used it to scan the corresponding
holdout sets.

Model performance was measured with several metrics:
(1) accuracy, precision, and recall (See “Methods” section
and Additional file 2: Table S2), in addition (2) the
receiver operating characteristic curve, and the precision
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recall curve were plotted and (3) the area under each
curve was computed (auROC, auPRC) (Fig. 2a-b and
Additional file 3: Figures S1). First, models were evalu-
ated on balanced holdout sets (i.e., the same number of
regulatory and random sequences). The two models per-
form similarly well, with average accuracy ~90% and an
average difference in accuracy of ~3% between the two
models. Overall, the “bag-of-k-mers” model shows better
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Fig. 2 Comparison between models of the precision-recall curves. Comparison of models performance under balanced (a - b) and unbalanced
holdout sets (c - d). For each model (k=8), the precision recall (PR) curve for all the regulatory datasets are shown, and the corresponding curves for
classification of the same holdout set with a collection of PWMs (dotted lines). The PR curve shows the trade-off between precision and recall for
different decision threshold. A high area under the curve represents both high recall (low false negative rate) and high precision (low false positive

rate)
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performance for most of the cases, with the “vector-k-
mers” models slightly outperforming when & is small (k=5
and k=6) and training datasets are large (e.g., MNA-seq -
shoot, root) (Additional file 2: Table S2). The collection of
PWMs as an alternative classifier underperformed against
all the models, in all the combinations of k-size and reg-
ulatory regions. Overall, PWMs appear to work better for
the identification of TFBSs from TF ChIP-seq data, and
for core promoter, than for the open chromatin regions
(MNA-seq data) (Additional file 2: Table S2), which is
expected given that enrichment of a single or few motifs is
usually the landmark of TFs The performance of the “bag-
of-k-mers” models was reliable even at k >8, as opposed
to similar approaches that rely on raw k-mer counts as
features to train machine learning classifiers [22, 39]. The
above suggests that the TF*IDF transformation is efficient
in alleviating some of the noise inherent to the matrix
sparsity that increased with k.

To increase the stringency of our evaluation criteria,
we measured each models’ performance with unbalanced
holdout sets in which regulatory regions are outnumbered
by random regions by 1 to 10 (Fig. 2¢c-d and Additional
file 3: Figures S1C-D). Scaling up the number of ran-
dom regions did not appreciably change accuracy and
auROC values, but the auPRC showed a drop in model
performance as the rate of false positive increased. At
k=8, both models have a desirable precision, ~80-70%,
recovering ~60% of the relevant regions (i.e., recall rate)
for open chromatin and core promoter datasets. The
“bag-of-k-mers” model works better for prediction of TF
binding loci than the “vector-k-mers’, with the last one
displaying an excess of false positives at our aimed recall
rate (Additional file 3: Figures S2). Across a more strin-
gent test, the PWM collections under-performed against
all the other models at any given &, as a consequence
of an increasing in the number of false positives. The
performance measurement under an unbalanced set sug-
gests that applying extra stringency to the predicted
probability, thereby allowing the recovery of ~60% of
the relevant sequences, would result in an acceptable
trade-off between sensitivity and specificity for most of
the models when non-regulatory regions are in large
numbers.

Highly repetitive genomes include an abundance of low-
complexity regions. These repetitive regions are expected
to carry little information for regulation, and because
of their high-frequency, they represent an obstacle to
identifying the key elements from raw k-mer counts. To
empirically determine a complexity threshold for k-mers
unlikely to have a regulatory role, we examined a col-
lection of regulatory motifs and calculated complexity
(as measured with Shannon entropy) for the consensus
sequences (Additional file 3: Figure S3). Using this thresh-
old, k-mers with low complexity were filtered out to
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build “bag-of-k-mers” models with a reduced vocabulary
(filtered), and contrasted against models using the whole
vocabulary (full). The difference between the two models
at a base pair level is illustrated for the ga2ox 1 first intron
recognized by KN1 [34, 40]. We observed that low com-
plexity regions overlapped with k-mers that have a high
score from the model trained on the full k-mer vocab-
ulary (Fig. 3a). This is different from the filtered model
which appears to be in agreement with the ChIP-seq data
(Additional file 3: Figure S4). To evaluate the importance
of these repetitive sequences in recognizing the regula-
tory regions, we compared the models with and without
low complexity k-mers using an unbalanced holdout set
and found that both models show almost identical perfor-
mance for the auROC and non-significant differences for
the auPRC (Fig. 3b-c, Additional file 3: Figure S5). This
suggests that in general, low complexity k-mers in maize
do not contribute substantially to the regulatory message.
However, for scaling across the genome, controlling for
repetitive sequences would be critical for prediction per-
formance and for the extraction of key k-mers that are not
frequency-biased.

