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Abstract

Background: Plants are sessile organisms and are unable to relocate to favorable locations under extreme
environmental conditions. Hence they have no choice but to acclimate and eventually adapt to the severe conditions
to ensure their survival. As traditional methods of bolstering plant defense against stressful conditions come to their
biological limit, we require newer methods that can allow us to strengthen plants’ internal defense mechanism. These
factors motivated us to look into the genetic networks of plants. The WRKY transcription factors are well known for
their role in plant defense against biotic stresses, but recent studies have shed light on their activities against abiotic
stresses such as drought. We modeled this network of WRKY transcription factors using Bayesian networks and
applied inference algorithm to find the best regulators of drought response. Biologically intervening
(activating/inhibiting) these regulators can bolster the defense response of plants against droughts.

Result: We used real world data from the NCBI GEO database and synthetic data generated from dependencies in
the Bayesian network to learn the network parameters. These parameters were estimated using both a Bayesian and a
frequentist approach. The two sets of parameters were used in a utility-based inference algorithm to determine the
best regulator of plant drought response in the WRKY transcription factor network.

Conclusion: Our analysis revealed that activating the transcription factor WRKY18 had the highest likelihood of
inducing drought response among all the other elements of the WRKY transcription factor network. Our observation
was also supported by biological literature, as WRKY18 is known to regulate drought responsive genes positively. We
also found that activating the protein complex WRKY60-60 had the second highest likelihood of inducing drought
defense response. Consistent with the existing biological literature, we also found the transcription factor WRKY40
and the protein complex WRKY40-40 to suppress drought response.
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Background
The global population is set to rise by 34% by the year
2050, and increasing crop yields to ensure food security
has become a grand challenge [1]. The rise in temperature
worldwide due to global warming has increased the risk
of droughts affecting crop yields and has further compli-
cated this challenge. Studies have shown that the global
drought-affected area will rise significantly by 2050, and
it will be accompanied by a sharp drop in crop yield [2].
The unprecedented rise in worldwide population accom-
panied by a rise in demand for crop supply comes at a time
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when traditional approaches of maximizing crop produc-
tion are coming to their biological limits. Hence, develop-
ing drought resistant crops has become a global priority
to ensure food security. Fortunately, plants have multiple
innate stress sensing mechanisms that can detect unfavor-
able changes in the environment and deploy appropriate
defense responses. Therefore, it is of great interest to
understand the genetic networks behind a plant’s defense
mechanism to augment its genetic yield potential while
reducing its susceptibility to harsh conditions.
Abscisic acid (ABA) is a well-known plant hormone that

is induced under drought stress conditions and regulates a
plant’s gene expression through the action of transcription
factors [3, 4]. The family of WRKY transcription factors
is traditionally associated with plant defense mechanisms
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against pathogens; however, many recent studies have
highlighted WRKY’s role in abiotic stress responses
[5–7]. Since WRKY is one of the largest families of tran-
scription factors in plants with such diverse roles in plant
defense mechanisms, it is practical to model the interac-
tion among various components of the WRKY’s signaling
pathway to gain valuable insights into these interactions
[8]. In this paper, we use Bayesian networks (BN) to
model the ABA-induced WRKY transcription factor net-
work. We then apply a utility-based inference technique
to determine the significant regulators of drought stress
response genes in the BN. This approach allows us to
integrate existing biological knowledge into our model.

Review of biological background
Similar to the way adrenaline functions as a stress hor-
mone in animals, plants respond to harsh environmen-
tal changes, pathogen attacks or wounding by secreting
plant hormones, such as ABA, Cytokinins, Salicylic Acid
and Ethylene to trigger its’ own defense mechanisms. In
the context of plants, droughts are characterized by the
unavailability of water, which can prevent plants from
performing basic survival processes such as photosynthe-
sis. When a plant faces water deficit conditions, it can
defend itself either by the process of avoidance or toler-
ance. In the case of avoidance, a plant may complete its
life cycle in the wet season. Whereas in the case of tol-
erance, the plant may initially acclimate to the change
in conditions by introducing reversible changes into its
physiology through altering its gene expression; however,
if drought conditions still persist, then the plant passes
its altered genes to its next generation so that these new
generations of plants are already adapted to the drought
conditions [9].
To adopt either of these defense mechanisms, the plant

