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Genome-wide association multi-locus and
multi-variate linear mixed models reveal
two linked loci with major effects on partial
resistance of apricot to bacterial canker
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Abstract

Background: Diseases caused by Pseudomonas syringae (Ps) are recognized as the most damaging factors in fruit
trees with a significant economic and sanitary impact on crops. Among them, bacterial canker of apricot is
exceedingly difficult to control due to a lack of efficient prophylactic measures. Several sources of partial resistance
have been identified among genetic resources but the underlying genetic pattern has not been elucidated thus far.
In this study, we phenotyped bacterial canker susceptibility in an apricot core-collection of 73 accessions over 4
years by measuring canker and superficial browning lengths issued from artificial inoculations in the orchard.
In order to investigate the genetic architecture of partial resistance, we performed a genome-wide association
study using best linear unbiased predictors on genetic (G) and genetic x year (G × Y) interaction effects extracted
from linear mixed models.
Using a set of 63,236 single-nucleotide polymorphism markers genotyped in the germplasm over the whole
genome, multi-locus and multi-variate mixed models aimed at mapping the resistance while controlling for
relatedness between individuals.

Results: We detected 11 significant associations over 7 candidate loci linked to disease resistance under the two
most severe years. Colocalizations between G and G × Y terms indicated a modulation on allelic effect depending
on environmental conditions. Among the candidate loci, two loci on chromosomes 5 and 6 had a high impact on
both canker length and superficial browning, explaining 41 and 26% of the total phenotypic variance, respectively.
We found unexpected long-range linkage disequilibrium (LD) between these two markers revealing an inter-
chromosomal LD block linking the two underlying genes. This result supports the hypothesis of a co-adaptation
effect due to selection through population demography. Candidate genes annotations suggest a functional
pathway involving abscisic acid, a hormone mainly known for mediating abiotic stress responses but also reported
as a potential factor in plant-pathogen interactions.

Conclusions: Our study contributed to the first detailed characterization of the genetic determinants of partial
resistance to bacterial canker in a Rosaceae species. It provided tools for fruit tree breeding by identifying progenitors
with favorable haplotypes and by providing major-effect markers for a marker-assisted selection strategy.
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Background
For decades, breeding programs have notably focused on
the introgression of major resistant genes into crop cul-
tivars. However multiple episodes of resistance break-
down have led research efforts to target polygenic
(quantitative or partial) resistances [1]. Although breed-
ing strategies relying on pyramiding quantitative trait
loci (QTLs) on top of monogenic genes might be costly
and time-consuming, the long-term efficiency and sus-
tainability of QTLs have been assumed if they are de-
ployed parsimoniously in both space and time [2, 3].
Resistance sustainability has a particular interest for per-
ennial woody crops considering their long generation
time and life-span in orchards, and overall the long-term
commitment to their breeding schemes.
Within the Prunus genus, apricot (Prunus armeniaca

L.) is one of the most popular and typical crops of the
Mediterranean Basin which provides 49% of the total
production to the world market [4]. Among the biotic
stresses affecting apricot crop durability and in a broader
way stone fruit species, bacterial canker, caused by ubi-
quitous bacteria in the species complex Pseudomonas
syringae (Ps), is one of the most damaging. This disease
could potentially lead to the death of trees in the or-
chard, especially young trees within their five first years
after planting. Three main groups - Ps pv. syringae, Ps
viridiflava [5] and Ps pv. morsprunorum [6], associated
with phylogroups 2, 7 and 3, respectively [7], have been
historically associated with the disease on apricot. The
symptoms affect aerial organs, resulting in lesions and
shot holes in leaves, bud and blossom dieback, and ap-
ical necrosis, potentially leading to more severe symp-
toms when bacteria get to the vessels and spread
through the vascular system [8, 9]. When the infection is
systemic, cankers corresponding to necrosis and flatten-
ing of external tissues linked to a dissymmetric growth
of the cambium in the spring, are visible on branches
and scaffold limbs [10]. Several abiotic factors relying on
soil and climatic conditions can favor bacterial canker
severity. Among them, cold winter temperatures and es-
pecially high frequency of frost-defrost episodes have
been highlighted as major factors favoring bacterial can-
ker [11, 12]. Integrated management practices such as
the use of resistant and soil-adapted rootstock material
and grafting at a tall height could lower bacterial canker
incidence in orchards [13, 14]. These cultural recom-
mendations are nevertheless, technically challenging for
orchard management and provide only a partial protec-
tion in orchards.
Therefore, the development of partially resistant culti-

