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Abstract

Background: Zygophyllum xanthoxylum is a succulent xerophyte with remarkable tolerance to diverse abiotic stresses.
Previous studies have revealed important physiological mechanisms and identified functional genes associated with stress
tolerance. However, knowledge of the regulatory genes conferring stress tolerance in this species is poorly understood.

Results: Here, we present a comprehensive analysis of regulatory genes based on the transcriptome of Z xanthoxylum
roots exposed to osmotic stress and salt treatments. Significant changes were observed in transcripts related to known
and obscure stress-related hormone signaling pathways, in particular abscisic acid and auxin. Significant changes were
also found among key classes of early response regulatory genes encoding protein kinases, transcription factors, and
ubiquitin-mediated proteolysis machinery. Network analysis shows a highly integrated matrix formed by these
conserved and novel gene products associated with osmotic stress and salt in Z. xanthoxylum. Among them, two
previously uncharacterized NAC (NAM/ATAF/CUC) transcription factor genes, ZxNAC083 (Unigene16368_All) and
ZXNAC035 (CL6534.Contig1_All), conferred tolerance to salt and drought stress when constitutively overexpressed
in Arabidopsis plants.

Conclusions: This study provides a unique framework for understanding osmotic stress and salt adaptation in

Z. xanthoxylum including novel gene targets for engineering stress tolerance in susceptible crop species.
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Background

Drought and salinity are two major environmental
stressors that impact crop yields worldwide [1]. Salinity
threatens approximately one-fifth of cultivated lands
globally. Meanwhile, up to one third of land surfaces are
exposed to drought [2, 3]. Many experts agree that using
molecular genetics to breed crops with higher yields and
improved tolerance to abiotic stresses is an effective
strategy in safeguarding food supplies. Yet, this task
remains one of the greatest challenges faced by modern
agriculture [4]. Deciphering key genes and regulatory
mechanisms in salt and drought tolerance and
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adaptation is a key step in engineering stress-tolerant
crop plants [5, 6].

Mechanisms of abiotic stress tolerance have mainly
been studied in model plants. High throughput sequen-
cing and functional genomics tools in model plants have
yielded numerous abiotic stress tolerance genes grouped
into two major classes: functional genes or regulatory
genes [7]. Functional genes include important enzymes
and metabolic proteins including detoxification enzymes,
water channels, ion transporters, heat shock proteins
and late embryogenesis abundant proteins, which
directly function to protect cells from stress. Regulatory
genes include important signaling and regulatory
proteins that modulate protein activity during stress
exposure including hormone and stress signaling path-
way components, transcription factors, and ubiquitin-
mediated proteolysis machinery. A large number of
studies show that scope for enhancing stress tolerance in
plants by altering single functional genes is limited, due
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to the complexity of stress responses [8, 9]. Thus, alte-
ration of key regulatory genes is desirable because this
can mimic or enhance stress signals by regulating a large
spectrum of downstream stress-responsive genes in con-
ferring tolerance [10, 11]. Knowledge of regulatory genes
is therefore important from an genetic engineering
perspective in plants [11, 12].

Despite vast knowledge derived from Arabidopsis
thaliana (Arabidopsis) and Oryza sativa (rice) model
plants, a low capacity for stress tolerance limits their
usefulness as discovery tools. By contrast, xerophyte
and halophyte species, widely distributed in arid and saline
regions, have evolved multiple protective mechanisms that
allow them to grow successfully under hostile conditions
[6, 13, 14]. A detailed understanding of salt and
drought protective mechanisms in naturally tolerant
species, and the identification of key regulatory genes,
is a promising new strategy for breeding salt and
drought tolerant crops [13, 15].

Zygophyllum xanthoxylum is a succulent xerophyte
with a highly developed root system and strong stress
tolerance. The natural range of Z. xanthoxylum includes
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arid and semiarid lands in northwestern China and
Mongolia [16]. This shrub is widely planted in China for
protecting fragile desert ecosystems and improving
vegetation coverage [17]. Previous investigations in
Z. xanthoxylum have focused on growth properties,
nutritive characteristics, and transpiration resulting in the
characterization of several drought and salt stress
response functional genes [17-22]. Previously, we ge-
nerated transcriptome datasets of roots and leaves of
Z. xanthoxylum to identify differentially expressed genes
(DEGSs) under osmotic stress and salt treatments [20].
Attention was focused on several important classes of
functional genes traditionally associated with drought
and salt stress responses, including ion transporters,
reactive oxygen species (ROS) scavenging systems,
and photosynthesis [20].

Here, we further analyzed the transcriptome and
digital gene expression profiling data of Z. xanthoxylum
roots under osmotic stress and salt treatments to
identify potential upstream regulators of these functional
genes (Fig. 1). Our transcriptome analysis focused on
signaling pathways important for stress tolerance,
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Fig. 1 An overview of relationships between the regulatory gene groups studied in this work and their downstream functional genes. The 6 h
and 24 h DEG transcriptomes of Z xanthoxylum roots under osmotic stress and salt treatment were analyzed. Regulatory gene categories, blue
boxes. Functional gene categories, gray boxes
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transcription factors important for signal output, and
ubiquitin proteasome system enzymes important for
protein turnover (Fig. 1). To further analyze this tran-
scriptome, DEGs in Z. xanthoxylum roots were matched
to putative orthologs in Arabidopsis, which allowed us
to perform in silico functional inference, including gene
network analysis for protein function, protein subcellular
localization, and gene co-expression. Finally, candidate
genes were selected and functionally characterized.
Among these, Z. xanthoxylum unigenes orthologous to
Arabidopsis NAC transcription factor genes NACO083
and NACO035 conferred drought and salt tolerance when
constitutively overexpressed in Arabidopsis plants,
confirming relevance of the dataset for crop engineering.