must undergo a process of signal transduction when it
gets the initial cue of droughts,such as a drop in the
water potential in the apoplast and a rise in the ion
concentration [9]. All these signals along with many oth-
ers cause a rapid rise in the level of the plant hormone
ABA, which acts as a stress sensor, and it subsequently
activates secondary messengers, such as Ca2+, Reactive
Oxygen Species (ROS) and Cyclic Adenosine Monophos-
phate (cAMP). These secondary messengers turn on their
respective signaling pathways (e.g., MAPK, CDPK) where
protein phosphorylation (addition of phosphate PO3−

4 )
and dephosphorylation may take place via the actions of
kinases (enzymes) and phosphatases (enzymes) respec-
tively [10]. Following the signaling action of kinases and
phosphatases, transcription factors are either activated or
deactivated to regulate downstream gene expression [10].
Transcription factors are proteins that bind to a specific
DNA sequence of the gene(s) to activate or deactivate
them. Finally, transcription factors are directly responsible

for turning on the stress response genes and turning off
any other nonessential genes.
Each family of transcription factors, such as WRKY,

bZIP, and NAC regulates a large number of genes. Hence,
learning the activities of transcription factors is critical for
understanding the stress response mechanisms in plants.
WRKY is a large family of transcription factors and has
roles in plant defense mechanisms against both abiotic
and biotic stress. Until recently, the role of WRKY in deal-
ing with abiotic stresses was not as extensively explored as
in the case of biotic stresses. Due to these reasons there
is a lack of available experimental data [3]. In this paper,
we are interested in studying the interactions among vari-
ous members of the WRKY transcription factor signaling
pathway (Fig. 1) which are rapidly induced by ABA under
drought stress. Learning these interactions can give us
more profound insights into the functioning of this path-
way, which can aid us in developing intervention strategies
for breeding drought resistant plants.
It has been shown that ABA induces the transcrip-

tion factors WRKY18, WRKY40, and WRKY60 under
water deficit and salt stress conditions (Chen et al.) [11].
Furthermore, it has also been reported that WRKY18
and WRKY60 have positive sensitivity for ABA in inhi-
bition of seed germination, root growth and enhanc-
ing plant sensitivity to water deficit stress; in contrast,
WRK40 antagonizes WRKY18 and WRKY60 to affect
a plant’s ABA sensitivity and abiotic stress responses
(Chen et al.). Experiments were carried out withWRKY18
and WRKY40 deficient mutants, which showed that the
expression of WRKY60 was negligible. This implied that
WRKY18 andWRKY40 directly inducedWRKY60 by rec-
ognizing a cluster ofW-BOX sequences in the promoter of
WRKY60 (Chen et al.). In addition to the various regula-
tory behaviors of these threeWRKY transcription factors,
it has been noted that these three transcription factors
not only interact with themselves to form three homo-
complexes but also, interact amongst each other to form
heterocomplexes [12].

Methods
Bayesian networkmodeling
Biological networks are inherently tortuous and stochas-
tic. It is often difficult to interpret the multivariate inter-
actions among different components of the network. A
BN is a directed acyclic graph that determines the condi-
tional decomposition of the joint probability distributions
of a set of random variables in the network and thus
simplifies the computation of their joint probability dis-
tribution (Sinoquet and Mourad) [13]. Therefore, we are
interested in using BNs to model the interactions in a
biological network as they provide a clean and compact
framework for representing the joint probability distribu-
tions and for drawing inferences from these networks [14].
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Fig. 1 The induction of WRKY transcription factor signaling pathway by ABA. Under drought conditions the plant hormone ABA gets activated. ABA
then initiates the activation downstream drought response genes via the actions of transcription factors and protein complexes

Inspection of BNs can help enhance our beliefs about rela-
tionships among different elements in the network and
provide insights into the causality of the network.
In this paper, we model the WRKY signaling pathway