vars seems to be a promising measure in addition to pre-
ventive practices to assure orchard durability. In this
context, research efforts have focused on screening apricot
genetic resources both under natural infections or

controlled inoculations. Several genetic backgrounds with
partial resistance to bacterial canker have been identified:
‘Bakour’ [14], ‘Hâtif Colomer’, ‘Luizet’, ‘Palsteyn’ [15] and
‘Orangered’ [16]. More globally, similar research initiatives
have been conducted to phenotypically characterize differ-
ential susceptibilities to bacterial canker in Prunus root-
stocks [17], sweet cherry [17–19] and plum [20], but to
date the question of the genetic determinants of partial re-
sistance to bacterial canker from the natural diversity in
Rosaceae fruit trees has never been investigated.
Recent progress of high-throughput-sequencing tech-

nologies fostering the discovery of thousands and even
millions of single nucleotide polymorphisms (SNPs) over
whole genomes has opened up new opportunities to ad-
dress the underlying architecture of quantitative traits
[21]. Genome-Wide Association Studies (GWAS) have
been extensively and successfully used in plant breeding
thanks to the advancement of these novel genomics-based
approaches [22]. GWAS enable mapping of QTLs and
genes affecting trait variation in a wide collection of
mostly unrelated individuals usually sampled from wild
relative populations, breeding cultivars and landraces. This
is in stark contrast to traditional linkage mapping methods
that require the establishment of segregating populations
beforehand [23, 24]. Association studies benefit from the
numerous recombination events, which have occurred
through species demographic history, and rely on linkage
disequilibrium (LD) caused in part by selection and popu-
lation structure, to exploit natural allelic diversity and
identify links between markers and causal loci underlying
the trait of interest [25–27].
GWAS turns out to be a particularly suitable approach

for plants and especially for perennial crops since costs as-
sociated with making and maintaining large progenies in
the orchard can be spared. Therefore, the use of GWAS
has gradually become more widespread for determining
the genetic basis of variation in complex traits in Rosaceae
fruit species [28–30]. More particularly, the apricot gen-
ome displays many advantages for GWAS applications due
to: (i) its diploidy (2n = 16) and small size (294Mb/n) [31],
(ii) its high level of heterozygosity resulting from a general
outcrossing mating system [32] and (iii) its high nucleotide
diversity related both to the early seed propagation [33]
and geographically broad distribution of the germplasm
with a diversification from Central Asia [34, 35]. Moreover,
the apricot genome has been characterized with a very fast
LD decay within 100 base pairs (bp) in a large genetic di-
versity panel [30], allowing association mapping with a
very precise resolution conditionally upon the use of a high
density of markers [36].
In the present study, we investigate the underlying

genetic architecture of partial resistance to bacterial can-
ker in apricot using an association approach. The spe-
cific objectives of this research are to (i) identify the
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genetic and environmental components of bacterial can-
ker susceptibility using a core-collection of 73 apricot
accessions that has been phenotyped in the orchard over
a 4-year campaign, (ii) develop an appropriate genome-
wide association methodology taking into account the
species genetic architecture and the stratification of our
population set, and (iii) identify candidate genes and de-
cipher the molecular basis of polygenic resistance to
bacterial canker.

Results
Phenotypic variance decomposition and heritability of
partial resistance to bacterial canker
Considering differences between all controls and inocu-
lated shoots regardless of the genotype effect, a highly
significant effect of bacterial inoculation was observed
(Wilcoxon unilateral t.test p < 2.2E-16) for lgc whatever
the year and for bs in 2013 and 2015 (lesser extent in
2014 p < 9.77E-12 and 2016 p < 9.06E-06). In the vari-
ance analysis, both branch height and shoot diameter
had non-significant effects on the variation for the two
phenotypes and were thus discarded from the multi-year
and within-year models.