Models to predict regulatory regions are scalable to the
genome-wide space

Under the assumption that annotation of non-coding
regions would be part of general pipelines, in which
~85% of the genome should be recognized as repeats
and ~5% as coding sequences, our models for anno-
tating regulatory regions should be limited to ~10% of
the space. Still, it is a challenge to accurately predict a
regulatory region using a model that was training in arti-
ficial balanced data from a context that might harbor
similar sequence composition while surrounded by repet-
itive elements. To gain insights on the behavior of the
models at a genome-wide scale, the sequence of chro-
mosome 10 was partitioned into 1,943,698 regions (300
base pairs length) and 115,149 regions that were neither
repeats nor coding sequences were selected to be anno-
tated. We used models derived from MNA-seq shoot data
applying different levels of stringency for the predicted
probabilities (Additional file 4: Table S3). According to
the results obtained with unbalanced holdout set, and
in order to balance sensitivity and specificity, we deter-
mined that the ideal predicted probability cut-off was
the one that captures ~60% of the regions that overlap
with the annotated regulatory regions. Under this crite-
ria the “bag-of-k-mers” (k=38, filtered, probability >0.85)
and the “vector-k-mers” models (probability >0.95), pre-
dicted 38,945 and 41,932 regulatory regions respectively.
The high confidence regions classified as regulatory cor-
respond to ~2.2-2.3% of the total regions from chromo-
some 10, in line with the expected portion of the genome
with a regulatory function.
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Next we aimed to annotate the genomes of ZmW22, a
maize inbred line, that was recently made public [41]. To
do so, we choose to annotate the ZmW22 genome using
the MNA-seq shoot models, as open chromatin regions
are usually a collection of all the regulatory regions in the
genome, including promoters and TFBSs. To get a set of
“ground truths” to evaluate our results we aligned ZmB73
MNA-seq regions to the ZmW22 genome, and scored
windows around the alignment hits with our models. This
test allow us to determine how frequently the models were
able to recognize a “candidate regulatory region” in their
local context, without masking the genome. This analysis
evaluated regulatory vs non-regulatory regions to a ratio

of 3:20, more than twice than previous presented analysis
for the unbalanced holodut set

According to the observations made in the chromosome
10 of ZmB73, we used first the “bag-of-k-mers” (filtered,
probability >0.85) to obtain the “candidate regulatory
regions” And used on top the “vector-k-mers” to obtain
distances of similarities between the candidate regulatory
regions and the ZmB73 MNA-seq regions summarizing
region with their vector centroid distance. The combined
top prediction around each of the “ground truths” resulted
in an intersection with the alignment hit in a ~70% of the
cases. Allowing up to three top predictions around each
hit, increases to ~77% of the cases.
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Models trained in maize can be used to inspect the
regulatory space in related species

Transference of functional genomic annotations across
diverse maize lines requires models than can preferen-
tially capture conserved features (those common between
lines or related species). Consistently, we expect that mod-
els that are accurate in related species should also per-
form well in different maize lines. To gain insights into
this we evaluated models trained on TF binding loci and
core promoters in two species (sorghum and rice). In
order to determine positional preferences among binding
loci, we built peak meta-profiles that summarized KN1
models’ performance in maize and rice at the base-pair
level (Fig. 4a-b). The “bag-of-k-mers” model can differ-
entiate between regulatory regions and their control in
maize, and in addition can distinguish rice KN1-like (i.e.,
OSH1) binding sites (i.e., peaks from rice OSH1 ChIP-
seq data [42]). On the other hand, the “vector-k-mers”
cannot differentiate between random regions and regu-
latory regions in rice, predicting random as regulatory
(Additional file 3: Figure S6A). Interestingly, the distri-
butions of regulatory probabilities for random and regu-
latory regions are noticeable different (Additional file 3:
Figure S6B), suggesting that the “vector-k-mers” model
distinguish between OSH1 peaks and control regions, but
not enough to assign greater non-regulatory probability
to random regions. In maize, the “bag-of-k-mers” model
(filtered) shows an slight preference towards the midpoint
region versus the edges, while the “vector-k-mers” rec-
ognizes the whole region without preference for to the
middle (Fig. 4a). In rice, the “bag-of-k-mers” shows a
marked preference near or at the peak midpoint over the
flanking (Fig. 4b). This suggests that the “bag-of-k-mers”
capture a diverse array of features which are enriched at
the center of the peak and beyond in maize. However, only
the key features that are enriched at the center of the peak
appear indeed conserved between the two species.

