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Abstract

Background: Transcriptome map is a powerful tool for a variety of biological studies; transcriptome maps that include
different organs, tissues, cells and stages of development are currently available for at least 30 plants. Some of them
include samples treated by environmental or biotic stresses. However, most studies explore only limited set of organs
and developmental stages (leaves or seedlings). In order to provide broader view of organ-specific strategies of cold
stress response we studied expression changes that follow exposure to cold (+ 4 °C) in different aerial parts of plant:
cotyledons, hypocotyl, leaves, young flowers, mature flowers and seeds using RNA-seq.

Results: The results on differential expression in leaves are congruent with current knowledge on stress response
pathways, in particular, the role of CBF genes. In other organs, both essence and dynamics of gene expression changes
are different. We show the involvement of genes that are confined to narrow expression patterns in non-stress
conditions into stress response. In particular, the genes that control cell wall modification in pollen, are activated in
leaves. In seeds, predominant pattern is the change of lipid metabolism.

Conclusions: Stress response is highly organ-specific; different pathways are involved in this process in each type of
organs. The results were integrated with previously published transcriptome map of Arabidopsis thaliana and used for
an update of a public database TraVa: http://travadb.org/browse/Species=AthStress.
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Background

Since the construction of the first plant transcriptome
map [1], gene expression atlases were published for
many plants belonging to the variety of families and
became a widely used tool in plant studies. By defin-
ition, transcriptome map, or gene expression atlas, is
a collection of expression profiles of all genes in dif-
ferent organs, tissues or cells under various environ-
mental conditions [1]. For the current moment, such
collections are covering plant taxa from moss [2] and
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pine [3] to many species of Rosids and Asterids, in-
cluding model [4, 5], agricultural [6, 7] and ornamental
species [8].

In the last decade transcriptome maps were applied in
the various studies, including gene regulatory network
inference, evolutionary analysis and dissection of the
certain developmental processes [3, 9, 10]. However, des-
pite of gene expression atlas definition, only few papers
includes transcriptome profiles of samples under stress
conditions as a part of main dataset [8, 11, 12] or for the
verification of map completeness [5].

The process of increasing tolerance to freezing — cold
acclimation — is well-studied in Arabidopsis thaliana
[13]. The main regulator genes in A. thaliana were dis-
covered in cold response studies using classic genetics
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methods. The CBF pathway plays a major role in cold ac-
climation [14]. CBF (CBF1, CBF2, and CBF3, also known
as DREBIb, DREBIc, and DREBIa, respectively) genes are
induced within 15 min of cold exposure [15-18]. These
genes encode the AP2/ERF transcription factor (TF)
family, which recognizes the C-repeat (CRT)/dehydra-
tion-responsive element (DRE) DNA regulatory element
in the promoters of targeted genes [17, 19]. Under consti-
tutive overexpression of CBF genes, a number of genes,
which are referred as CBF regulons, are activated; these
genes partly overlap a set of cold-regulated genes that
have been identified by transcriptome studies [16, 17, 20,
21]. Beyond the CBF cold resistance pathway, other TFs
also participate in cold acclimation. In particular, ZAT12
expression increases in parallel with CBFs, and its overex-
pression results in a high freezing tolerance [22].

During the past 20 years, a great deal of effort has been
made to fully characterize transcriptomic changes after
low temperature treatment in A. thaliana [13]. Thousands
of genes have been identified as cold-induced in micro-
array studies, this allowed a more complete understanding
of the regulatory cascades controlling acclimation processes
[22-25]. These works investigated various aspects of
cold tolerance. For example, the paper by Kilian et al.
[24] provides a detailed description of gene expression
profiles in a time-course experiment. A work by
Vogel et al. [22], analyzed transgenic lines with con-
stitutive overexpression of TFs. Finally, Rasmussen et
al. [26] explored variations in the cold response of 10
A. thaliana ecotypes. These studies highlight the con-
siderable differences in the cold stress response regu-
latory networks for various ecotypes.