Considering all years, part of the total phenotypic
variation was attributed in order of significance to year
(p < 2.2E-16, 36% lgc and 25% bs), genotype (lgc
p < 2.2E-16, 16% and bs p < 2.2E-10, 23%), genotype x
year interaction (lgc p < 3.2E-09, 20% and bs
p < 9.0E-04,18%) and operator (nested in year) effects
(lgc p < 4.0E-08, 4% and bs p < 1.7E-03, 4%) (Fig. 1).
The G × Y interaction term for bs was mainly due to

scale-change (73% of the sum of squares) than cross-over
interactions (method 1 from [56]). By contrast, for lgc, the
sum of squares partitioning indicated a more equilibrated
contribution from each type of interaction (58 and 42%
for cross-over and scale-change, respectively). Cross-over
interactions were most likely due to the re-ranking of indi-
viduals with non-extreme behaviors especially in 2014 and
2016. These 2 years were characterized as non-favorable
for disease development compared to 2013 and 2015:
ANOVA (analysis of variance) fixed effects for lgc/bs
equaled 2.56/NA (2014) and 2.97/0.72 cm (2016), respect-
ively compared to 3.90/5.62 (2013) and 7.94/4.87 cm
(2015). Winters from 2014 and 2016 were characterized
by relatively warmer temperatures especially in February.
This could be shown in terms of degree days over the win-
ters of 2013 to 2016 (see Additional file 1).

Fig. 1 Phenotypic variance decomposition for lgc and bs considering all years and 2013 & 2015 data. For lgc and bs phenotypes, the chart
displays the proportion of each fixed effect in the total sum of squares: year (Y), light blue; operator nested in year (Y:O), dark blue; genetic (G),
light green; interaction year x genetic (Y:G), dark green; the random residuals, pink. P-values and their level of significance are indicated as
following: ***P < 0.001, **0.001≤ P < 0.01, *0.01≤ P < 0.05
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When only the favorable years 2013 and 2015 were
considered, a greater part of the total phenotypic vari-
ation for both phenotypes was attributed to the geno-
type: 33% for lgc and 42% for bs (Fig. 1). Heterogeneity
of genetic variances was confirmed among years: only
two of the 4 years (2013 and 2015) had higher significant
variances due to favorable environmental effects. There-
fore, we decided to keep only 2013 and 2015 for further
analyses in the multi-year model, in order to capture the
largest phenotypic variance due to the genetic effect.
Linear mixed models resulted in the selection of an

optimal model (based on minimization of AIC (Akaike
Information Criterion, see Methods) for which, in
addition to the heterogeneity of genetic variances, re-
sidual variance was either common (lgc) or specific (bs)
to the year. Genetic variation displayed a quantitative
distribution and broad-sense heritability H2 per trait
depended therefore on yearly-winter expression
(Additional file 2A & B).
For the year with maximum genetic variance (2015),

H2 reached 59% for lgc and 78% for bs (in comparison,
for 2013 H2

lgc = 35% and H2
bs = 53%).

Significant phenotypic correlations between 2013 and
2015 (lgc: r = 0.97 ± 0.32, p = 8.90E-03** – bs: r = 0.54 ± 0.21,
p = 2.91E-02*) were obtained from the corh (correlation)
vcov (variance-covariance) structure. Lgc and bs G BLUPs
were also highly correlated (Pearson correlation r = 0.57 ±
0.10, p = 1.48E-07*** corrected with a FDR (false discovery
rate) α= 5% for multiple-testing) (Additional file 2C).

Population stratification analysis
From the subset of 21,942 independent SNPs, population
structure analysis revealed a minimization of the
cross-validation error for k = 2 and k = 3 scenarii
(Additional file 3A). In parallel, performing a PCA (princi-
pal component analysis) on the same subset of markers
identified three components that explained 35.23% of the
genetic variation in the collection with the first compo-
nent explaining 27.55% of the variation (Additional file
3B). According to the ancestral fractions obtained with
Admixture, the k = 3 distribution underlined three homo-
geneous pools of accessions belonging to Continental
Europe (12%), Irano-Caucasian-Mediterranean Basin (7%)
and Central-Eastern Asia (3%) groups with all remaining
accessions (78%) being admixed (Additional file 3C). No
obvious relation between ancestral population assignment
and susceptibility to the disease was observed aside from
the slight proximity of covariate Q2 (the fraction of ances-
try linked to Europe Continental group) with the suscep-
tible phenotypes (Additional file 4).