For the evaluation of models trained on core promoters
we used a balanced holdout set derived from a random
sample of sorghum annotated gene models. The positional
preferences in core promoters in maize are evident from
average k-mers weights around the +30 region, in which a
TATA-box is expected (Fig. 4c). The same is not observed
in Sorghum (Fig. 4d). This likely result from the biased
sample of TSS in maize that have a high proportion of
TATA+ promoters, even when TATA-less promoter are
the majority [38]. A positional analysis using the “vector-
k-mers” models did not reveal local enrichment along
the sorghum promoter sequences. Yet, the probabilities
scores are again different between control sequences and
core promoter sequences. The difficulties of the model
to identify control regions might be a consequence of
the strong differences between the repeat landscape in
the non-coding regions between sorghum and maize that

Page 7 of 17

is not captured in the maize training set, rather than a
lack of similarities between the regulatory regions of the
two species. Taken together we have shown that classi-
fiers trained in maize can be useful to predict regulatory
regions in sorghum and rice, and that features enriched
in maize regulatory regions and in the random genomic
space (as captured by the models) are of two general types:
(1) maize specific and (2) conserved across related species.

Scored vocabularies highlight signatures of regulatory
function

The methods proposed here were chosen because of the
interpretability of the learned features, aiming to bet-
ter understand the patterns in sequence that characterize
regulatory regions. Thus, we focused on scored k-mer
vocabularies (k=8, filtered) as easiest to interpret, and sys-
tematically analyzed the tails of the distribution as they
concentrated the most informative sequences. Therefore,
the largest positive coefficient values (top scored k-mers)
are indicative of enrichment and the largest negative val-
ues (bottom scored k-mers) of depletion in regulatory
regions. The absolute values from both sides of the score
distribution are different, with preference for positive over
negative ones, meaning that model’s prediction are the
result of identifying those k-mers that are enriched in reg-
ulatory regions rather than depleted ones (or enriched in
random regions). We found that properties of the scored
k-mers obtained from applying an out-of-the-box NLP
technique [32] are similar to those previously described
with sequence kernels developed to analyze vertebrate
genomic data [22-24].

We observed a bias in the G+C content at the extremes
of the score distribution for core promoters (Fig. 5a) and
to a lesser extend for open chromatin regions (Fig. 5b-c).
The 1% of the top shows a bimodal distribution, in which
a subpopulation of k-mers exhibits low G+C content,
in contrast to the 1% of the bottom, and the remaining
98%. Conversely, the score distribution for TF binding
loci shows a general shift of top and bottom tails towards
higher G+C contents, in comparison to the remaining 98%
(Additional file 3: Figure S7). These results are in agree-
ment with known roles for high A+T sequences within
core promoters related to the TATA elements and high
G+C sequences as TF binding sites [38, 43]. Indeed, when
investigated, individual k-mers with high A+T content
were positionally restricted upstream of the TSS and pref-
erentially on the region defined for the TATA element in
maize (Fig. 5d).

The enrichment of MNA-seq regions for k-mers with
high A+T content (rich A+T k-mers) might be derived
from signal co-localization between open chromatin
regions and core promoters [3]. If signal co-localization
were sufficient to explain the similarities between open
chromatin and core promoter regions, then controlling
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for distance to annotated genes should remove the signal
from rich A+T k-mers in distal regions. Yet, controlling
for near gene proximal (2kb) the positional constraints
remain in both, proximal and distal, regions (Fig. 5e-f).
These rich A+T k-mers might be part of poly(dA:dT)
tracts which can provide an increase in DNA rigidity and
are known to be in proximity to regions that are enriched

in TFBSs [44]. In agreement with the positional restric-
tion, rich A+T k-mers flank the midpoints where G+C
content is high, as expected for the regions that are bound
by TFs [43], and where the signal for open chromatin
regions is concentrated.