Results and discussion

Transcriptome profile of roots during osmotic stress and
salt treatments

To learn more about how Z. xanthoxylum adapts to
drought and saline environments, we further analyzed
the transcriptome data of seedling roots exposed to
osmotic stress and salt treatments for 6 h and 24 h [20].
Roots were studied because they are the first organs to
be exposed to osmotic and salt stress conditions [23].
6063 and 6258 DEGs were identified in Z. xanthoxylum
roots exposed to osmotic stress or salt treatments for
6h, respectively (Additional file 1: Figure Sla). In
osmotic-stressed seedling roots, 4000 DEGs were
up-regulated and 2063 DEGs were down-regulated. In
salt-treated  seedling roots, 4140 DEGs were
up-regulated and 2118 DEGs were down-regulated
(Additional file 1: Figure Sla). Venn-diagram analysis
shows that a large number of 6 h DEGs overlap in
expression, including 2780 up-regulated genes and 1402
down-regulated genes that are present in both osmotic
stress and salt treatments, suggesting that signaling path-
ways controlling these responses in Z. xanthoxylum are
interacting (Additional file 1: Figure Sla). By comparison,
only 2708 and 1307 DEGs were identified in roots exposed
to osmotic stress or salt treatments for 24 h, respectively
(Additional file 1: Figure S1b). In osmotic-stressed
seedling roots, 1723 DEGs were up-regulated and 985
DEGs were down-regulated. In salt-treated seedling
roots, 657 DEGs were up-regulated and 750 DEGs were
downregulated (Additional file 1: Figure S1b). Similarly,
Venn-diagram analysis revealed that 329 up-regulated
genes and 309 down-regulated genes overlapped in
osmotic stress- and salt-treated seedling roots. Overall,
the 6 h dataset was more complex than treatment for 24
h, reflecting that regulatory genes are generally early
responders to environmental signals [7, 20]. We
therefore selected the 6h dataset as the focus of
further analysis.
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Functional assignment of DEGs under osmotic stress and
salt treatment

To evaluate the biological pathways and molecular
function of genes participating in osmotic stress and
salt response, DEGs in 6 h-treated Z. xanthoxylum
roots were functionally annotated by aligning their
sequences to proteins in the KEGG database (see
Methods). 3028 DEGs and 3167 DEGs were functionally
annotated under osmotic stress and salt treatment,
respectively. Eighteen functional pathways were identified
as significantly enriched (p < 0.05) during both treatments
(Fig. 2a). In osmotic-stressed Z. xanthoxylum, the domi-
nant pathways were “metabolic pathways” (737 DEGs),
“biosynthesis of secondary metabolites” (357 DEGs),
“plant hormone signal transduction” (197 DEGs)
“plant-pathogen interaction” (179 DEGs), “ribosome”
(161 DEGs), “RNA transport” (135 DEGs) and “spli-
ceosome” (116 DEGs). In salt-treated Z. xanthoxylum,
the dominant pathways were “metabolic pathways”
(784 DEGs), “biosynthesis of secondary metabolites”
(400 DEGs), “ribosome” (230 DEGs), “plant-pathogen
interaction” (180 DEGs), “plant hormone signal trans-
duction” (179 DEGs), “RNA transport” (139 DEGs)
and “spliceosome” (118 DEGs) (Fig. 2a).

Among hormone signaling pathways, abscisic acid
(ABA) signaling components were significantly enriched
followed by auxin, ethylene, and cytokinin signaling
pathway terms. ABA plays a well-established role in
plant stress response signaling including salinity,
drought, osmotic, and cold stresses [24]. During stress
responses, cellular ABA levels increase via ABA biosyn-
thesis. PYL/PYR/RCAR (PYRABACTIN RESISTANCE1/
PYR1-LIKE/REGULATORY COMPONENTS OF ABA
RECEPTORS) receptors bind to ABA and interact with
PP2C (protein phosphatase 2C) negative regulators
thereby releasing SnRKs (sucrose non-fermenting like
kinases). Activated SnRKs phosphorylate downstream
proteins, including bZIP (basic leucine zipper) transcrip-
tion factors, thereby activating stress tolerance genes
[24, 25]. DEGs encoding all of these core positive com-
ponents of ABA signaling were upregulated in Z
xanthoxylum roots under osmotic stress and salt treat-
ments (Fig. 2b and ¢, Additional file 2: Table S1). PP2C
components showed the most change, with 8 up-regu-
lated and 3 down-regulated genes under osmotic stress
conditions and 8 up-regulated and 1 down-regulated
gene under salt conditions (Fig. 2b and ¢, Additional file
2: Table S1). These data indicate that ABA signaling is
an important factor in Z. xanthoxylum stress tolerance,
similar to other plants. ABA signaling directly acti-
vates stress tolerance genes as well as initiates sec-
ondary mechanisms for stress tolerance [26]. Auxin
is an important regulator of plant growth and devel-
opment but its role in abiotic stress responses is
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Fig. 2 KEGG analysis of DEGs in Z xanthoxylum roots. a Top 18 enriched functional categories and distribution of DEGs in (b, ¢) ABA and (d, e)
auxin signaling pathways under (b, d) osmotic stress and (c, e) salt treatment. a X-axis indicates the number of DEGs in KEGG pathways, and
Y-axis represents the specific category of DEGs in the pathway. Black bars, number of up-regulated genes. White bars, number of down-regulated
genes. Black arrows, total number of up-regulated genes. White arrows, total number of down-regulated genes