(Fig. 1) involved in the drought stress responses of the
model plant, Arabidopsis. Based on the signal transduc-
tion pathway outlined in Fig. 1, we have constructed a
BN as shown Fig. 2. Each circular node (A,B,C,. . .,H) rep-
resents a gene, transcription factor or protein complex,
and every directed edge between the nodes represents
a causal relationship that exists in the WRKY signaling
pathway. Attached to every node is a rectangle, which
represents the parameter or local probability model asso-
ciated with that node. For instance, θC|A,B represents the
conditional probability density of node C given its parent
nodes A and B. These parameters can be learned from
data and are important in the understanding the overall
graph structure.

Parameter estimation
Depending on the availability of prior knowledge in a
given application, one may use a frequentist approach

or Bayesian approach for learning the parameters of a
BN. Frequentist approaches, such as Maximum Likeli-
hood Estimation (MLE) assume that the parameter being
learned is fixed and produces a point estimate with-
out taking into account prior information. On the other
hand, Bayesian Estimation treats the parameter as a ran-
dom variable and uses the data and prior distribution
of the parameter to obtain the parameter’s posterior
distribution. Furthermore, the Bayesian approach takes
into account the problem of zero probability estimates,
which may affect the learning algorithm. Bayesian meth-
ods provide a non-zero probability estimate even when
the prior information follows a uniform distribution (non-
informative prior). This is because the posterior belief is
being governed both by data, and prior knowledge, and
hence zero estimates of probability are only associated
with non-occurrence of an event. However, the Bayesian
estimation process is computationally challenging as it
requires performing integration in order to obtain the
probability of the evidence (data). Due to this reason, we
use the concept of conjugate priors for a given likelihood
function in the process of Bayesian estimation [15].
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Fig. 2 BN model of WRKY signaling pathway with conditional probabilities depicted in rectangles. Every circle in the BN is a binary random variable
with states 0 and 1 corresponding to inhibition and activation respectively. The rectangular boxes represent the probability with which each node
gets activated. The arrows represent causal biological relationship between nodes

In the BN in Fig. 2, we assume that each of the nodes
X in the BN can attain only binary values, X= 0 or X= 1.
WhenX=1 for a node, it indicates that the gene, transcrip-
tion factor or protein complex represented by that node
is activated, whereas if X=0, it indicates just the opposite
(gene, transcription factor or protein complex is inhib-
ited). This formulation allows us tomodel the state of each
node in the network, given the state of its parent nodes,
using a Bernoulli distribution. Now, consider a BN with N
nodes such that θX be the probability that X=1 (success)
and 1-θX be the probability that X=0 (failure). Assume
that we make n (>0) observations regarding the state of
each node and we let k(≤ n) be the number of times the
state of a node is 1. We further assume that the sequence
of random variables X1, X2,. . .,Xn obtained after n obser-
vations for each node to be independent and identically
distributed. So, the probability distribution of a node given
its parent nodes (Pa(X)) follows a Binomial distribution
and is given by:

P(X|Pa(X), θX) ∼ Binomial(n, θX) (1)

Binomial(n, θX) = (n)!
(n − k)! k!

θkX(1 − θX)n−k (2)

To estimate the posterior distribution, we need to define
the prior over the parameter θX for our model. Since the
likelihood function associated with our model is binomial,
we choose the prior distribution to follow a Beta distribu-
tion with some shape parameters (αX , βX), and this results
in the representation:

θX ∼ Beta(αX ,βX) (3)

Due to the modeling of the priors as a beta distribution
under Binomial likelihood, it follows from the properties
of conjugate families that the posteriors will also follow a
beta distribution with shape parameter

(
α

′
X ,β

′
X

)
[15]. In

our model, the posterior distribution of the parameter θX
is given by:

P(θX |X) ∼ Beta(α
′
X ,β

′
X) (4)

where α
′
X = (αX + k) and ,β ′

X= (βX + n – k). The expected
value of this distribution is given by:

E [θX |X] = α
′
X(

α
′
X + β

′
X
) (5)