In addition to key structural tracts, k-mers with the
largest positive values for each regulatory category are
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expected to be enriched for TF motifs. Because the num-
ber of experimentally verified maize motifs is limited, we
contrasted the top 1% of positive scored k-mers against
two large collections of TF motifs as identified from
large scale experiments in the reference plant Arabidopsis
thaliana (TOMTOM, p-value <0.001) [7, 8] (Additional
file 5: Table S4). For the evaluated experiments we found
that the top 1% of positive k-mers are ~threefold more
enriched for significant hits against the motif database
than expected by chance for all the k-mers in the popula-
tion. The enrichment for the top k-mers was statistically
significant (hyper-geometric test, p-value <0.001). Fur-
ther analyses revealed that k-mer scoring is consistent
within families of TF binding sites. In particular, motifs
preferentially hit by the top 1% of positive k-mers from
FEA4 binding loci (a bZIP transcription factor) corre-
spond to the bZIP/TGA-class, and motifs preferentially
hit by k-mers enriched in KN1 (a Homeobox transcription
factor) correspond to the Homeobox family (Additional

file 5: Table S4). Thus, the scored vocabularies produced
a comprehensive catalog of k-mers with putative struc-
tural roles and a collection of k-mers similar to TFBSs that
constitute signatures of the maize regulatory architecture.

Sequence similarity in the geometric space reveals a
prevalent distinctive k-mer organization within regulatory
regions

The set of highly enriched individually scored sequences,
as output from “bag-of-k-mers” models, is likely to include
groups of k-mers that correspond to the same motif,
given the degeneracy of TFs binding sites. However, the
question arises of how to group k-mers that likely share
functional roles and constitute single motifs. In NLP,
word2vec is an effective method to extract linguistic reg-
ularities between words by considering the local context
in which they occurs (e.g., apple and oranges might share
local contexts as they are words with similar meanings)
[45]. Because vector position in each geometric space is



Mejia-Guerra and Buckler BMIC Plant Biology (2019) 19:103

determined from the composition of the local word/k-
mer context (i.e., neighboring k-mers), we can assume that
two k-mers that are close (i.e., close in cosine distance) to
each other in a geometric space share local sequence sim-
ilarity (Fig. 6a). Therefore, we used the geometric spaces
obtained from the “vector-k-mers” models, to extract k-
mer regularities or k-mer organizational rules’ that dif-
ferentially arise between regulatory and random regions.
Because, the position of k-mers between geometric spaces
cannot be directly contrasted, we compared the lists of
closest k-mers for any given k-mer in the vocabulary as
obtained from the geometric spaces about regulatory and
random regions (respectively, Vyeguiatory and Vyandom)-

To illustrate, we compared the representative vector
of the 7-mer CTATATA in V eguiatory (i-€., set of Vi mers
learned from core promoter regions) and in V,,,40m (i-€.,
set of Vi_mers learned from random regions used as con-
trols for core promoters). Using vcraTata we obtained
the set of top five closest Vi_mers in Viyeguiatory and in
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Vyandom and found that k-mers from Viguiat0ry share
more sequence similarity (average edit distance 1.8 vs
4.2 respectively) and have, on average, more positive
scores from the respective “bag-of-k-mers” model (1.49
vs 0.01) (Fig. 6b). In addition, k-mers close to vcraTATA
in Vyegulatory share positional constraints that are not
recovered from those related in V40, (Fig. 6¢-d). This
example shows how the output of the geometric spaces
can be exploited to determine groups of similar k-mers
according to their context.

To obtain a global view of how many k-mers are
embedded in different local sequences between regula-
tory and random regions, we collected for any given
k-mer (k=8) in the vocabulary, the list of the closest sim-
ilar k-mers ranked by cosine similarity from Vieguiatory
and V, ,40m- Next, we contrasted the two ranked lists
and determined which k-mers show the greatest dissim-
ilarity between regulatory and random regions [46]. In
general, we found that low complexity k-mers do not
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show distinctive organizational rules’ between regulatory
regions and random, reinforcing our view that short repet-
itive sequences are not important to define the identity of
a sequence. We found that, in terms of the number of k-
mers with different relationships between Vegyi4t0ry and
V vandom> “vector-k-mers” models derived from TF bind-
ing loci (~45%) and core promoter regions (~30%) result
in notably more differentially represented k-mers than
models derived from open chromatin regions (~5%). In
all the cases, we observed a similar proportion of k-mers
enriched and depleted in regulatory regions (as estab-
lished from the “bag-of-k-mers” scores). The results from
models trained in open chromatin regions, might repre-
sent the heterogeneity of the regions that prevents the
model from learning many specific k-mer vectors. How-
ever, the fact that the classifiers work with great accuracy
indicates that even when the differences are less pro-
nounced than for TF binding loci and core promoter
regions, they are large enough to distinguish between an
open chromatin region and its control.