However, most papers focused on transcriptomic
studies have been conducted on whole aerial parts of
plants [23, 24] or leaves [25, 26]. To our knowledge,
there have been no attempts to analyze and compare
the expression profiles in different parts of plants
during cold exposure. Also there is a lack of studies
integrating stress data with developmental transcrip-
tome maps. In this paper, we aimed to explore this
question and analyzed expression in six parts of Ara-
bidopsis plants after 3 and 27h of cold treatment
using RNA-seq. We identified differentially expressed
genes between the stress and control samples and
compared them between plant organs. This compari-
son revealed noticeable differences in the number and
composition of DE genes and affected biological pro-
cesses. We also observed differences in the behavior
of CBF and other known cold-response genes between
samples and found unique transcriptome features of
these genes in Arabidopsis genes expression atlas.
The data on expression profiles were uploaded in
database TraVa (travadb.org) [5] and integrated with
detailed transcriptome map of A. thaliana.
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Results and discussion

Cold-related GO enrichment in transcriptome map under
normal conditions

During the analysis of RNA-Seq based Arabidopsis thali-
ana transcriptome map [5] we detected differentially
expressed (DE) genes between all pairs of samples to
characterize general variability of gene expression profiles.
For each comparison we calculated GO enrichment and
found overrepresentation of GO terms GO:0009631~cold
acclimation or GO:0009409~response to cold in 598 out
of 3081 comparisons. In many cases such enrichment ap-
peared between different parts of the same organ, as for
petiole and lamina of young leaf, so the origin of the effect
is unlikely due to perturbation during plant growing.

We have introduced a metric “DE Score” in A. thali-
ana transcriptome map, which corresponds to the num-
ber of pairwise comparisons where gene was DE and
reflects both width of gene expression pattern and
difference in the expression level. Genes that are anno-
tated with the GO:0009631 and GO:0009409 categories
have median DE Score 1326. This result indicates the
involvement of the genes described as stress-response in
various processes under normal conditions and the
expression of these genes on different levels in different
organs of plant.

Thus, the differential involvement of cold-associated
genes in other biological processes rises a question about
the variance of involvement in cold acclimation of these
genes in different organs of plant.

Choice of samples and sequencing

Since our study was aimed at analysis and comparison of
stress responses in different parts of plants, we selected
the most different biological samples using a recently
constructed transcriptome map of A. thaliana [5]. Based
on the clustering of samples, we chose the cotyledons
and hypocotyl of seedlings, mature leaves, first flowers at
the anthesis stage, flowers at stage 9 [27] and green ma-
ture seeds (samples are described in Additional file 1:
Table S1). From another point of view, we focused on
plants growing under conditions close to natural; thus,
plants were cultivated in soil under a long day (16h
light/8 h dark)-light cycle, in contrast to many previous
studies that used constant (24 h) light. The circadian
rhythm is known to have great influence on the expres-
sion of stress-response genes [28, 29]; thus, each sample
was collected at the same time during the light cycle.
For each sample, 20-25 million reads were obtained.
The mean Pearson r” correlation between the replicates
was 0.97 (Additional file 1: Table S2). Seeds, flowers and
young flowers were clustered by biological samples,
whereas leaves, cotyledons and hypocotyls were very
close to one another and partly grouped by the time of
stress treatment (Additional file 2). This is presumably
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caused by that all these organs are photosynthetic and
thus have highly similar expression profiles and similar
dynamics of response to stress.

The number of differentially expressed genes varies
greatly between samples

To investigate the differences in response to cold between
organs, we identified DE genes between 3 h of cold treat-
ment and the control and 27 h of cold treatment and the
control for each sample (referred to hereafter as “Sample
name 3” and “Sample name 27” after 3 and 27 h of cold
treatment for a specific organ, respectively). We observed
a notable difference in the number of up- and downregu-
lated DE genes (from 1022 in Flower 3 to 6867 in Leaf
27). The ratio of down- to upregulated DE genes varied
for different organs at the same time (0.57 in Leaf 3 and
1.32 in Hypocotyl 3) and for one organ at two time points
(0.52 in Flower 3 and 1.4 in Flower 27) (Table 1).

Overall, 15,459 genes were DE in at least one of the 12
cases (Additional file 1: Table S3). All of the consequent
analyses were conducted on these 15,459 stress-response
genes only.