We can use experimental data to iteratively update αX
and βX to obtain the posterior distribution. With more
data, the posterior distribution will converge towards the
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actual posterior distribution. We modeled the prior as a
Beta under Binomial likelihood and, this allowed us to
obtain a closed form solution for the posterior. Other
non-conjugate priors may be used; but, a closed form
solution may not be guaranteed. Note that this approach
gives us the marginal and conditional posterior distribu-
tion associated with every node and not their probabilities
(θX ,θY |X). In this paper for the purpose of learning these
probabilities, we approximate the probabilities by the
expected value (Eq. 5) of the posterior distribution for
their respective nodes. Furthermore, we also learn the
probabilities using the frequentist approach of MLE, in
order to compare the final results, we get by using both the
approaches. Ideally, when data is abundant, the Bayesian
approach and MLE estimate converge to the same point
[16]. The marginal probabilities and the conditional prob-
abilities for binary random variables can be estimated
using MLE by Eqs. 6 and 7 respectively.

θX1 = M
[
X1]

M
[
X1] + M

[
X0] (6)

θY1|X0 = M
[
Y 1,X0]

M
[
Y 1,X0] + M

[
Y 0,X0] (7)

Where M[X1] is the number of times the random vari-
able X is 1, M[X0] is the number of time X is 0, M [Y 1,
X0] is the number of times X is 0 and Y is 1 and M[Y 0,
X0] is the number of times X is 0 and Y is 0. A key
assumption we make in the BN modeling is that the joint
distribution for the set of nodes factorizes according to
the BN in Fig. 2. This assumption implies that depen-
dencies in the biological structure are reflected in the
data from which we are learning the network parameters.
One can employ constraint-based or score-based learn-
ing techniques to derive the graph structure from data,
and then subsequently learn the network parameters [17].
However, in the context of this paper, we avoid learning
the graph structure as publicly available experimental data

is highly limited for the WRKY transcription factor under
abiotic stress, and also our network contains protein com-
plexes (nodes C, D, E, and G) for which expression data
doesn’t exist alongside with gene expression data (nodes
A, B, F, and H). Generally, datasets that contain gene
expression data do not contain expression data for pro-
tein complexes, and vice versa. Hence synthetic data were
generated for the protein complexes using the dependen-
cies in the BN and the experimental data for other non-
protein complex nodes in the network for which data were
available.

Utility based inference in Bayesian networks
After the network parameters or the local probabilities
associated with every node are inferred from the data, the
BN has sufficient information for carrying out inference.
Our objective is to find a single node in theWRKYBN that
maximizes the upregulation of the downstream expres-
sion of the drought resistant gene. In other words, we are
interested in finding a single node (nodes A-G) in BN,
which when up or downregulated maximizes the chances
of our stress response gene (node H) being upregulated.
There are multiple ways to perform inference in a BN.

Pearl’s message passing algorithm is favored whenever we
have a singly connected graph as it allows us to perform
exact inference [18]. However, the BN in consideration
here is not singly connected and also has loops, which
cannot be handled using Pearl’s algorithm. Other non-
exact sampling-based techniques require a large amount
of data to provide reliable inference. Hence in this paper,
we have considered another type of approximate infer-
ence technique that computes a score, commonly known
as expected utility, based on an action taken at a spe-
cific node. Utility measures the efficacy of that action. To
implement utilities into our BN, we first need to under-
stand the concept of Bayesian decision networks, and
how we can create one from a BN. In order to illustrate
these concepts, consider the following example involving
a simple BN as shown in Fig. 3.