We integrated the information obtained from the “bag-
of-k-mers” and the “vector-k-mers” models and found
that for the top 1% of the k-mers that are enriched in
frequency in regulatory regions there is little overlap
between k-mers that resemble motifs and k-mers that
show differential relationships between regulatory regions
and random regions. For instance, from the FEA4 models,
only 10 out of 103 k-mers, that are statistically similar to
Arabidopsis motifs, show differential k-mer relationships
between regulatory and random regions. Such difference
might be derived from the proportion of TFBSs that are
not similar between Maize and Arabidopsis cis-regulatory
elements. In summary, we have compiled a regulatory
vocabulary that includes a proportion of key k-mers that
are enriched in regulatory regions and (1) resemble known
motifs, and (2) are embedded in a specific regulatory
context.

Discussion

The decreased cost of large scale genotyping and genome
assemblies for crops such as maize and related species,
has already shown potential to accelerate the breeding
process by linking sequence and structural variation to
phenotype [47]. A majority of functional genetic variation
that is important to phenotype is located in the non-
coding regions of the genome. This variation is largely
untapped because recognizing functional alleles in the
non-coding regions of the genome is both expensive and
laborious. In humans and other metazoan models, non-
coding annotation that allows identification of functional
genetic variation has been accelerated over the last decade
using two types of analyses: (1) functional analysis from
large collections of biochemical assays; and (2) compar-
ative sequence analysis between reference genomes of
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closely related species [48]. Yet, in maize, these two types
of analyses are particularly challenging. Large collections
of biochemical assays remain prohibitive at the scale nec-
essary to cover maize diversity, which is 20 times more
than the diversity found in humans [49]. In addition, com-
parative sequence analysis requires genome alignment
between closely related species, which for maize and its
relatives is complicated by the presence of a large number
of repetitive sequences in the genome.

In this study, we introduce a computational framework
consisting of two type of machine learning models that
can accurately classify regulatory regions obtained from
functional genomic experiments and random genomic
regions. These approaches were borrowed from the fields
of natural language processing and information retrieval,
and were explicitly chosen to overcome the challenges
of annotating intergenic regions in maize. To address
highly repetitive sequences and the role of low-complexity
regions in maize non-coding regions the “bag-of-k-mers”
model relies on first filtering out k-mers with low-
complexity, and next using a sub-linear function to trans-
form raw k-mer frequencies to down weight k-mers that
are too frequently observed in a group of sequences and
in consequence have less power to discriminate between
regulatory and non-regulatory regions. In parallel, the
“vector-k-mers” model learns local k-mer organization
from k-mer co-occurrence frequencies, which in practice
results in a geometric space that allows alignment-free
comparisons between sequences [50]. The simultaneous
use of two different approaches adds robustness to the
predicted annotations, allowing researchers to contrast or
to combine the results of the two types of models.

In most of the functional genomics experiments the
expectation is to identify rare instances of a biochem-
ical event (e.g., the locations in the genome in which
the chromatin is accessible for enzymatic digestion) ver-
sus thousands of instances that represent noise. Learning
from imbalanced data occurs frequently in many machine
learning applications. However, in machine learning rare
instances (in our case regulatory regions) are treated
as noise. So, training with the true genomic ratio of
regulatory:non-regulatory regions will cause the models
to learn non-regulatory features over regulatory ones. In
the maize genome, non-regulatory features will be the
ones that characterize the most abundant class of repeats.
On the other hand training in re-sampled data (balanc-
ing the ratio of regulatory:non-regulatory region), gen-
erate models that expect a distribution of instances that
strongly differs from the genomic distribution of events.
We decided to pose the problem in a way that the mod-
els could learn features from regulatory regions. Next we
used a series of evaluations with “real-world” constraints
to adjust the probability cut-offs at which the models pre-
dictions are still reliable while taking care of the excess
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of false positives. We show that the adjustment of the
probabilities a posteriori and the combined use of the two
models allow us to “transfer” annotations from ZmB73 to
ZmW?22 with reasonable precision.

Because both models are amenable to interpretation,
examination of the learned features offers novel insights
about key sequence characteristics that can help to build
mechanistic hypotheses to be tested at molecular level,
and allow comparison of regulatory programs under the
same framework. For instance, both types of models
suggest that low complexity k-mers are not important
for regulatory regions in maize. The comparative use of
the models shows that TFBSs (i.e., FEA4 and KN1) are
better predicted with the bag-of-k-mers. Also, through
modeling MNA-seq data we found that open chromatin
regions in maize are characteristically organized within
poly(dA:dT) tracts flanking G+C rich k-mers resembling
motifs (Fig. 5a-b). Likewise, from modeling maize KN1
ChIP-seq data and further annotation of regions bound
by OSH1, we determined conservation at the center of
binding loci for the key individual k-mers (Fig. 4b) and a
lousy conservation in the pattern of k-mer co-occurrences
(Additional file 3: Figure S6A). These results suggests
that, though the non-coding regions change rapidly across
species, the use of sequence models allows alignment-
free comparisons to determine regulatory features that are
conserved across million years of evolution.