LD decay in the GWAS panel
Pairwise mean LD estimates (r2) within each chromosome
revealed a low level of dependence between markers. The

range varied from 2.88E-02 ± 5.08E-02 (chromosome 8) to
4.13E-02 ± 7.71E-02 (chromosome 5) with a decrease of
20% (chromosome 5) to 31% (chromosome 4) when cor-
recting for population structure and individual relatedness
(for r2vs average values see Methods, Additional file 5).
Moreover the intra-chromosomal LD in our population
set decayed very quickly within 100 to 200 bp depending
on the chromosome with no significant contribution of
population stratification.

Association mapping and local LD patterns
For all G and G × Y BLUPs extracted from the multi-year
model, QQ-plots (quantile-quantile-plots) revealed that
the non-corrected ‘glm’ (generalize linear model) did not
markedly inflate p-values (Additional file 6). Controlling
for Q yielded to a slight improvement in reduction of
false-positive signals (type I error) while the K model
(emmax K, see Methods) allowed the best prediction of
p-values with a very limited deviation from the expected
p-values resulting from the null model. However, for some
BLUP phenotypes (lgc and bs (G× Y)2015), whatever the
correction applied, both naïve ‘glm’ model, K and Q
models led to equivalent estimations of p-values.
Interestingly, controlling for both relatedness (K) and
structure (Q) did not provide better results than the
K model (Additional file 6).
The multi-locus mixed model approach (correcting for

relatedness) detected 8 associations for all G and G × Y
BLUP phenotypes with one colocalization for lgc G, (G×
Y)2013 and (G× Y)2015 BLUPs and PVE (percentage of
variance explained) ranging from 17.1 to 45.5% (Table 1).
Two main signals on the global G terms were localized on
chromosomes 5 (LG5_5394803) and 6 (LG6_15273858),
and associated respectively with bs G BLUP (p = 8.10E-06)
and lgc G BLUP (p = 1.2E-07) with PVE reaching 25.9 and
41.4%, respectively. The colocalization between G and
G × Y BLUPs on lgc indicated a modulation according to
the year of both allelic effect (α2013 = 0.14, α2015 = 0.26,
ln(x + 1) scale on the length in cm) and PVE on the
phenotype (PVE2013 = 40.1%, PVE2015 = 45.5%).
Additional associations were noticed on bs (G × Y)2015

BLUP compared to G BLUP with loci detected on chro-
mosomes 3 (LG3_4322444, p = 7.22E-06) and 5
(LG5_4842835, p = 7.00E-05). The number of associated
loci per phenotype ranged from one (lgc G, (G × Y)2013
and (G × Y)2015 BLUPs) to three (bs G BLUP) with an
important contribution of the additive genetic variance
to the total phenotype variability (hlgc G

2=0.41,
hbs G

2=0.62). Despite the high phenotypic correlation
(r = 0.57 ± 0.10***, Pearson correlation) between the two
phenotypes, no marker colocalization was found.
Furthermore, 3 SNPs impacting both lgc G and bs G

BLUPs were identified on chromosomes 5, 6 and 7 with
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the mvLMM (multi variate linear mixed model)
(Table 1). Genetic correlation rg (lgc − bs) reached 0.52
(MLE: maximum likelihood estimate) suggesting a
common genetic pattern underlying lgc and bs vari-
abilities. Among these markers, 2 SNPs were previ-
ously detected with the multi-locus mixed model for
either lgc (LG6_15273858, pFDR = 2.21E-03) or bs
(LG5_5394803, pFDR = 4.88E-02) with similar allelic
effects. The association detected on chromosome 7
using mvLMM, accounted for a lower but significant
part of the total phenotypic variability with PVE =
3.0% for lgc and PVE = 12.0% for bs.