CBF regulon genes are activated under stress conditions

As mentioned above, earlier large-scale studies on the
cold response focused on leaves or whole seedlings. Our
results show high congruence with the results from
these studies when considering leaves, cotyledons and
the hypocotyl. In particular, Park et al. [21] dissected the
CBF regulons by performing expression analysis of
transgenic lines with overexpressed CBF genes under a
constitutive cauliflower mosaic virus (CaMV) 35S pro-
moter. For the Leaf, Cotyledons and Hypocotyl, the ma-
jority of DE genes matched the direction of the
expression change in the transgenic lines and under cold
treatment in our dataset (the percentage of matches var-
ied from 50% in Hypocotyl 3 to 82% in Leaf 27) (Add-
itional file 1: Tables S4 and S5). The lowest match
percentage was in Seeds 3 (32%). This shows that our
analysis provided consistent results for previously ex-
plored systems and has the potential to provide novel in-
sights into organ-specific patterns in the stress response.

Table 1 Number of differentially expressed genes

Sample 3h of cold treatment 27 h of cold treatment

Downregulated Upregulated Downregulated Upregulated

Cotyledons 855 1286 2885 3092
Hypocotyl 1238 937 3546 2699
Leaf 765 1351 3580 3287
Flower 352 670 1350 961
Young 603 560 2388 2134
flower

Seeds 1112 1142 1766 1327
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The genes that are common to for all organs are stress-
related

We classified DE genes into the following three categor-
ies: genes that are downregulated in at least one sample
and are not upregulated in any sample (“Down”), genes
that are upregulated in at least one sample and are not
downregulated in any sample (“Up”) and genes that are
downregulated in at least one sample and upregulated in
at least one sample (“Mix”). At 3h, 3073 DE genes
belonged to the Down category, 2989 to the Up category
and only 385 of DE genes belonged to the Mix category.
At 27 h, 7086 genes were in the Down category, 6347 in
the Up category and surprisingly high number of DE
genes, 1096, belong to the Mix category, revealing the
differences in the involvement of genes in the cold re-
sponse in different organs (Additional file 1: Table S6).
We found an extremely low number of genes that were
common for all organs in all of the categories. At 3h,
only 8 common genes were downregulated, 89 genes
were upregulated at in all organs and 3 genes showed
mixed pattern (i.e. were upregulated in several samples
and downregulated in the others). After 27 h, the num-
ber of common genes increased to 152, 154 and 12 for
the Up, Down and Mix categories, respectively (Fig. 1,
Additional file 1: Table S7 and Additional file 3). Common
DE genes in the Up category for both 3 and 27 h of cold
treatment were strongly enriched in stress-related Gene
Ontology (GO) categories (such as GO:0009631~cold ac-
climation) (Additional file 1: Table S8 and Additional file 4).
The small amount of genes that were common for organs
and their notable GO enrichment identified these genes as
the most general and “core” genes for cold resistance. The
increase in the number of common genes at 27 h showed
the considerable specificity of the early response to stress
in plant organs, which becomes more generalized during
late stages of stress reactions.

The number of downregulated genes common for all or
any 5 out of 6 samples at 3 h of cold treatment is very small
and they do not have any significant GO enrichment.
Genes downregulated after 27 h of cold treatment were
enriched for photosynthetic terms, which was consistent
with the inhibition of photosynthesis by low temperatures
[30] (Additional file 1: Table S8 and Additional file 4).

Genes unique for samples are involved in organ-specific
processes

The number of genes that change the expression level in
response to cold in an organ-specific manner varied
from 90 for upregulated genes in Flower 3 and Young
Flower 3 to 1115 for downregulated genes in Leaf 27
(Additional file 1: Table S7 and Additional file 3). In
total, 4045 genes were organ-specific after 3h of cold
treatment, while 9780 genes were organ-specific after 27
h of cold treatment.
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While common genes had stress-related enrichment,
organ-specific DE genes were enriched in specific manner
(Additional file 1: Tables S9 and S10). Downregulated
genes in Cotyledons 3 were enriched in pentatricopeptide
repeat (PPR) motif-containing genes, which have been
shown to play an important role in organelle biogenesis
and RNA editing [31, 32]. The same category was overrep-
resented in upregulated genes in Cotyledons 27. Among
these genes, the PPR protein is encoded by the SOARI
gene, which has been shown to regulate cold, drought and
salt stress responses [33]. After 27 h of exposure to cold,
the downregulated genes in Leaf were enriched for photo-
synthesis. For the downregulated genes in Seeds 3 and 27,
categories related to RNA splicing, response to fungus
and lipid transport were enriched, while upregulated genes
in Seeds 3 and 27 were overrepresented in lipid storage
terms. Changes in the cell lipid composition leading to
membrane stabilization are known to play a role in freez-
ing resistance mechanisms [34] and may be of particular
importance because the accumulation of lipids in develop-
ing seeds is a crucial process for plant reproduction [35].
Hypocotyl 27 showed photosynthetic enrichment in up-
regulated genes. Upregulated genes in Young Flower 27
were enriched for catabolic processes and pollen-related
terms (Additional file 1: Tables S9 and S10).