Conclusions

Taken together, our framework can be used beyond
the transference of regional annotations, as can easily
be extended to evaluate in silico, the putative effect of
sequence variation (i.e., SNPs, single nucleotide polymor-
phisms) in regulatory function from the differences in
k-mer scores and regulatory probabilities for small groups
of k-mers.

This work opens many avenues for improving models
by adding relevant layers of information. Possible layers
to add include: predictions of the 3D structure of regu-
latory regions, joint modeling of functional genomic data
spanning the range of maize diversity to identify gen-
eral patterns for relevant phenotypes, or even extended
across species to build more generalizable models that
capture the most conserved features. Furthermore, we
expect these annotations to be useful as priors to improve
marker assisted technologies such as genomic selection to
purge deleterious non-coding sequence variation and to
identify targets for genome editing contributing to gene
expression dysregulation.

Methods

Definition of maize regulatory regions

In the analyses presented throughout this study, we used
data sets derived from different functional genomic exper-
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iments and obtained from the reference genome (ZmB73
AGPv3, chromosomes 1 to 10) [51]. We included in
the analysis open chromatin regions in shoot and roots
derived from MNA-seq data [3]; binding loci for KNOT-
TED 1 (KN1) and FASCIATED EAR 4 (FEA4) transcrip-
tion factors from ChIP-seq data [34, 35], and promoter
regions [36-38] from the intersection of TSSs obtained
with CAGE and FLcDNAs (Additional file 1: Table S1). For
MNA-seq hotspots, ChIP-seq, we collected sequences of
300 base pairs length symmetrically surrounding the mid-
points from the originally defined regions. Similarly, for
core promoters, we selected the region between -250;+50
base pairs surrounding the TSSs. Each group of regula-
tory regions was randomly divided between training and
holdout sets and reserved for further analyses. Training
and testing was performed independently for each type of
regulatory regions.

To randomly select control regions, we search in the
vicinity (maximum in a 100 kb window) around a given
regulatory region for a control region that have a matching
G+C content and does not overlap with any of the other
regulatory region; if no match was found, we removed
the vicinity criteria and searched for a G+C matching
region in the same chromosome. For the holdout sets we
build balanced and unbalanced sets from randomly select-
ing one, and ten control regions, respectively, for each
regulatory one.

Definition of grasses regulatory regions

Sorghum (Sorghum bicolor) core promoter regions were
obtained from the reference genome (v2.1) [52] for the
coordinates between -250;+50 base pairs surrounding the
start position of genes with annotated 5’UTR and a subset
of 1000 sequences randomly selected for further analyses.
Rice (Oryza sativa Nipponbare) KNOTTED 1-like (i.e.,
OSH1) binding regions were obtained from re-analyzing
ChIP-seq experiment starting with the download of raw
data from DDB]J (http://www.ddbj.nig.ac.jp/) (accession
numbers DRA000206 and DR000313) corresponding to
two biological replicates of immunoprecipitation with o-
OSH1 and IgG antibodies [42]. Raw reads were mapped
against the rice reference genome (IRGSP-1.0 [52]), using
bowtie v1.1.2 (options -n 2, -1 60, -X 500, —best, —
strata, -m 1) [53] and low quality and duplicated reads
were removed using picard (http://broadinstitute.github.
io/picard/) (MarkDuplicates) and samtools (options -F
780, -F 1024, -f 2) [54] MACS v2.1.0 [55] was used
for peak calling (options -g 3.73e8, -q 0.01) for each of
the replicates and 42 peaks with a reproducible absolute
summit reserved and further extended to 300 base pairs
for downstream analyses. Corresponding control regions
were obtained as explained above for maize. Briefly, each
reference genome was divided into windows and after
removal of sequences overlapping the putative regulatory
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regions we randomly selected sequences matching G+C
content and when possible in the vicinity (~10 kb) of each
of the regulatory sequences.