Fig. 3 Example BN, with marginal probabilities of parent nodes. This BN depicts the causal and probabilistic interactions that exist among genes A, B
and C
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The BN in Fig. 3 has three nodes gene A, gene B, and
gene C and we assume each can take on a binary value of 0
(inhibited) or 1 (activated). Gene A and gene B are parent
nodes of gene C, and have marginal probabilities associ-
ated with them as shown in Fig. 3. Also, let us assume
that when gene A is active it activates gene C and when
gene B is active it inhibits gene C. Based on this BN we
construct a Bayesian decision network as shown in Fig. 4.
The rectangular node acts as a decision (action) node,
the diamond-shaped node serves as a utility node and the
circular nodes represent chance (nature or probabilistic)
nodes. In this example we are interested in having gene C
to take on the value of 1, this is what the expected utility
will measure. In this case we have the option to take action
at either of the chance nodes gene A or gene B. Once
we decide to take action at a chance node, it no longer
remains a chance node but becomes a deterministic node.
Depending on the action taken the expected utility can

be calculated by Eq. 8:

EU(A) =
∑
i
P(Oi|A)U(Oi) (8)

where P(Oi|A) represents the probabilities of the out-
comes (Oi) that are consistent with action A, and U(Oi)
represents theutilityvalue for that outcome under actionA.
The utility table is defined in Table 1, where the first row
represents the best-case scenario when gene A is active
and gene B is inhibited, and the last row represents the
worst-case scenario when gene A is inhibited and gene B
is active. The rest of the rows represent the other pos-
sible scenarios. The utility scores assigned are relative to
best (highest utility) and worst (lowest utility) case sce-
narios, these values are not unique and can be redefined
differently, however, the scores must reflect the scenario
depicted in the decision network.
Using Eq. 8 we first calculate the expected utility for

taking action at gene A as follows:

Case 1: Action taken: gene A is activated (A= 1).

EU(A = 1) = P(A = 1,B = 1|A = 1)
∗ U(A = 1,B = 1) + P(A = 1,B = 0)
∗ U(A = 1,B = 0)
= P(B = 1) ∗ U(A = 1,B = 1) + P(B = 0)
∗ U(A = 1,B = 0)
= 0.2 ∗ 50 + 0.8 ∗ 100 = 90

Case 2: Action taken: gene A is inhibited (A= 0).

EU(A = 0) = P(A = 0,B = 1|A = 0)
∗ U(A = 0,B = 1) + P(A = 0,B = 0|A = 0)
∗ U(A = 0,B = 0)
= P(B = 1) ∗ U(A = 0,B = 1) + P(B = 0)
∗ U(A = 0,B = 0)
= 0.2 ∗ 0 + 0.8 ∗ 50 = 40

So, when gene A=1 or activated the expected utility is
greater. Similarly, let us calculate the expected utilities for
taking action at gene B.
Case 1: Action taken: gene B is activated (B= 1).

EU(B = 1) = P(A = 1,B = 1|B = 1)
∗ U(A = 1,B = 1) + P(A = 0,B = 1|B = 1)
∗ U(A = 0,B = 1)
= P(A = 1) ∗ U(A = 1,B = 1) + P(A = 0)
∗ U(A = 0,B = 1)
= 0.7 ∗ 50 + 0.3 ∗ 0 = 35

Case 2: Action taken: gene B is inhibited (B= 0).

Fig. 4 Bayesian Decision networks for intervention at gene A and at gene B. The rectangular box represent the action node.The circular nodes
represent random variables and the diamond shaped node denote utility nodes
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Table 1 Utilities for example Bayesian decision network

Gene A Gene B Utility Gene C

1 0 100

1 1 50

0 0 50

0 1 0

EU(B = 0) = P(A = 1,B = 0|B = 0)
∗ U(A = 1,B = 0) + P(A = 0,B = 0|B = 0)
∗ U(A = 0,B = 0)
= P(A = 1) ∗ U(A = 1,B = 0) + P(A = 0)
∗ U(A = 0,B = 0)
= 0.7 ∗ 100 + 0.3 ∗ 50 = 85

Hence when gene B is inhibited the expected utility is
larger. However, the utility of gene A being activated is
larger than gene B being inhibited. So, we must select
activating gene A over inhibiting gene B to maximize the
chances of gene C being activated.