The remarkable diversity of the processes leading to
cold acclimation in various organs provides evidence for
the adjustment of the general response to stress by
organ-specific responses. This fact may limit the applica-
tion of knowledge on the cold response in one organ (e.g.
leaf) to another organ (e.g. seed).

Stress response in non-leaf organs does not involve many
known regulators and stress-response genes

We found a surprisingly low fraction of DE genes anno-
tated as stress responsive (GO category “GO:0006950~re-
sponse to stress” and downstream categories). The fraction
of genes from this category varied between 8 and 12% for
both 3h and 27h samples; the absolute number of
stress-annotated genes was the lowest in the Young Flower
3 (106 genes) and highest in Leaf 27 (628 genes). These re-
sults show that GO annotation of the Arabidopsis genome
strongly underestimates the number of stress-responsive
genes. This is especially pronounced in organs that are not
usually the focus of stress response studies, such as flowers
and seeds (Fig. 2a). GO annotation has several shortcom-
ings and is known to be incomplete; in particular, approxi-
mately 50% of A. thaliana genes do not have biological
process annotations. Additionally, many GO annotations
are based only on computational predictions and are not
supported by experimental data [36].

Searching a list of genes for which participation in the
cold stress response is defined by experimental data
(1322 COR genes) [21], we found that 64% of these
genes were DE in at least one organ after 3h of cold
treatment (26% belong to Down, 34% to Up, and 4% to
Mix category) (Additional file 1: Table S11). Considering
the genes by organ, the percentage of DE genes varied
from 22% in Seeds 3 to 35% in Cotyledons 3 (Fig. 2b).
After 27 h, the picture was even more pronounced. Al-
though 99% of COR genes were DE in at least one
organ, the distribution of genes by organ varied greatly;
79-85% of COR genes were DE in Cotyledons 27, Leaf
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27, and Hypocotyl 27, although the percentages in
Flower 27, Young Flower 27, and Seeds 27 were 36, 51
and 41%, respectively (Fig. 2b, Additional file 1: Table
S12). These results show that the cold stress response in
non-photosynthetic organs not only involves additional
genes that were not previously associated with stress but
also does not recruit many known regulators.

The CBF1, CBF2 and CBF3 genes are known to be acti-
vated within a few minutes after exposure to cold [15, 18].
Despite their crucial importance in cold acclimation, these
genes are not unique in the early response to stress. Using
the time course experiments performed by Kilian et al.
[24], Park et al. [21], identified 27 transcriptional factors
as having the same behavior as CBF-encoded genes
(named “first-wave” genes). In our data, the first expres-
sion measurement time was 3 h after the beginning of the
low temperature conditions, which is not the earliest
possible time point, although we were still able to identify
all except one of the first-wave genes as DE in at least one
organ. Four genes were DE in all organs after 3 h of cold
treatment (including CBF3), while others had noticeable
differences in their expression patterns (Additional file 1:
Table S13). For 5 genes, we observed opposite changes in
expression in various organs, with high differences in fold
changes (e.g., the fold change for ZAT12 in Hypocotyl 3
and Leaf 3 were 0.22 and 2.96, respectively). After 27 h,

the diversity of the expression changes became more
notable; the first-wave genes from most organs showed
downregulated expression or their expression had
returned to the control value. However, in Leaf 27, there
were 19 genes that were still upregulated (Additional file
1: Table S14). This variety in responses to cold from early
activated transcriptional factors confirms the inadequacy
of simple transfer or the results obtained on one organ to
another.