Preprocessing of sequences

Sequences were preprocessed before fitting models. The
preprocessing for the “bag-of-k-mers” model involves the
dividing of each sequence into 1 base pair sliding (over-
lapping) windows of a given size k (k-mers) to collect for
a sequence of length L (L-k)+1 k-mers. Next, k-mers were
converted into tokens (£) that correspond to collapsed
pairs of k-mer and their respective reversed complemen-
tary. For the “vector-k-mers” models, each sequence is
described as a collection of “sentences” resulting from
walking k times and sliding by 1 base pair. Each sentence
is broken into ordered non-overlapping new tokens. For
testing sentences are divided in neighborhoods to obtain
regulatory and non-regulatory likelihoods for groups of
k-mers

Calculation of TF*IDF and implementation of the
“bag-of-k-mers” model
Let’s define all the sequences in a given set from a func-
tional genomics experiment and its corresponding control
regions as a collection S = {s1,s9,...s,} of individ-
ual sequences. Next, for each individual sequence s; let’s
define a set of tokens T; = {¢1,£,. .., t,}. All the possible
tokens for a given k belong to the vocabulary, Y. Each T;
is mapped to a list of token weights - W;- of size | ¥ | that
contains “weights” for each token that occurs in 7, where
the “weight” (Eq. 1) is defined as the product of the token
frequency - f{) - in 5, and its inverse collection frequency
- idf(t)-. Calculation of TF*IDF were done according
to the implementation in the python library scikit-learn
v0.19.0 [56].

1+ S|

weights(s, t) = f(t)log seS:teT|+1 @)

To generate a “bag-of-k-mers” model, each training data
set is represented as a x matrix, with Ws -list of token
weights- as rows, and a list y of sequence labels (1 for reg-
ulatory regions and 0 for control regions). The “bag-of-k-
mers” model results from fitting a regression curve, y = f{x)
(i-e., alogistic regression). The C parameter for the logistic
regression was chosen by fivefold cross-validation using a
grid search function. Logistic regression and grid search
functions as used here correspond to the implementation
of the python library scikit-learn v0.19.0 [56].

Implementation of “vector-k-mers” model

To generate “vector-k-mers” models we used the imple-
mentation of word2vec algorithms from the python
library gensim v1.0.0, which fits sequence representa-
tions (k-mer vectors - Vi_mers) Via Stochastic Gradient
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Descent (SGD) that aims to optimize an objective func-
tion, that implicitly correspond to likelihood for k-mer co-
occurrences [32, 57]. Next, as shown for text classification,
sequence representations -vi_mers- can be turned through
inversion via Bayes rule to determine the likelihood of
a new sequence of being part of a regulatory region
based on its k-mer composition [33]. This classification
schema interprets the individual vg_yers @5 components in
a composite likelihood approximation that allows classifi-
cation of sequences without extra modeling or estimation
steps.

In brief, we trained a shallow (one single hidden layer),
fully connected neural network aimed to optimize the
probability of predicting a given k-mer (k-mertayget) from
its context, that is from the observation of the co-
occurring k-mers appearing anywhere within a small
window around the target. We ran word2vec with 30
iterations using hierarchical softmax and no negative sam-
pling for each data set (options iter=30, hs=1, negative=0,
size=300, min_count=0 and window=>5, all others param-
eters were kept as the defaults) to obtain two independent
geometric spaces (a continuous space of sequence repre-
sentations), one for the regulatory regions (V yguiatory) and
the other for the control regions (V,zu40m)-

For the classification step, we calculated the proba-
bility of every new sequence s; under each sequence
representation — Vyeauiatory a0d Vyangom — by first calcu-
lating the likelihood of every window within a sentence
(using the score function from gensim) and the aver-
aging likelihoods to obtain sentence likelihoods. Next,
from the matrix of sentence likelihoods by the two cat-
egories (i.e., C= regulatory and control) we derive the
sequence probabilities - pV yeguiatory(si) and pVrandom(si)-
The category probabilities were calculated via Bayes rule,
using as prior 7,=1/C, such that the classification pro-
ceeds by assigning the category for which pV caeory (s7) is
greater [33].

Generation of PWM:s collections

For any given regulatory region we generated a collection
of PWMs using the MEME-ChIP pipeline, in discrimi-
native mode. The PWMs were generated from the same
training sets described above. The collection of PWMs
were further used to predict on the respective holdout
set. To do so, we run FIMO and consider a prediction as
“positive” for any sequence with a p-value of less than
le-4 for any of the motifs and a PWM scores greater
than log2(10 000)=13.28 bits. This parameters have been
defined as “gold-standard” to determine “positive PWMs
hits” previously [12]. The collections of PWMs obtained
with MEME-ChIP are available to the community at
the Cyverse data store (http://datacommons.cyverse.
org/browse/iplant/home/shared/panzea/dataFromPubs/
Mejia2018BMCBiology)
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Models evaluation

Confusion matrix, and the Receiver Operating Character-
istic (ROC) and precision recall (PR) curves were gener-
ated using the python library scikit-learn v0.19.0 [56] and
plotted with python matplotlib v2.0.0 [58].