Datasets and simulations
To estimate the parameters and carry out utility calcu-
lation in the BN, we need to obtain data for WRKY
transcription factor under drought stress condition. Since
the WRKY transcription factor has only recently been
implicated for its role in abiotic stress response, it is dif-
ficult to obtain large scale data that is publicly available.
However, we were able to obtain real world microarray
gene expression data for all the genes and transcription
factors (Nodes A, B, F, and H) in the BN from the datasets
GSE46365, GSE65046, and GSE76827, which are publicly
available from the NCBI GEO database [19–21]. These
datasets were individually normalized and binarized and
aggregated into one composite dataset, which contained
116 data points for each of the non-protein complex
nodes (genes and transcription factors). Once the real-
world data were binarized, they were used along with the
dependencies in the BN to generate data for the protein
complexes denoted by nodes C, D, E, and G. For example,
in order to generate the dataset for node D the expres-
sion values for node A and node H were observed, i.e.
all the parents and children of node D. If both node A
and H were observed to be upregulated (state =1) node
D was assigned deterministically to be upregulated (state
=1), if both the nodes A and H were both observed to
be downregulated (state =0) then node D was assigned
deterministically to be downregulated (state =0). This is
because we know from the biological literature (Chen
et. al) that node A upregulates node D, and node D,
in turn, upregulates Node H. If the expression status of

node A was upregulated (state=1) and that of node H
was downregulated (state=0) then node D was assigned
a value of 1 (upregulated) with a probability larger than
0.5. This is because if node A is upregulated it is highly
likely that node D is also upregulated but not enough to
counter the downregulatory effect of node E on node H,
which might have caused node H to be downregulated.
The probability with which node D was upregulated was
randomly selected from a set of discrete probability val-
ues of [0.6,0.7,0.8 0.9 and 1] where each value had an
equally likely chance of being selected. Similarly, when
node A=0 and node H=1 node D was probabilistically
assigned a value of 0 (downregulated). In this fashion
the data for nodes C, G, and E were also generated, so
that these synthetic data reflected the network dependen-
cies and the real data for the nonprotein complex nodes.
Tables 2, 3, 4, 5, Pseudocode 1 given below along with the
R code attached in the additional files section (Additional
files 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) further explain the
data generation for nodes D, E, G and C. Generally,
gene expression datasets do not contain protein-protein
interaction data, which is needed for avoiding generat-
ing synthetic data for protein complexes in our network.
Though we can find protein-protein interaction datasets,
however, those datasets will not contain gene expression
data, so in order to circumvent this issue, we considered
generating synthetic data for the protein complexes in
our BN.
Once synthetic data for all the protein complex nodes

were generated, they were aggregated along with real
world data in a single dataset. This dataset was used
for the purpose of estimating the network parameters
using the Bayesian approach and the maximum likelihood
approach as outlined in section on parameter estimation.
For the Bayesian approach, the prior for every node was
first initialized to a beta (1,1) distribution, which is a uni-
form distribution over the interval [0,1]. Using the data
and Eq. 4 the posterior distribution for every node was
updated and the expected values were computed using
Eq. 5. The expected values were approximated to be the
conditional probability for the nodes. A separate set of
parameters were learned using the MLE approach as well
using Eqs. 6 and 7.
Then, the utilities for single point intervention were

computed. The utility node was set at node H, and the

Table 2 Synthetic Data generation for Node D

Node A Node H Node D

1 1 1

1 0 Assign(Value=1)

0 1 Assign(Value=0)

0 0 0
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Table 3 Synthetic Data generation for Node E

Node B Node H Node E

1 1 Assign(Value=1)

1 0 1

0 1 0

0 0 Assign(Value=0)

utility analysis was carried out to find single intervention
points that upregulated node H. A utility table (Table 6)
was defined based on the Bayesian decision network. The
utility at node H depended directly on nodes D, G and E.
The best case scenario was when nodes D and G were
upregulated and node E was downregulated, whereas the
worst case scenario was when nodes D and G were down-
regulated and node E was upregulated. These scenarios
were representative of the actual biological processes in
the network, and the utility scores were defined relative to
these scenarios, with a high utility score being favorable.
Simulations were carried out using R software [22], and
the utility calculations were done using Netica [23].