Expression characteristics of stress-response genes:
Shannon entropy

We assessed several parameters that are associated with
organ-specific stress-response genes based on the
RNA-seq transcriptome map for A. thaliana [5]. We
first estimated the expression pattern width using Shan-
non entropy H [37, 38]. Genes with high H value are
expressed ubiquitously, while those with a low H value
have a narrow expression pattern. The distribution of
entropy for all of the expressed genes was noticeably
skewed to the right, indicating a high number of genes
with wide expression patterns [5]. The second small
peak appears at very low H values and corresponds to
genes that are highly expressed in an organ-, tissue- or
stage-specific manner. The distribution for the 15,459
genes that have expression changes in response to stress
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resembled the overall distribution, while genes that are
common in at least 5 organs genes lacked low H peaks
(Fig. 3 a and b). The entropy of unique genes for most
of the samples was distributed similarly to common DE
genes. However, some samples had distinct features in
the H distribution. Specifically, for genes that were up-
regulated in Leaf 3, there was a peak at low (0-0.3) en-
tropy values (Fig. 3c). We analyzed the expression
patterns of these genes in the transcriptome map. Sur-
prisingly, under non-stress conditions, the expression of
all of these genes (with one exception) as restricted to
mature anthers and whole flowers containing anthers at
the same stage (Additional file 1: Table S15). These
genes were differentially expressed in Leaf after 3h of
cold treatment, and the half of them (44%) were also
DEs in Leaf 27. Only 33% of the genes were DE in
Flower 27, and none of them had shifted expression in
Flower 3. For most of these genes, their function is re-
lated to controlling cell wall conditions and pollen tube
growth (Additional file 1: Table S15). Among them, the
most pronounced changes were in genes encoding
pectin methylesterases. Pectin is a crucial component in
the cell wall, as the matrix in which other polysaccha-
rides (cellulose and hemicellulose) are embedded.
Pectins are produced in the Golgi in a highly methylesteri-
fied form and are then modified by pectin methylesterases,
which catalyze deesterification [39]. The ratio of esterified
to de-esterified pectins determines many cell wall proper-
ties, such as rigidity, permeability and cohesion. This
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increase in pectin methylesterase activity under cold stress
has been found in other plants [40, 41]. It is regarded as a
cold acclimation mechanism because the increase in cell
wall rigidity offers a higher resistance to dehydration and
inhibits organ growth. Our results indicate that imple-
mentation of this mechanism in A. thaliana occurs by the
recruitment of pollen-specific genes.

Similar to Leaf 3, the H distribution for DE genes
uniquely upregulated in Flower 27 has a peak at low
values (Fig. 3c). All of these genes are also anther-specific.
GO enrichment analysis revealed overrepresentation of
terms associated with pollen tube growth and cell wall
modification (Additional file 1: Table S16). These genes
revealed a complex picture. In particular, we observed
concerted upregulation of pectin methylesterase inhibitors
(PMEIS5 (AT2G31430) and others), while the expression of
pectin methylesterases (PPME1, VGDI1, VGDH2 (ATIG
69940, AT2G47040, and AT3G62170) was also increased.
Pectin methylesterase PPME1 has been shown to linearly
demethylesterify pectin chains in pollen tube walls. A re-
duction in PPMELI activity in ppmel mutant leads to de-
creased cell wall rigidity [42]. VGD1 is another gene that
encodes a pectin methylesterase. VGD1 also has a linear
demethylesterification activity and modifies pollen wall
pectin [43]. Similar to PPME], loss of VGD1 function
results in a reduction in pollen tube wall strength. Both of
these genes were 2-3-fold upregulated in Flower 27.
We found a 2-fold increase in CWINV2 expression
(Additional file 1: Table S16). CWINV2 is a member
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of the cell wall invertase gene family (CWINs), which en-
codes enzymes that degrade sucrose into glucose and fruc-
tose. CWIN activity is critical for anther development and
the production of viable pollen [44]. In many
cold-susceptible plants, cold stress reduces pollen sterility
[45, 46]. Comparison of rice cultivars with contrasting re-
actions to cold showed that pollen-specific CWIN is
downregulated in cold-susceptible cultivars and un-
changed in cold-tolerant cultivars [46]. The increase in
CWINV?2 is therefore presumably a mechanism in the cold
acclimation pathway and is usually coupled with an in-
crease in monosaccharide transporter activity, thus sup-
plying sugars to the anthers [46]. However, we did not
observe increased expression of STP genes, which encode
monosaccharide transporters in Arabidopsis thaliana. We
suggest that the gene expression landscape that we ob-
serve in Flower 27 is not a steady state, but could be re-
versed either to normal development if returned to
non-stress conditions or to further unfolding due to cold
acclimation reactions.