Manhattan plots displaying p-values for the main loci
LG6_15273858 and LG5_5394803 in multi-locus and
multi-variate mixed models are shown in Fig. 2.
Intra-chromosomal LD of the two chromosomes have
different patterns around each detected locus (Fig. 2). In
the genomic region around LG5_5394803, a relatively
high LD block overlapped precisely with pp0000 4 m.g,
the underlying candidate gene (cf Table 1). This might
be related to the above-mentioned higher mean r2 of
chromosome 5 compared to all other chromosomes
(Additional file 5). In contrast, SNP peak LG6_15273858
and all other candidate loci (see Additional file 7)

Fig. 2 Manhattan plots of the –log10(p-values) over physical positions in windows surrounding LG6_15273858 and LG5_5394803 associations.
Genomic windows are approximately 201.82 kb (chromosome 5) and 307.44 kb (chromosome 6). Significance level was determined with eBIC
criterion. As an indication, Bonferroni threshold = −log10(p-valuethr) = 6.10. Detected SNP are shown with red stars and overlapping candidate
genes indicated with arrows. Heatmaps of pairwise LD estimates (r2vsÞ were drawn both within the genomic window around each candidate and
between the two genomic frames (inter-chromosome scale). Different colors and scales are used to represent the pairwise LD estimates between
inter or intra SNP pairs. Only inter-chromosomal pairwise LD r2vs over the 99th percentile of the r2vs distribution are displayed
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appeared to be located in a low LD region with no spe-
cific genomic structure.
As these two main SNPs were detected by the two

mapping approaches, we focused on the effect of the
haplotype, constituted by the genotypes on
LG6_15273858 and LG5_5394803, on the total pheno-
typic variance of both lgc and bs. Both loci seemed to
demonstrate an additive relation between allelic dose
and the phenotype considering either G or G × Y
BLUPs (Fig. 3) with no epistasis which was confirmed
by performing an ANOVA (non-significant SNPxSNP
interaction term p > 0.05). Individual effects of
LG6_15273858, LG5_5394803 and all other detected
loci on their respective G or G × Y BLUP phenotypes
are shown in Additional file 7.
Interestingly, a relatively high LD square correlation

value (r2vs=9.76E-02), higher than the 99th percentile of

r2vs inter-chromosomal distribution, was revealed more
specifically between the two main candidates
LG6_15273858 and LG5_5394803 (Additional file 8).
This correlation between associated loci proved to be
within a longer LD block (Fig. 2) revealing an
inter-chromosomal linkage between the underlying can-
didate genes pp00000 4m.g (chromosome 5) and
pp01834 1m.g (chromosome 6). Likewise, the correlation
between LG5_5394803 and LG5_4842835 (r2vs=2.94E-01)
detected both on chromosome 5 appeared to be signifi-
cantly higher than the 99th percentile of r2vs
intra-chromosomal distribution (Additional file 8).

The genotype group distribution from all detected
SNPs from the multi-year model BLUPs was tested
on the within-year model BLUPs with heterogeneous
significance levels according to the year and the
marker PVE. Marker LG7_18047191 was only signifi-
cant for bs2013 and bs2015. Significance of the two
main loci was confirmed individually for lgc2013,
lgc2015, lgc2016 and bs2015 with LG6_15273858 and
for bs2013 and bs2015 considering LG5_5394803 (uni
and multi-factorial ANOVA and post-hoc tests in
Additional file 9). Strict-sense heritability estimates
ranged from 10.85% (lgc2014) to 64.46% (bs2015) with
non-negligible values even in the non-favorable years
2014 and 2016. Only bs2016 led to non-significant re-
sults for all detected markers (Additional file 9).

Haplotypes associated with partial resistance
We found three groups of haplotypes among the
core-collection having several SNPs associated to canker
resistance; 18, 45 and 9 haplotypes shared 3, 5 and 2
markers associated to lgc G, bs G and bs (G× Y)2015
BLUPs, respectively (Additional file 10). Mean comparison
was performed on BLUP values from multi-year and
within-year models after discarding low frequency classes
in order to limit false-positive findings (type I error). Five
haplotypes were identified with favorable alleles and stabil-
ity of the resistance through years (1 with lgc G, 3 with bs
G, and 1 with bs (G× Y)2015 BLUP, see Additional file 10).
Accessions A1814 and Harlayne showed two and all of
the three defined favorable haplotypes, respectively.