poorly studied [27]. Interestingly, numerous auxin
signaling components were differentially expressed in
osmotic-stressed and salt-treated Z. xanthoxylum
roots. Under osmotic stress, 28 auxin signaling path-
way genes were upregulated, including 2 TIR1/AFB
(Transport Inhibitor Responsel/Auxin Signaling F-box) re-
ceptor genes, 12 AUX/IAA (Auxin/Indole-3-Acetic Acid)
repressor genes, 3 ARF (Auxin Response Factor) transcrip-
tion factor genes, 3 GH3 (Gretchen Hagen 3) and 8 SAUR
(Small Auxin-Up RNA) auxin early-response genes (Fig. 2d
and Additional file 2: Table S2). Under salt stress, 24 auxin
signaling pathway genes were upregulated including 2 TIR/

AFB genes, 8 AUX/IAA genes, 4 ARF genes, 4 GH3 genes,
and 6 SAUR genes (Fig. 2e and Additional file 2: Table S2).
This enrichment suggests that auxin signaling is an import-
ant element in Z. xanthoxylum stress tolerance. Unlike
Arabidopsis, Z. xanthoxylum can effectively maintain
growth and regulate its root architecture under osmotic
stress and salinity [18-20]. In turn, auxin plays a well-
characterized role in stimulating root growth [27].
Collectively, steep changes in ABA and auxin signaling
genes at 6h under osmotic-stress and salt treatments
suggests an important interconnecting role for these
hormone pathways in the stress response.
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Osmotic stress- and salt-responsive regulatory genes in Z.
xanthoxylum roots

Perception of stress signals leads to signal transduction
and the activation of protective physiological and meta-
bolic responses [12, 28]. To further analyze signal trans-
duction genes in osmotic or salt-treated Z. xanthoxylum
DEQG libraries, we used Gene Ontology (GO) enrichment
analysis. Over-represented categories were found to
include protein kinases (253 and 204 kinase genes in
osmotic-stressed and salt-treated DEGs libraries, respec-
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transcription factor genes in osmotic-stressed and
salt-treated DEGs libraries, respectively) (Fig. 3c and d)
and ubiquitin proteasome system (UPS) genes (80 and 85
UPS genes in osmotic-stressed and salt-treated DEGs
libraries, respectively) (Fig. 3e and f).

Protein kinases

Protein kinases play key roles in the perception of
stress-related signals. Major classes involved in signal percep-
tion are leucine-rich repeat receptor-like kinases (LRR-RLKs),

tively) (Fig. 3a and b), transcription factors (126 and 143  cell-wall ~associated kinases, lectin-domain-containing
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Fig. 3 Distribution of osmotic stress- and salt-responsive DEGs encoding (a, b) protein kinases, (¢, d) transcription factors, and (e, f) ubiquitin
proteasome system-related enzymes in Z xanthoxylum roots. Black bars, number of up-regulated genes. White bars, number of down-regulated
genes. Black arrows, total number of up-regulated genes. White arrows, total number of down-regulated genes
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receptor kinases, and receptor-like cytoplasmic kinases
[29, 30]. A large number of these genes are rapidly
induced in osmotic or salt stress treated Arabidopsis
plants [30, 31]. Several have confirmed roles in drought
and salt tolerance, including FERRONIA [32] and
RECEPTOR-LIKE PROTEIN KINASE 1 [33]. Numerous
DEGs encoding RLKs are upregulated in our dataset
(Fig. 3a and b and Additional file 3: Figure S2a). For
example, the Z. xanthoxylum FERRONIA-like Uni-
gene61098_All is up-regulated 4.6- and 7.5-fold
during osmotic stress and salt treatment, respectively
(Additional file 2: Table S3). Many RLK genes not previ-
ously linked to stress are also differentially upregulated in
Z. xanthoxylum roots including LRR-RLK-like Uni-
gene9800_All, Unigenel76_All, and Unigenel2756_All
with highly significant blast hits to Hevea brasiliensis BAK1
(BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RE-
CEPTOR KINASE 1) [34], Ricinus communis ERECTA [35],
and Prunus avium BAMS3 (BARELY ANY MERISTEM 3)
[36], respectively (Additional file 2: Table S3). The
Arabidopsis counterparts of these genes are well
studied but not in the context of abiotic stress
responses [34, 36—39]. Future work to evaluate the role of
these genes in stress-related functions using Arabidopsis
model plants is a valuable future direction.

Protein kinases are also important for signal transmis-
sion. Major classes include CDPKs (calcium-dependent
protein kinases) and MAPKs (mitogen-activated protein
kinases) [40]. In Arabidopsis, several CDPKs and
MAPKSs are involved in abiotic stress signaling pathways
[41-43]. Arabidopsis plants overexpressing CPK6 have
enhanced tolerance to salt and drought stresses [42].
Similarly, transgenic barley (Hordeum vulgare) plants
overexpressing HvMPK1 showed greater tolerance to salt
and other abiotic stresses [44]. Our DEG libraries
include 31 and 28 predicted calcium response protein
kinase genes, and 28 and 24 predicted MAPK genes in
salt- and osmotic stress-treated Z. xanthoxylum roots,
respectively (Fig. 3a and b, Additional file 3: Figure S2b
and Additional file 2: Table S3). These data are consis-
tent with known roles for Arabidopsis CDPKs and
MAPKSs in abiotic stress signaling.