As mentioned above, we also observed genes that are in-
volved in pollen tube growth. Polar growth is an essential
property of normal pollen tube development and requires
spatiotemporal regulation of F-actin arrangement. A fam-
ily of Rho GTPases of plants (ROPs) participates in a
range of biological processes, including pollen tube and
root hair tip growth, hormone responses and biotic stress
responses [47]. ROPs are under the control of positive
regulator guanine nucleotide exchange factors (GEFs)
[48]. For the family of ROPGEFs (GEFs containing
plant-specific ROP nucleotide exchanger domain), in-
volvement in pollen tube growth has been shown [49, 50].
ROP1 is known to activate two competing F-actin assem-
bly pathways that are controlled by RIC4, and F-actin
disassembly is promoted by RIC3 [51]. F-actin assembly
leads to the accumulation of vesicles at the cell tip,
whereas F-actin disassembly is required for exocytosis,
and a proper balance of the two processes is necessary for
polar growth [52]. In Flower 27, ROPGEF8 (AT3G24620)
and RIC3 (AT1G04450) are two-fold upregulated
(Additional file 1: Table S16). Additionally, the expression
of two profilin genes — PRF4 and PRF5 — is two-fold in-
creased. Profilin is a regulator of actin polymerization at
the apical membrane in the pollen tube; prf5 and prf4
mutants have a decreased rate of pollen tube growth. The
Flower sample corresponds to flower at anthesis, where
pollination has already occurred. The increase in expres-
sion of genes responsible for pollen tube growth may indi-
cate intensification of the fertilization rate.

In Seeds 3, the distribution of Shannon entropy is bi-
modal for both up- and downregulated genes (Fig. 3c).
Seeds 27 lacks genes with a high H, and the medium H
gene list strongly overlaps with genes in Seeds 3. Ana-
lysis of the expression patterns of genes with a medium
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H in the transcriptome map shows their specificity for
seeds. The majority of genes in both cases are downregu-
lated and enriched for F-box, plant defense GO and other
category terms (Additional file 1: Table S17). Plant F-box
is a large protein family, including 897 members in A.
thaliana, and most of these genes are poorly studied [53].
SON1 (AT2G17310) is an F-box domain-containing gene
and it encodes component of systemic acquired resistance
from pathogens [54]. SCRLS (AT1G60987), LCR73
(AT2G02147), RALFL3 (AT1G23147) and other genes are
referred to as small cysteine-rich antimicrobial peptides,
including defensins, which are common for eukaryotes
[55]. This class of genes is a known part of defense against
pathogens [56]. In Seeds 3 (and, in most cases, Seeds
27), these genes are downregulated (Additional file 1:
Table S17). Additionally, as was mentioned above, upreg-
ulated genes in Seeds 3 and 27 are enriched for lipid
metabolism and storage.

Expression characteristics of stress-response genes: The
DE score

Another parameter of gene expression is the DE Score. In
Klepikova et al. [5], the differential expression between all
pairs of transcriptome map samples was analyzed; the DE
Score is the number of paired comparisons in which the
gene is DE. The maximum possible DE Score is 3081 from
79 samples in the transcriptome map. We analyzed the
distribution of the DE Scores for the genes whose expres-
sion changed under stress (Fig. 4). Genes with a low DE
Score were underrepresented in the DE Score distribution
for stress data compared with the distribution for all
expressed genes (Fig. 4a). Genes from Mix 3 and 27 were
skewed to a high DE Scores. DE Score reflects the varia-
tions of the levels of gene expression as well as the width
of the expression pattern. A high DE Score indicates that
a gene is expressed in multiple tissues and has significantly
different expression levels in these tissues. Thus, genes
that have opposite changes in expression in the cold re-
sponse (Mix genes) may be involved in various processes
in distinct tissues.

DE genes common in at least 5 organs had a DE Score
distribution skewed to the right (Fig. 4b). The Shannon
entropy H indicates a wide pattern of expression for
common cold-response genes and supports the idea of
the differential involvement of these genes in stress re-
sponse n different organs.