Fig. 3 G and G × Y BLUP distributions according to the haplotype constituted by LG6_15273858 and LG5_5394803. Statistical differences between
groups are indicated – HSD post-hoc tests on each G & G × Y term. For bs G and (G × Y)2015 BLUPs, tests were performed on residuals from an
ANOVA model accounting the other associated loci from multi-locus model (LG3_10897844 and LG52_22535054 for bs G LG3_4322444 and
LG5_4842835 for bs (G × Y)2015). Y-axis values are indicated in ln(x + 1) scale. Haplotype class ‘AGAA’ (1 individual) was discarded in the boxplot
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A0008 and A1314 were in the same way noticeable for
their partial resistance (see Additional file 2C) but their
corresponding haplotypes were either not located in the
most resistant groups or, if they were, they appeared to be
unstable between years (see Additional file 10).
The mean comparison test was non-significant for the

within-year model lgc2015 BLUP for the first group of
haplotypes (related to the 3 candidate loci associated to
lgc G BLUP) which might be due to a loss of power
when haplotype number (18) is high compared to popu-
lation size (ANOVA test p = 0.1322). None of the com-
parison tests between haplotypes were significant for
years 2014 and 2016, which might be explained by the
low genetic variance in these years where there was low
disease severity.

Candidate genes for resistance to bacterial canker
Putative candidate gene annotations for all multi-locus
and mvLMM associated SNPs were reported in Table 1.
To date, none of the associated SNPs were reported for
disease resistance in a Rosaceae species or colocalized
with previously known QTL. It is noteworthy that, over all
the 7 detected loci, only 2 candidates LG3_10897844 and
LG3_4322444 targeted polymorphisms in coding se-
quences (CDS) of ppa017602m.g and ppa008956m.g, re-
spectively. Mutations were both non-synonymous with
one substitution (K49M in ppa017602m.g) leading to a
deleterious predictive effect on the corresponding protein,
a glutamyl-tRNA (Gln) amidotransferase subunit C pro-
tein. All other loci comprising the two most significant
loci LG6_15273858 (ppa018341m.g) and LG5_5394803
(ppa000004m.g) were localized in introns. The associated
functional annotations of the two main candidate
genes were related to Harbinger transposase-derived
nuclease and Pleckstrin homology-like (PH) domains,
corresponding to a superfamily of transposons found
in plants and animals [57] and a conserved domain
particularly abundant in proteins involved in signal
transduction pathways [58], respectively.

Discussion
We aimed at investigating the genetic pattern of partial
resistance of apricot to bacterial canker caused by P. syr-
ingae using a broad genetic basis in the species. We
showed that, although being polygenic, bacterial canker
partial resistance appeared to rest upon a limited num-
ber of additive components: 5 SNPs on chromosomes
2,3,5,6 and 7 partially explaining 45 and 62% of the total
phenotypic variance of canker (lgc) and superficial
browning (bs) lengths, respectively. A large part of the
genotypic variance was due to a winter effect allowing
the detection of two additional loci on chromosomes 3
and 5 in the year most favorable for the expression of
canker symptoms. Among the 7 candidate loci, two main

SNPs on chromosome 5 and 6 displayed additive contri-
butions reaching 41 and 26% of the variation of lgc and
bs. Furthermore, these two markers showed a long-range
inter-chromosomal LD revealing a multi-locus-linked se-
lection event through population history. Due to the
short decay of LD in apricot, candidate loci were identi-
fied with a high resolution leading to the identification
of promising candidate genes involving a potential sig-
naling cross-talk between abscisic (ABA), jasmonic (JA),
and salicylic (SA) acids, molecules known to mediate
long-distance signaling in plant-pathogen interactions.
Overall, this study contributed to the very first
characterization of the genetic variation and genomic
determinants of partial resistance to bacterial canker in
a fruit tree species.

Detection of genomic regions controlling variation of
partial resistance to bacterial canker is dependent on
winter frost intensity
As highlighted by the heterogeneity of genetic variances
across 4 years, genetic variation was highly dependent on
winter-frost severity with low genetic variations in 2014
and 2016 while the highest were registered in 2013 and
2015. Considering this environmental dependency, the
screening and characterization of cultivars for bacterial
canker resistance was a difficult task. Other limits of bac-
terial canker phenotyping concern time-consuming efforts
in the orchard, a very long period of symptom develop-
ment, the need to calibrate the observations between op-
erators and no guarantee of getting significant genetic
variation between individuals. Marker-assisted selection
(MAS) programs would be in that case an attractive,
powerful and cost-efficient alternative to phenotyping.
Among the two most severe years, broad-sense herit-