Pseudocode:To assign a node a value of 0 or 1.
1.Function = Assign(Value)
2. Define a set of probabilities = 0.6,0.7,0.8,0.9,1
3. Probability (P) = sample one value randomly from
Probability Set, with every element of the set
having an equally likely chance of being picked
4. If Value is 0
5. Assign the Node a Value of 0 with the Probability
“P” selected in step 4, a value of 1 is assigned
with probability 1-P.
6. Else if the Value is 1
7. Assign the Node a Value of 1 with the Probability
“P” selected in step 4,a value of 0 is assigned with
probability 1-P

Results
The divided bar plot in Fig. 5 represents the activation
and inhibition status for every gene in the BN, after the
data have been preprocessed. Table 7 displays the condi-
tional probabilities estimated using the Bayesian andMLE
approaches. The maximum expected utilities using the
parameters obtained from Bayesian and MLE approach
are displayed in Figs. 6 and 7 respectively.

Table 4 Synthetic Data generation for Node G

Node F Node H Node G

1 1 1

1 0 Assign(Value=1)

0 1 Assign(Value=0)

0 0 0

Table 5 Synthetic Data generation for Node C

Node A Node B Node F Node C

0 0 0 0

0 0 1 Assign(Value =0)

0 1 0 Assign(Value =0)

0 1 1 Assign(Value =1)

1 0 0 Assign(Value =0)

1 1 0 Assign(Value =1)

1 0 1 Assign(Value =1)

1 1 1 1

From the utility analysis using both the Bayesian and
MLE approaches, we find that WRKY18 has the high-
est utility score for its activation. This means that the
upregulation of WRKY18 is the most effective single-
gene intervention in bringing about the upregulation of
the downstream drought stress response gene. This result
is consistent with the biological literature, which sug-
gests that WRKY18 has a positive sensitivity to ABA
under drought stress conditions and plays a critical role
in the upregulation downstream gene expression. We can
also see from the bar plots in Figs. 6 and 7 that the
second-best point for intervention is at the protein com-
plex WRKY60-60, which also upregulates the expression
of the downstream drought stress response genes. Also,
consistent with the literature we see that both WRKY40
and WRKY40-40 have high utilities for inhibition, as
they are responsible for downregulating the downstream
drought stress response gene. We also see that our util-
ity scores in both the Bayesian and MLE approaches are
comparable, which is due to the fact that the estimated
probabilities (Table 7) using both the approaches are very
similar.

Discussion
In this paper, we presented the WRKY signaling path-
way, which is traditionally associated with plant defense

Table 6 Utility values used to calculate the maximum expected
utilities in Figs. 6 and 7

Node G Node D Node E Utility at Node H

1 1 1 50

1 1 0 100

1 0 1 10

1 0 0 50

0 1 1 10

0 1 0 50

0 0 1 0

0 0 0 10
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Fig. 5 Node activation vs inhibition plot. The red region in the bar represents the instances a particular node was activated whereas the black region
in the bar represents the instances when that node was inhibited

response against biotic stresses, but recently it has been
shown to play a significant role in plant defense response
against abiotic stresses, such as droughts. Due to its
diverse role in plant defense, it was an interesting pathway
choice to investigate. We modeled the WRKY pathway
using a BN, where every node in the network represented
a gene, transcription factor or protein complex from the
pathway and every edge between the nodes represents a
causal relationship that exists in the pathway. Associated
with each node is a conditional or marginal probability,
which represents the probability with which the node is
activated or inhibited. For our analysis, we assume that
nodes in the network can only take binary values of 1 (acti-
vation) or 0 (inhibition). Since a BN can capture both the
causal biological relationships and the probabilistic nature

Table 7 Marginal and Conditional Probabilities learned using the
Bayesian and MLE approaches