The DE Score distributions of DE genes unique for or-
gans were slightly skewed to the left (Fig. 4c). Most or-
gans had no noticeable peaks in the distribution,
whereas Young Flower 27 had a pronounced spike of
mostly upregulated and some downregulated DE genes
with a DE Score of less than 500 (Fig. 4c). According to
the transcriptome map, the majority of these genes are
specific to young anthers (from flower at stage 9
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according to Smyth et al. [27]) and young flowers at
similar stages. These genes have strong GO and other cat-
egory enrichment, with terms associated with the ubiqui-
tin-dependent protein catabolic process, regulation of
transcription and F-box (Additional file 1: Table S18).

Ubiquitination is a key post-translational modification
regulatory mechanism that is essential for plant develop-
ment. The ubiquitin 26S proteasome system is import-
ant for protein modulation and removing defective
proteins. For some genes that encode components of the
ubiquitin 26S proteasome system, involvement in the
abiotic stress response was observed [57].

Many F-box protein family members are subunits in the
SCF (SKP1, CULLIN, FBX and RBX1) complex, which
includes types of E3 ubiquitin ligases [58]. In total, 37
genes annotated as F-box domain-encoded were 2- to
13-fold upregulated in Young Flower 27 (Additional file 1:
Table S18). For some Arabidopsis SKP-LIKE (ASK) pro-
teins, another participant in the SCF complex, direct inter-
action with F-box proteins was shown [59]. In Young
Flower 27, 8 ASK genes were significantly upregulated.

In a recent paper by Gladman et al. [60], two proteins
from the NO APICAL MERISTEM/ARABIDOPSIS
TRANSCRIPTION ACTIVATION FACTOR-1/CUP--
SHAPED COTYLEDONS-2 (NAC) family, NAC78 and
NAC56 were identified as positive regulators of ubiquitin
26S proteasome system genes. Though we did not observe
expression changes in these genes in Young Flower 27,

the DE gene list includes several other NAC genes, such
as NAC023 or NAC063, which could possibly be involved
in the cold stress response in developing flowers.

Genes unique to organs: Overrepresentation of regulatory
elements from transcription factors outside the ERF/AP2
family

For a deeper understanding of the gene networks involved
in cold acclimation in different organs, we analyzed the
overrepresentation of regulatory elements from transcrip-
tion factors from different gene lists (e.g., common in all
or at least five organs, DE genes unique for certain
samples, or genes with a certain Shannon entropy H; for a
full list of the tested gene groups see Additional file 1:
Table S19).

As expected, the promoter regions of DE genes upreg-
ulated in all or at least 5 organs were enriched with CBF
regulatory elements. Genes which have these elements
and are thus likely to be under regulation of CBF1-3
transcription factors displayed stress GO enrichment
terms (Additional file 1: Table S20). As expected, pro-
moter regions of DE genes upregulated in all or at least
5 organs were enriched with CBF regulatory elements.
Genes that cause this overrepresentation and can be
under regulation of CBF1-3 transcription factors have
stress GO enrichment. Among these genes 12 transcrip-
tion factors that also are characterized by overrepresen-
tation in DE genes common for at least 5 organs and
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possibly regulated by them genes are enriched with
stress GO terms too. Four of these transcription factors
belong to ERF/AP2 family and were described as partici-
pants in both biotic and abiotic stress response [61].
Regarding genes that are unique for each sample, we
did not find any overrepresentation of CBF regulatory el-
ements, which shows that factors other than CBF govern
organ-specific stress responses. In particular, we found
an overrepresentation of regulatory elements for 9 NAC
transcription factors in promoters of upregulated DE
genes in Young Flower 27 (Additional file 1: Table S21).

Database

To make these data available to the plant science commu-
nity, we included them in our database TraVA (https://tra-
vadb.org). The interface and options are similar to the
datasets from Klepikova et al. [5] and Kasianov et al. [10].
The profiles for each gene in the cotyledons, hypocotyl,
leaves, young flowers, mature flowers and seeds are repre-
sented under both the control and cold treatment condi-
tions as the number of reads and as fold change in the
expression level relative to the control (Fig. 5).