ability estimates ranged from 35% (lgc in 2013) to 78%
(bs in 2015) showing a considerable level of variation of
susceptibility in the core-collection. Previous studies on
other patho-systems in fruit and forest trees have re-
ported moderate to high heritability estimates ranging
from 30 to 40% for pitch canker resistance in loblolly
pine [59], from 70 to 89% in peach x Prunus davidiana
[60] and 60 to 87% in apple [61] for powdery mildew re-
sistance. Importantly, these studies reported the crucial
need for controlling GxE interactions in order to esti-
mate accurate genetic effects in the face of environmen-
tal noise in pluri-annual data.
The two phenotypes lgc and bs displayed a high correl-

ation (Pearson correlation r = 0.57 ± 0.10, p = 1.48E-07***).
Regarding the important contribution of the genetic factor
to the total variance of the phenotypes, this correlation
suggests that a common genetic pattern may control both
phenotypes.
We identified a total of 11 associations, over 7 candi-

date SNPs on chromosomes 2, 3, 5, 6 and 7, linked to
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the variance of lgc and bs G and G × Y BLUPs. Among
the stable associations, two main SNPs were detected on
chromosomes 5 (LG5_5394803) and 6 (LG6_15273858)
and explained 41 and 26% of the variation of lgc and bs,
respectively. In the case of lgc, a unique locus
(LG6_15273858) was detected both for G × Y interaction
BLUPs and the overall G term with a modulation of the
allelic effect and the PVE according to the year due to
the heterogeneity of winter temperatures. Moreover, new
associations for bs were detected in 2015 which was the
most severe year in terms of disease expression, suggest-
ing that data on specific years and climatic conditions
have the potential to reveal additional regions linked to
disease resistance. Similar results have been obtained in
the case of QTL mapping on tree architecture [62] and
phenological traits [63] in apple underlying the useful-
ness of focusing on G and G × Y terms to target both
stable and environment-specific genetic determinants.

Candidate genes can be found by exploiting the quick LD
decay in apricot
Mapping resolution in GWAS mostly depends on the
decay of LD: the more the LD decreases, the sharper the
resolution appears around the detected locus [64]. Con-
sidering the original reproductive characteristics of the
family, most Rosaceae species are cross-pollinating be-
cause of their self-incompatibly system. This results in a
high number of effective recombination events and a
rapid expected LD decay over the genome [65]. In our
study, global mean LD over all chromosomes decayed
over very short distances (100 to 200 bp) considering
both corrections for population stratification and uncor-
rected estimates. Moreover, LD in the case of our popu-
lation is not likely to rely on confounding structure
effects related to differences in allele frequencies be-
tween groups resulting from non-random mating [66].
These results are congruent with those reported in the
previous association study on apricot [30] based on a
population comprising the major part of the material
used in our work.
Regarding all these observations, GWAS is a very suit-

able approach to map the genetic regions linked to bac-
terial canker partial resistance in our diversity panel with
a very precise resolution.
To date, none of the putative candidate genes or do-

mains associated with the SNPs identified here have been
reported for plant resistance function in the Rosaceae fam-
ily. The two main SNPs LG6_15273858 and LG5_5394803
were located in genes with significant homologies to Har-
binger transposase-derived nuclease (ppa018341m.g) and
Pleckstrin Homology PH (ppa000004m.g) domains, re-
spectively. These motifs are conserved domains found in a
wide range of uncharacterized proteins with functions
respectively in, chromatin remodeling [67] and signal