Transcription factors

Transcription factors are important outputs of signaling
pathways, directly responsible for the activation or re-
pression of stress-responsive genes [1, 12, 45]. Major
classes include NAC (NAM/ATAF/CUC), AP2/ERF
(APETALA2 and ethylene-responsive element binding
proteins), bHLH (basic helix-loop-helix), MYB (myelo-
blastosis), WRKY (WRKY-domain) and bZIP transcrip-
tion factors whose members confer drought and salt
stress tolerance in various plants [1]. For example, many
rice WRKY genes exhibit obviously different functions
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under drought or salt stress [46] and soybean WRKY54
over-expressed in transgenic Arabidopsis confers to-
lerance to drought and salt stress [47]. bZIP24 was iden-
tified by screening salt-inducible transcripts in
Arabidopsis and a closely-related halophyte species with
functional analysis showing that repression increased salt
tolerance and the transcript abundance of numerous
stress response genes [48]. Multiple bHLH transcription
factors also have stress-related roles such as MYC2
(Myelocytomatosis protein 2) involved in jasmonic acid
signaling and AIB (ABA-inducible bHLH-type transcrip-
tion factor) whose overexpression enhances the drought
tolerance of transgenic plants [49, 50]. Consistent with
these studies, 126 and 144 transcription factors DEGs
were identified in Z. xanthoxylum under osmotic stress
and salt treatment, respectively. NAC, AP2/ERF, bHLH,
MYB, WRKY, and bZIP families were the most abundant
(Fig. 3c and d). Many of these DEGs matched to putative
orthologs in other plants with a characterized role in stress
biology. For example, CL8432.Contig3_All, CL6477.-
Contig2_All, Unigene2817_All, Unigene2222_All, Uni-
gene2285_All were up-regulated in osmotic-stressed and
salt-treated Z. xanthoxylum (Additional file 3: Figure S2c
and Additional file 2: Table S4). These genes encode pre-
dicted orthologs of Arabidopsis ERF96 [51], bHLH106
[52], MYB3 [53], WRKY22 [54], and bZIP53 [55], which
are previously identified as salt or drought responsive
genes with important roles in abiotic stress signaling
pathways.

Numerous other transcription factor genes with less-de-
fined roles in abiotic stress were up- or down-regulated in
osmotic-stressed and salt-treated Z xanthoxylum roots
(Fig. 3c and d and Additional file 2: Table S4). Examples in-
clude Unigene57160_All, Unigenel6368_All, CL6534.Con-
tigl All and Unigene9789 All, which are orthologous to
Arabidopsis MYB40, NAC083, NAC035, and WRKY69,
respectively (Additional file 2: Table S4). Several transcrip-
tion factor families not previously associated with abiotic
stress mechanisms were also identified. Examples include
GATA, GRAS (GAI/RGA/SCR) and ARF transcription
factors. In rice, abiotic stress signaling by ABA and salt
treatment causes the induction and differential splicing of
28 GATA transcription factor genes revealing tight re-
gulation of transcript abundance and splice variants
and possible diverse roles in abiotic stress signaling
[56]. Within these families, the expression level of
some genes changed significantly. For example,
CL11183.Contigl_All predicted to encode a GRAS
transcription factor and was up-regulated more than
10-fold in response to osmotic stress and salt treat-
ment in Z. xanthoxylum (Additional file 2: Table S4).
Some of these previously uncharacterized transcription
factors might represent novel regulators of osmotic stress
or salt tolerance.
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UPS enzymes

Ubiquitination is an important mechanism for regulating
protein turnover in response to stimuli and UPS enzymes
play a central role [57, 58]. Accordingly, numerous
Z. xanthoxylum DEGs induced under osmotic-stress and
salt treatment encode UPS-related components such as ubi-
quitins, proteasome subunits, E1 ubiquitin-activating
enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiqui-
tin ligases (Fig. 3e and f and Additional file 3: Figure S2d).
Among these, 22 F-box E3 genes were induced both in os-
motic stress- and salt-treated Z. xanthoxylum (Fig. 3e and
f). Four of these genes match to Arabidopsis orthologs with
known roles in stress signaling including CL7586.Con-
tig2_All (Additional file 2: Table S5). This F-box gene is a
predicted ortholog of Arabidopsis TUBBY LIKE PROTEIN3
important for plant responses to ABA, salt, and osmotic
stress [59]. Several U-box, RING (really interesting new
gene) and HECT (homology to E6-APC terminus) E3
ubiquitin ligase genes are also up- or down-regulated
in osmotic stress- or salt-treated Z. xanthoxylum
roots (Fig. 3e and f, Additional file 3: Figure S2d and
Additional file 2: Table S5) including CL4067.Contigl_All.
This gene is a predicted ortholog of Arabidopsis PUBIS8
(Plant U-box 18) induced by ABA, drought and salt stress,
which functions as a negative regulator of ABA-mediated
drought stress responses [60]. These findings high-
light potentially important roles for E3 ligases as
both positive and negative stress response regulators
in Z. xanthoxylum roots.

In summary, 459 and 432 protein kinase, transcription
factor, and UPS genes were differentially expressed in
osmotic-stressed and salt-treated Z. xanthoxylum DEG
libraries, respectively. Hierarchical cluster analyses indi-
cate that transcripts for most of these genes are in-
creased at 6 h but not 24 h (Additional file 3: Figure S2).
For example, 103 up-regulated and 41 down-regulated
transcription factor genes were among the DEGs of
Z. xanthoxylum roots treated for 6h with salt
(Additional file 3: Figure S2) but only 9 of these tran-
scription factor genes were among DEGs at 24h
(Additional file 4: Figure S3). Thus, 6 h DEGs are more
likely to be early response regulators in Z. xanthoxylum
roots under osmotic stress and salt treatments. To test of
the reproducibility of our RNA-sequencing data, we used
qRT-PCR to independently monitor the transcript abun-
dance of 20 randomly selected DEGs representing protein
kinases, transcription factors, and UPS enzymes. These re-
sults were generally consistent with the RNA-sequencing
data (Additional file 2: Table S6).