In brief, for each trained model we obtained a con-
fusion matrix from predicting on the holdout data and
compared predictions against the true categories to which
each region belong. As mentioned for the training, eval-
uation of the model’s performance was made only in data
from the same type of regulatory region in which we
trained the models. It means, for instance, that only FEA4
data was used for training and evaluation of FEA4 models.

From the confusion matrix we obtained

e True positives (TP): Regions in which we predicted
the regulatory category and truly belong to the
regulatory category

e True negatives (TN): Regions in which we predicted
the control category and truly belong to the control
category

e False positives (FP): Regions in which we predicted
the regulatory category, but truly belong to the
control category. (Also known as a “Type I error”).

e False negatives (FN): Regions in which we predicted
the control category, but truly belong to the
regulatory category. (Also known as a “Type II error”)

To evaluate the models, we computed from the output
of the confusion matrix the following metrics:

e Accuracy: (TP+TN)/total regions
e Precision: TP /(TP + FP)
e Recall: TP /(TP + FN)

In addition to the metrics derived from the confusion
matrix we generated ROC and PR curves for each model.
The ROC shows the true positive rate in function of
the false positive rate for different decision thresholds (a
point, sensitivity, specificity). In a ROC curve, the closer
it is to the upper left corner (auROC = 1), the better
the performance of the classifier. The PR curve shows
the trade-off between precision and recall for different
decision threshold. A high area under the curve repre-
sents both high recall (low false negative rate) and high
precision (low false positive rate). The PR curve is pre-
ferred over ROC to measure the performance of a binary
classifier under imbalanced datasets [56].

Prediction of open chromatin regions in the ZmW22
genome

In order to evaluate model performance in the annotation
of a non-reference maize genome we used the recently
published W22 genome [41]. First we collected “ground
truths” from aligning MNA-seq regions from B73 to
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W22 using MUMmer4, a system designed for genome
alignments that can handle specie divergent DNA
sequence alignments [59]. The hits in the W22 genome
that correspond to the corresponding chromosome were
considered “truths” or homologous regions. Next, we
used the bag-of-k-mers models trained in MNAseq data
to score overlapping (stride 150 bps) windows (lenght 300
bps) in a region corresponding to 4Kb centered in the hit.
We used the vector-k-mers models to score each window
based on their similarity to B73 MNAseq regions. For this
we calculated the mean of the k-mers vectors to obtain a
“centroid” that summarize each evaluated window to cal-
culate the cosine similarity distance to the centroid vector
of the B73 MNAseq regions. The best-scored window was
compared against the hits from MUMmer4 and counted
as intersecting if at least half of the length of the window
was included in the MUMmer4 hit. A file with the coor-
dinates and the predictions from each model as well as
the MUMmer4 results are available to the community
at the Cyverse data store (http://datacommons.cyverse.
org/browse/iplant/home/shared/panzea/dataFromPubs/
Mejia2018BMCBiology)

Calculation of k-mer complexity on a TF motifs database
The sequence complexity of any k-mer was approximated
to the Shannon entropy for the symbols succession given
by (Eq. 2). Were p; correspond to the probability of
appearance of the i-th symbol in the k-mer.

entropy(k — mer) = Zpi log, pi (2)

To empirically establish a threshold of complexity for
k-mers within regulatory regions we calculated the k-
mer complexity for any given k and for all the consensus
sequences derived from transcription factor (TF) binding
models represented as Position Weight Matrices (PWMs)
in the HOmo sapiens COmprehensive MOdel COllection
(HOCOMOCO) v11 [60].

Motif enrichment analyses

To identify k-mers similarity to transcription factor bind-
ing sites we used TOMTOM from the MEME suite
[61] (http://meme-suite.org) and two collections of Ara-
bidopsis thaliana TF binding motifs derived from large-
scale experiments [7, 8]. The enrichment was calculated
according to (Eq. 3), in which N correspond to the size of
the k-mer vocabulary, #n correspond to the 1% of the k-
mer vocabulary taking from the top after sorted with the
weights obtained from the model, M correspond to the
number of k-mers with a significant hit against a TF motif
and m to the number of k-mers that are in the top 1% and
have a significant hit against a TF motif.

m/n
M/N

enrichment =

(3)
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The statistical significance of the enrichment was cal-
culated using the hyper-geometric test, as implemented
with the python library scipy 0.18.1 (stats.hypergeom)
[62], after applying the Bonferroni correction for multi-
ple testing hypothesis to the o (alpha) value required for
statistical significance.
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