Conclusions

We analyzed gene expression in six Arabidopsis organs
and tissues after 3 and 27h of cold treatment using
RNA-seq. We found that 15,459 genes were differentially
expressed in at least one sample. Well-studied organs
(leaf, cotyledons and the hypocotyl) showed similar results
to other studies, while seeds, flowers and young flowers
displayed pronounced differences. Only a small number of
genes were common in all samples. These core genes were
strongly enriched in stress-related GO categories. Unique
sample genes were related to different processes in each
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organ. Some of these genes displayed expression specific-
ities, such as peaks in Shannon entropy or DE Score dis-
tributions. Thus, while the mechanisms of cold stress
response are common in all plants, in every organ they
are modified in a unique fashion, including the recruit-
ment of genes that are expressed in other organs in
non-stress conditions.

Methods

Plant growth, cold treatment and sample collection

Col-0 A. thaliana (accession CS70000) plants were
grown as described in Klepikova et al. [62], with the
exception of vernalization. The collected samples are de-
scribed in Additional file 1: Table S1. For each sample,
two biological replicates with 15 individual plants were
obtained and fixed in RNAlater (Qiagen, USA).

Control samples were harvested from ZT 8 to 9 and
on the next day at ZT 5 temperature in a climate cham-
ber set at + 4 °C. Samples treated with cold for 3 h were
collected at ZT 8 and for 27 h at ZT 8 the next day.

RNA extraction and sequencing

Total RNA was extracted with a RNeasy Plant Kit (Qia-
gen, USA) following the manufacturer’s protocol. cDNA
libraries for sequencing were constructed with the Tru-
Seq RNA Sample Prep Kits v2 (Illumina) following the
manufacturer’s protocol. An Illumina HiSeq2000 was
used for sequencing with a 50bp read length and a
sequence depth of 20 million uniquely mapped reads.

Trimming and mapping of reads and expression level
determination

For read trimming, the CLC Genomics Workbench 6.5.1
was used with the following parameters: “quality scores -
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0.005; trim ambiguous nucleotides — 2; remove 5-terminal
nucleotides — 1; remove 3’-terminal nucleotides — 1; and
discard reads below a length of 25”. The trimmed reads
were mapped using the CLC Genomics Workbench to the
reference A. thaliana genome (TAIR10 genome release)
with unique mapping only (length fraction =1 and similar-
ity fraction = 0.95). For each gene, total gene reads (TGR)
was determined as the sum of all the reads mapped on this
gene. Sequencing and mapping statistics are shown at
Additional file 1: Table S22. Total gene reads and RPKM
are provided for all samples at Additional file 1: Table S23
and S24, respectively.

Identification of differentially expressed genes
Differentially expressed (DE) genes were identified using
the R package “DESeq2” [63]. A false discovery rate
(FDR) of 0.05 and fold change of 2 were chosen as the
initial threshold for significant differential expression.

Gene ontology enrichment analysis

Downregulated and upregulated DE gene lists were ana-
lyzed by Gene Ontology (GO) and other annotation (as
key words or as a protein domain) enrichments using
the DAVID gene functional annotation tool with an FDR
value of 0.05 and fold change category representation of
2 as the threshold of significance [64, 65].

Hierarchical clustering
A hierarchical tree was obtained with the “hclust” function
from the R package “stats” [66].

Identification of key transcription factors

To identify the transcription factors involved in the regu-
lation of observed differential gene expression we used
annotations of the transcription factor targets based on
ampDAP-seq [67]. For each set of DE genes, we consid-
ered data for all transcription factors. We estimated the
relative enrichment of targets among differentially
expressed genes as the log2 of the %target (DE) / %target
(non-DE). The statistical significance was assessed using
the right-tailed Fisher’s exact test with 2 x 2 contingency
tables (targets vs. non-targets and DE vs. non-DE) with
FDR correction for multiple tested transcription factors
(219 TFs).

Accession numbers

The Illumina sequence reads have been deposited into
the NCBI Sequence Read Archive with project ID
PRJNA411947.
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Additional file 1: The description of the supplementary tables is located
in the beginning of the xlsx file. (XLSX 15389 kb)

Additional file 2: Hierarchical clustering of samples (PDF 8 kb)
Additional file 3: Venn diagram of sample-specific DE genes (PDF 443 kb)

Additional file 4: Histogram of fold enrichment in groups of GO terms
enriched in common for all or at least five samples genes (PDF 7 kb)
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