Protein-protein interaction networks of Z. xanthoxylum in

response to osmotic stress and salt treatments

To further explore functional relationships among re-
gulatory DEGs from Z. xanthoxylum, BLASTp homology
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searches against the Arabidopsis TAIR 10 genome
release were used to identify putative orthologs.
Among 459 osmotic stress-responsive regulatory DEGs in
Z. xanthoxylum, 359 unique DEG orthologs were iden-
tified in Arabidopsis. Similarly, among the 432 salt-respon-
sive regulatory DEGs in Z. xanthoxylum, 339 unique DEG
orthologs were identified in Arabidopsis. STRING analysis
was performed to present known gene co-expression, gen-
etic interactions, protein interactions, and protein subcellu-
lar localization. Cytoscape was used to calculate and display
the most over-represented functional categories, demon-
strating a central gene cluster enriched in osmotic stress
and salt responsive genes (Fig. 4a and b; Additional file 5:
Figure S4 and Additional file 6: Figure S5). In the osmotic
stress-responsive network, 220 DEG proteins, including
89 protein kinases, 55 transcription factors, and 76
UPS enzymes are represented (Fig. 4a, Additional file 5:
Figure S4 and Additional file 2: Table S7). In the
salt-responsive network, 204 DEG proteins, including
85 protein kinases, 42 transcription factors, and 77
UPS enzymes are represented (Fig. 4b, Additional file 6:
Figure S5 and Additional file 2: Table S7). These highly in-
tegrated networks incorporated both conserved and novel
gene products associated with exposure to osmotic stress
and salt conditions in Z. xanthoxylum. For example, Unige-
ne22615_All matches to Arabidopsis MKK9, a known
MAPK determinant of salt tolerance [61]. When protein
kinases, transcription factors, and UPS enzymes directly
related to MKK9 are examined, these proteins together
with relationships among them form a sub-network
showing predicted regulatory events surrounding Unige-
ne22615_All in response to osmotic-stress and salt treat-
ment of Z. xanthoxylum, respectively (Fig. 4c and d). On
the other hand, Unigene57160_All blast hits to function-
ally unresolved Arabidopsis transcription factor gene
MYB40. Network analysis between MYB40 and protein
kinase, transcription factors, and UPS enzymes reveals
potentially novel regulatory events (Fig. 4e and f). For
example, MYB40 may regulate plant response to os-
motic and salt stress by interacting with GATA tran-
scription factors, regulating the transcription level of
GATA genes, or GATAs may function upstream of
MYB40 (Fig. 4e and f). These relationships provide a the-
oretical basis for investigating MYB40 function in stress
tolerance. Network analysis also reveals an extensive ABA
signaling network in Z. wanthoxylum roots in response to
osmotic-stress and salt treatments (Fig. 5 and Additional
file 2: Table S1). Under osmotic stress, the majority of
ABA pathway genes are up-regulated, including 2 ABA
biosynthesis and catabolism genes, 1 transport gene, 1 re-
ceptor gene, 1 SnRK gene, 1 ABI transcription factor gene,
and various other ABA responsive and UPS genes (Fig. 5b).
In total, 30 interrelated proteins shed light on a complex
ABA-dependent network (Fig. 5a and b). Analysis of
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interactions among them; magenta nodes and edges, transcription factors and interactions among them; blue nodes and edges, UPS enzymes
and interactions among them; gray edges, interactions among kinases, transcription factors, and UPS enzymes except those among the same

category of proteins

conserved and novel gene products within these net-
works provides a foundation for future study (Figs. 4
and 5 and Additional file 2: Table S7).

Validation of stress-related functions for novel ZxNAC
regulatory genes

To further analyze the biological relevance of our data-
set, novel Z. xanothxylum regulatory DEGs from our
study were tested as potential osmotic and salt stress

determinants in Arabidopsis. Eight candidate genes were
selected for functional characterization including two
protein kinases genes [Unigene9800_All (ZxSERKI) and
CL11556.Contig3_All (ZxMRH]I)] and six transcription fac-
tor genes [(Unigenel6368_All (ZxNAC083), CL6534.Conti-
gl All (ZxNAC035), Unigene57160_All (ZxMYB40),
CL9880.Contig2_All  (ZxWRKY29),  Unigene9789_All
(ZxWRKY69) and Unigene2222_All (ZxWRKY22)]. Results
are presented for ZxNAC083 and ZxNAC035, named
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Fig. 5 Module for ABA signaling pathway in osmotic stress responses of Z. xanthoxylum roots. a Functional network based on known Arabidopsis
ABA-dependent signaling components, cross-referenced against the complete DEG functional network. Node colors represent different classes of
signaling components: orange, ABA biosynthesis; red, receptors; yellow-green, PP2Cs, green, kinases; dark magenta, transporters; magenta, transcription
factors; and blue, UPS enzymes. Border colors of nodes represent expression as log2 fold-change. Magenta, increased expression; the deeper the color,
the higher the expression. Green, decreased expression; the deeper the color, the lower the expression. Edge (line) colors, interactions of proteins in
the core ABA signaling pathway (red), kinases (green), UPS enzymes (blue), transcription factors (magenta), and proteins except in the same class
(cyan). Thickness of edges, normalized link closeness; the thicker the edge, the closer the link. b ABA signaling and biosynthetic pathway components.
Shading, colors represent different classes of signaling components: orange, ABA biosynthesis; red, receptors; yellow-green, PP2Cs, green, kinases; dark
magenta, transporters; magenta, transcription factors; and blue, UPS enzymes