Local Probabilities Bayesian Approach MLE Approach

P(A1) 0.50 0.50

P(B1) 0.466 0.465

P(C1|A1,B1) 0.905 0.925

P(C1|A0,B1) 0.625 0.645

P(C1|A1,B0) 0.60 0.611

P(C1|A0,B0) 0.13 0.113

P(D1|A1) 0.983 1

P(D1|A0) 0.10 0.086

P(E1|B1) 0.857 0.870

P(E1|B0) 0.093 0.080

P(F1|C1) 0.766 0.774

P(F1|C0) 0.196 0.185

P(G1|F1) 0.867 0.879

P(G1|F0) 0.117 0.103

of biological pathways, it was an ideal choice for modeling
purposes.
In order to learn the parameters in the network, we

used real-world gene expression data and generated syn-
thetic data, which reflected the network dependencies.
To estimate the local conditional and marginal probabili-
ties both a Bayesian approach and a frequentist approach
were used. In the Bayesian approach, we assumed every
node to have a prior distribution of Beta (1,1) (uniform
distribution in the range [0,1]), which signified we had
no prior knowledge about our model. Since our likeli-
hood followed a binomial distribution, we were able to use
a closed form formula through the properties of conju-
gate families to arrive at a posterior distribution for each
node. The expected value of the posterior distribution
was used as an estimate for the local probabilities. We
selected conjugate families in order to simplify our cal-
culations, and arrive at a closed form solution, however,
it may not always be the best choice to select a conju-
gate prior. If sufficient information is available, the prior
can be modeled using non-conjugate family distributions,
and the posterior can be estimated using (Markov-Chain-
Monte-Carlo) MCMC techniques, although, this may be
computationally expensive. In the frequentist approach,
we simply employed the maximum likelihood estimate to
obtain the local probabilities. The probabilities obtained
using both the methods were found to be very similar to
each other.
Once the parameters from each method were learned,

the task of inferring the best node for intervention was
carried out using the concept of utilities. We used a non-
exact inference technique in our model as we could not
employ exact techniques, such as Pearl’s message passing
algorithm in our Bayesian network as the former works
only for singly connected, and loop less networks. Also,
the number of data points was quite limited, which made
the choice of utility for the purpose of inference quite
sensible as opposed to data intensive sampling-based
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Fig. 6Maximum expected utility values when using parameters from the Bayesian approach. The red bars represent the utility score for activating a
node and the black bars represent the utility score for inhibiting that node. Intervening at the node with the highest utility score offers the best
chance for upregulating downstream drought response genes

inference techniques. Furthermore, utility based inference
can be easily applied to larger BN. The utility analysis car-
ried out using parameters from the Bayesian and MLE
approaches revealed that WRKY18 served as the most
potent node for intervention when upregulated. There-
fore, upregulating WRKY18 would further upregulate the
downstream stress response genes in the WRKY signal-
ing pathway. This result was consistent with the biological
literature, which says that WRKY18 actively upregulates
the gene expression of drought response genes under
drought conditions. Our next step in this research will
be to explore and implement more informative priors in
the Bayesian parameter estimation approach rather than
using non-informative Beta (1,1) prior that we have used
here since our study was limited by the lack of prior
knowledge regarding the network. We would also like to
investigate other signaling pathways that are implicated in
plant defense response against droughts, and find the key
regulators in those networks, and compare their efficacy
to that of WRKY18. We limited the scope of our research

to only single node intervention, in the future we would
also like to expand our research tomultiple node interven-
tions and study how these interventions regulate multiple
downstream genes.

Conclusion
We modeled a drought responsive singling pathway in a
plant using Bayesian networks, and applied a utility-based
inference algorithm, which revealed that WRKY18 upon
its activation had the best chance of activating down-
stream drought resistance gene. This result was found
to be consistent with the biological literature along with
the rest of the results from the utility-based analysis. In
the future, we plan to employ CRISPR-CAS9 to activate
WRKY18 in plants in the field to measure the efficacy
of WRKY18 in fighting against droughts. This process
of using Bayesian networks to find regulators of drought
response can be applied to find key regulators in other
plant networks, which can be useful for creating robust
and valuable crops in the future.

Fig. 7Maximum expected utility values when parameters are estimated using MLE. The red bars represent the utility score for activating a node and
the black bars represent the utility score for inhibiting that node. Intervening at the node with the highest utility score offers the best chance for
upregulating downstream drought response genes
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