after their putative orthologs in Arabidopsis. Inde-
pendent qRT-PCR analysis confirmed that both genes
are highly induced in osmotic-stressed and salt-treated
Z. xanthoxylum roots (Additional file 7: Figure S6a, b
and Additional file 2: Table S6). Transgenic Arabidopsis
plants expressing these genes under the control of a
strong constitutive Cauliflower Mosaic Virus 35S pro-
moter were next generated. Two independent transgenic
lines per construct were selected for phenotypic analyses
under normal, drought, and salt-stress conditions
(Additional file 7: Figure Sé6c, d). The drought toler-
ance of wild type Col-0 and transgenic lines was first
compared by withholding water for 7 days [62]. Under
this treatment, wild-type plants began to wilt but the
ZxNAC083 and ZxNACO035 transgenic plants grew
well (Additional file 8: Figure S7). To further analyze
growth and physiological parameters, period drought
stress was applied by withholding water for 2 weeks
followed by normal watering for 7days [63]. The
wild-type treated Arabidopsis plants had etiolated and
wilted leaves, whereas the transgenic lines grew well

(Fig. 6a, b, g, and h). To quantify effects on growth,
the dry weight of stems was measured. Under normal
watering conditions, transgenic plants had slightly
shorter stems with a lower dry weight compared to
wild-type plants (Fig. 6a, ¢, g, and i). However, wild-
type plant growth was more inhibited by drought
compared to transgenic plants (Fig. 6b, ¢, h, and i).
The dry weight of stems from transgenic plants under
control and drought stress conditions was similar (Fig. 6¢
and i). Physiological parameters including relative water
content, chlorophyll content, and net photosynthetic rate
were also measured. Under well-watered conditions,
wild-type and transgenic plants exhibited no significant
differences (Fig. 6d and j). After period drought treatment,
the relative water content of transgenic plants was higher
than wild-type Arabidopsis, suggesting that ZxNACO083
and ZxNACO035 can regulate osmotic homeostasis in
plants under drought conditions (Fig. 6d and j). Water
deficit can lead to a decrease in chlorophyll content thus
lowering net photosynthetic rate [63, 64]. The chloro-
phyll content of transgenic plants was maintained at
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Fig. 6 Phenotypes and physiological parameters of Col-0, ZXNAC083 and ZxNACO35 overexpression transgenic plants under normal conditions
and period drought stress. Two independent lines were analyzed for each transgenic. Representative images are shown. a, g Col-0, ZxNAC083 and
ZXNACO35 overexpression transgenic plants under normal conditions. b, h Col-0, ZXNAC083 and ZxNAC035 overexpression transgenic plants under
period drought stress (2-weeks water withheld, 1-week recovery). ¢, d, e, f Physiological parameters of Col-0 and ZxNAC083 overexpression
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and (f) net photosynthetic rate. i, j, k, | Physiological parameters of Col-0 and ZxNAC035 overexpression transgenic plants under normal
conditions and period drought stress. i Dry weight of stems, (j) relative water content, (k) chlorophyll content, and (I) net photosynthetic rate.
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more normal levels compared to Col-0 plants (Fig. 6e
and k). Transgenic plants also showed a higher net
photosynthetic rate compared to Col-0 under drought
treatment (Fig. 6f and ).

Finally, we compared the salinity tolerance of wild type
and transgenic lines. Plants were irrigated with 100 mM
NaCl solution for 2 weeks. After treatment, the rosette
leaves of Col-0 were faded and withered whereas trans-
genic plants grew well (Fig. 7b and h). Col-0 plants had
longer stems with a greater dry weight compared to
transgenic plants under normal conditions (Fig. 7a and
g). However, wild-type plant growth was more severely
inhibited by salt stress compared to transgenic plants
(Fig. 7c and 1i). Physiological parameters including rela-
tive water content, chlorophyll content and net photo-
synthetic rate were also measured. Salinity can decrease
soil water potential leading to physiological drought.
While the relative water content of wild-type and trans-
genic plants was similar under normal conditions,
ZxNACO083 and ZxNAC035 overexpression lines showed
significantly higher relative water content compared to
wild-type plants after salt treatment (Fig. 7d and j). High
relative water content improves chlorophyll stability and
photosynthetic system integrity under physiological
drought. Under salt stress, both chlorophyll content and
net photsynthetic rate of ZxNAC83 and ZxNACO035
transgenic lines were significantly higher than Col-0
wild-type showing a protective effect (Fig. 7e, f, k, and 1).

These combined data demonstrate that overexpression
of ZxNAC083 and ZxNACO035 enhances Arabidopsis
drought and salt tolerance. These data provide powerful
evidence that regulatory genes identified in this study
include authentic osmotic and salt stress determinants
in Z. xanthoxylum. Many of these genes have unresolved
functions in stress tolerance.

Conclusions

This study provides a first comprehensive analysis of
regulatory gene transcripts in Z. xanthoxylum under
osmotic stress and salt treatments. These data reveal a
complex network of conserved and unique regulatory
genes induced in Z. xanthoxylum roots with potential
roles in abiotic stress tolerance. Functional analysis of
these genes is a rich resource for crop improvement.

Methods

Data acquisition and differential expression analysis

The transcriptomic data and digital gene expression
libraries (C6, C24, D6, D24, S6, and S24) analyzed in this
study were generated as previously described [20]. Seeds
of Z. xanthoxylum used in this work were collected from
wild plants in Alxa League of Inner-Mongolia Autonomous
Region, China, and were stored in the Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of
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Agriculture and Rural Affairs, Lanzhou, China. The raw
data are submitted to the NCBI Sequence Read Archive
(PRJNA512400). Each transcriptomic library was con-
structed from seedling roots, using 5-6 seedlings per
sample. Libraries C6 and C24 correspond to treatment
with a mock solution (1/2 strength Hoagland nutrient
solution) for 6h and 24h, respectively; D6 and D24
correspond to treatment with an osmotic stress solu-
tion (1/2 strength Hoagland nutrient solution with
added sorbitol, equivalent to — 0.5 MPa osmotic poten-
tial, sorbitol concentration =~ 165 mM) for 6 h and 24 h,
respectively; and S6 and S4 correspond to treatment
with a salt solution (1/2 strength Hoagland nutrient
solution with 50 mM NaCl) for 6 h and 24 h, respect-
ively. Libraries were constructed using a tag-based
digital gene expression protocol [20]. The resulting
libraries were sequenced in parallel using an Illumina
HiSeq™ 2000 sequencing platform (BGI Shenzhen). Low
quality tags from each library were removed (e.g. tags
with unknown nucleotide “N”, “empty tags” with no tag
sequence between the adaptors, and tags with only one
copy number). The resulting “clean” tags were mapped
to our transcriptome reference database [20]. To estab-
lish differential expression, the number of clean tags for
each gene was calculated and normalized to the number
of transcripts per million clean tags [65]. To compare
differences in gene expression, the tag frequency in each
library was statistically analyzed according to Audic and
Claverie [66]. The false discovery rate (FDR) was used to
determine the threshold p-value in multiple tests [65, 67].
Genes that displayed FDR<0.001 and absolute value of the
log2 ratio>1 were selected as significantly different.

DEGs regulatory pathways analysis, hierarchical
clustering, and validation by qRT-PCR

The Blast2GO program (https://www.blast2go.com/) was
employed to obtain Gene Ontology (GO) annotations for
Unigenes. Regulatory pathways were investigated by match-
ing Z. xanthophyllum genes to putative orthologs in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pro-
tein database (www.genome.jp/dbget/). Hierchical cluster
was performed using Heml software (http://hemi.biocuck-
oo.org/down.php). Default options were used and Pearson
correlations were performed on gene expression data.

RNA sequencing data were verified by measuring the
transcript abundance of randomly-selected predicted
regulatory genes using total RNA extracted from treated
roots treated as described above [20]. First-strand ¢cDNA
was synthesized from 2pg of DNase-treated RNA
according to the manufacturer’s instructions (TaKaRa Bio-
technology, China). qRT-PCR was performed in triplicate
on three bioreplicates using Power SYBR™ Green Master
Mix (TaKaRa Biotechnology, China) on a StepOne
Real-Time PCR Thermocycler (Applied Biosystems). To
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Fig. 7 Phenotypes and physiological parameters of Col-0, ZXNAC083 and ZxNAC035 overexpression transgenic plants under normal condition and
salt stress. Two independent lines were analyzed for each transgenic. Representative images are shown. a, g Col-0, ZXNAC083 and ZxNAC035
overexpression transgenic plants under normal condition. b, h Col-0, ZXNAC083 and ZxNACO035 overexpression transgenic plants under salt stress
(2-weeks, 100 mM Nadl). ¢, d, e, f Physiological parameters of Col-0, ZxNAC083 overexpression transgenic plants under normal conditions and salt
stress. ¢ Dry weight of stems, d relative water content, e chlorophyll content, and (f) net photosynthetic rate. i, j, k, | Physiological parameters of

(d, e, f, j, k, I) Asterisks, significant difference. p < 0.05 (Duncan’s test)

Col-0, ZXNAC035 overexpression transgenic plants under normal conditions and salt stress. i Dry weight of stems, (j) relative water content, (k)
chlorophyll content, and (I) net photosynthetic rate. Data are mean + SD of three replicates. ¢, i Asterisks, significant difference. p < 0.05 (t-test).

normalize sample variance, ZXACTIN (GenBank accession
no. EU019550) was used as the internal control gene.
The relative expression level of each gene were deter-
mined using the 27**“" method [65]. Primer-BLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-blast) was
used for primer design. A standard curve and

efficiency test were performed for each set of primers
(Additional file 2: Table S8).

Functional data mining in Arabidopsis and network analysis
Z. xanthoxylum DEGs were matched to putative ortho-
logs in Arabidopsis by BLASTp analysis (E-value of 1e™©)
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against the reference Arabidopsis TAIR10 genome annota-
tion (http://www.arabidopsis.org). Protein-protein inter-
action analysis of protein function, protein subcellular
localization, and gene co-expression of putative Arabi-
dopsis orthologs was carried out in STRING [68]
(http://www.string-db.org/). STRING protein-protein
interaction images were re-modulated in Cytoscape
[69] (https://cytoscape.org/).

Generating overexpression lines

The coding regions of Unigenel6368_All (ZxNACO083)
and CL6534.Contigl_All (ZxNACO035) were amplified
from seedling total RNA using a SMART RACE
cDNA Amplification Kit (TaKaRa Biotechnology,
China). The resulting ¢cDNA products were cloned
into pDONR™/Zeo using a Gateway® BP reaction
(ThermoFisher Scientific, China) then inserted into
binary vector pBIB-BASTA-35S-GWR-GFP using a
Gateway® LR reaction (ThermoFisher Scientific,
China). The resulting constructs were introduced into
Agrobacterium tumefaciens strain GV3101 and used to
transform wild-type Arabidopsis Col-0 plants by floral
dipping (seeds of wild-type Arabidopsis Col-0 were
obtained from Ministry of Education Key Laboratory of
Cell Activities and Stress Adaptation, Lanzhou, China) [70].
Transgenic overexpression lines were validated using
semi-quantitative RT-PCR to measure ZxNAC083 and
ZxNACO035 transcript levels. AtACTIN2 was used as the
internal control gene. Primer sequences are provided in
Additional file 2: Table S8.

Phenotypic and physiological assessments of transgenic
plants

Phenotypic assays were performed on Arabidopsis
wild-type Col-0 and T3 homozygous transgenic
overexpression lines using two independent lines per
construct (ZxNAC083-OX48, OX65 and ZxNA-
C035-0X57, OX59). 4-week-old plants grown on soil
in pots (8x8x8cm®) were subjected to drought or
salt stress treatments as described with minor changes
[71]. For period drought stress treatments, water was
withheld for 2 weeks followed by normal watering for
7 days to permit recovery [71]. Under normal condi-
tions, each pot was given 150 mL of water every 2
days. For salt stress treatments, each pot was given
150 mL of 100 mM NaCl solution every 2 days for 2
weeks. The dry weight of stems (shoots excluding
rosette leaves), relative water content, chlorophyll
content, and net photosynthetic rate were determined
as previously described [19]. Seedlings were grown in
a greenhouse at 20-22°C with relative humidity 65—
75% under long days (16 h light/8 h dark, photon flux
density 100-120 ymol-m™%s™ ).
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Additional files

Additional file 1: Figure S1. Venn diagrams showing DEGs in

Z. xanthoxylum roots under osmotic stress and salt treatments.
Yellow and green colors, up-regulated and down-regulated transcripts
under osmotic stress for (a) 6 h and (b) 24 h, respectively. Red and blue
colors, up-regulated and down-regulated transcripts under salt treatment
for (@) 6 h and (b) 24 h, respectively. (JPG 257 kb)

Additional file 2: Table S1. ABA signaling pathway DEGs in

Z. xanthoxylum roots under osmotic stress and salt treatment. Table S2.
Auxin signaling pathway DEGs in Z xanthoxylum roots under osmotic
stress and salt treatments. Table S3. Selection and categorization of
significant Z. xanthoxylum kinase DEGs in response to osmotic stress
and salt treatments. Table S4. Selection and categorization of
significant Z. xanthoxylum transcription factor DEGs in response to
osmotic stress and salt treatments. Table S5. Selection and
categorization of significant Z xanthoxylum UPS enzyme DEGs in response
to osmotic stress and salt treatments. Table S6. RNA seq data verification
by gRT-PCR measurement of randomly selected Z. xanthoxylum osmotic
stress and salt responsive protein kinase, transcription factor, and UPS
enzyme genes. Table S7. DEGs matched to predicted Arabidopsis orthologs
in the complete gene networks in Z. xanthoxylum roots under osmotic
stress and salt treatment. Yes (Y) or No (N) indicate gene representation in
the corresponding DEG libraries. Table S8. Primers used in current study .
(DOCX 91 kb)

Additional file 3: Figure S2. Hierarchical cluster analysis of differentially
expressed genes encoding (a) receptor like kinases, (b) Ca’* related
kinases, (c) E3 ubiquitin ligases, and (d) transcription factors in

Z. xanthoxylum roots under osmotic stress and salt treatments.
Unigenes are matched to Arabidopsis orthologs where possible. (JPG 12062 kb)

Additional file 4: Figure S3. Hierarchical cluster analysis of transcription
factor genes that are differentially expressed in Z xanthoxylum roots at
both 6 h and 24 h under salt treatment. Unigenes are matched to
Arabidopsis orthologs where possible. (JPG 963 kb)

Additional file 5: Figure S4. High resolution images of Fig. 4a. (PDF 28 kb)
Additional file 6: Figure S5. High resolution images of Fig. 4b. (PDF 33 kb)

Additional file 7: Figure S6. Expression analysis of ZxNAC083 and
ZXNACO035. (a-b) qRT-PCR validation of RNA sequencing data in

Z. xanthoxylum roots under osmotic stress or salt treatment for 6 h. (c)
Semi-quantitative RT-PCR assay showing overexpression of ZxNAC083 in
transgenic Arabidopsis plants compared to Col-0 wild-type. ZXNAC083
(20 cycles) and AtActin2 (19 cycles). (d) Semi-quantiative RT-PCR
experiment assay showing overexpression of ZxNAC035 in transgenic
Arabidopsis plants compared to Col-0 wildtype. ZXNAC035 (25 cycles) and
AtActin2 (19 cycles). (JPG 429 kb)

Additional file 8: Figure S7. Phenotypes of Col-0, ZXNAC083 and
ZXxNACO35 overexpression transgenic plants under normal conditions and
7-day drought stress at vegetative phases. Two independent lines were
analyzed for each transgenic. Representative images are shown. (a,c)
Col-0, ZXNAC083 and ZxNACO035 overexpression transgenic plants under
normal conditions. (b,d) Col-0, ZXNAC083 and ZxNAC035 overexpression
transgenic plants under 7-day drought stress. (JPG 1069 kb)
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