transduction through interaction with membrane phos-
phoinositides [68, 69]. A role for phosphoinositides (bind-
ing to pleckstrin homology domain - ppa000004m.g) in
regulating plant nuclear functions and possibly transcrip-
tional activities through chromatin remodeling (Harbinger
transposase-derived nuclease - ppa018341m.g) was re-
vealed as a common response to a large range of both abi-
otic and biotic stresses [70]. It is noteworthy that the
protein encoded by the candidate gene ppa023961m.g lo-
cated on chromosome 2 (SNP: LG2_22535054) belongs to
a large family of proteases: the subtilisin-like proteases (or
subtilases) whose involvement in plant defense responses
has been more and more described recently [71]. Two
closely related members of the P69 subtilase family (P69B
and P69C) were shown to be transcriptionally activated
after Ps DC3000 infection with an elicitation from SA and
JA [72, 73]. Although the link between SBT4.6 encoded by
ppa023961m.g and plant resistance remains to be investi-
gated, transcripts from a close relative SBT4.14 (also
known as AtXSP1) were evidenced as contributing to
xylem differentiation in A. thaliana [74]. Moreover,
SBT4.6 subtilase was predicted to be in the extracellular
space (Uniprot database) suggesting a role in recognition
of Ps before entry and colonization through the xylem, in
the case of a compatible interaction. Interestingly, the G
protein β WD-40 repeat, one of the domains of the pro-
tein encoded by another candidate gene (ppa008956m.g
for bs (G× Y)2015 association), had been previously shown
to bind in-vitro with PH domains (ppa000004m.g) [68]. It
has been shown in A. thaliana that myo-inositol poly-
phosphate 5-phosphatases, a large family englobing IP5P2
(ppa020388m.g including detected loci LG5_4842835),
hydrolyze a wide range of phosphoinositide phosphate
substrates and is involved in stress responses through the
abscisic acid (ABA) signaling pathway [75]. In addition, re-
search that deployed transcriptional approaches demon-
strated that the ABA pathway was one of the main targets
of effectors secreted by Ps [76]. Regarding all their func-
tions, most of the candidate genes or domains seem to
support a role in a regulatory network involving signal
transduction through membrane phosphoinositides in a
cross talk involving ABA, with SA and JA, potentially.
ABA mostly acts as negative regulator of disease resist-
ance with an antagonistic effect on SA and JA [77, 78].
In addition, over all the seven candidate loci, only two

single polymorphisms targeted CDS with non-synonym-
ous substitutions. This observation emphasizes the im-
portance of introns which can affect gene expression
level or induce alternate splicing with an impact on the
phenotype. Moreover, the genotype data we used in the
association mapping was restricted to variants located in
gene-space regions. In turn, we may have missed
inter-genic allelic diversity and regulatory variants po-
tentially contributing to phenotype variation. The role of
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non-coding DNA such as promoters or/and enhancers
in the variability of susceptibility to plant disease resist-
ance has been demonstrated in several patho-systems in-
cluding rice/Xanthomonas oryzae pv. oryzae [79] and
maize/maize rough dwarf virus [80] and would be worth
further investigation in the case of bacterial canker par-
tial resistance.
These results open the door for subsequent validations

to confirm the candidate loci polymorphisms over a pool
of genetic resources and the correlations between the SNP
genotype and the susceptibility level to the disease. To
achieve this goal, pyro-sequencing could be performed in
order to confirm the haplotypes. Moreover, in order to
take into account the significance of non-coding poly-
morphism candidates from our study, validation of the
candidate genes could be performed with qRT-PCR across
a pool of favorable and unfavorable haplotypes identified
in our study.

Combining genome-wide multi-locus and multi-variate
association models is a powerful method to decipher the
genomic pattern of partial resistance to bacterial canker
There have been very few association studies using both
genome-wide multi-locus and multi-variate mixed
models [81, 82]. Our approach combining both methods
proved to be powerful in limiting the number of candi-
dates by controlling for LD, capturing a large part of
broad-sense heritability and detecting common genetic
variants impacting the two phenotypes.
The two main SNPs LG5_5394803 and LG6_15273858

were associated independently with multi-locus models
on lgc (chromosome 6) and bs (chromosome 5) and
co-detected on both phenotypes with the multi-variate
model. The higher correlation between LG5_5394803
and LG6_15273858 ( r2vs =9.76E-02) compared to back-
ground pairwise loci could explain the lack of
co-localization with the multi-locus model. Indeed, the
multi-locus model corrects for potential spurious associ-
ations due to intra or inter-chromosomic LD by
re-estimating genetic variance at the stepwise inclusion
of each associated locus as regressor in the model [50].
The drawback of such correction is that pleiotropic
genetic variants cannot be detected, which in turn
emphasizes the advantage of using multi-variate ass-
ociation models as a complementary approach.
Noteworthy, multi-variate mixed models, by taking ad-
vantage of correlations between phenotypes can poten-
tially also capture variants with smaller effects than
those detected with traditional uni-variate analyses
[83]. As an example, this allowed us to detect the small,
but significant effect of LG7_18047191 (chromosome 7)
on both lgc and bs G BLUP (with PVE reaching 3 and
12%, respectively).

Despite the small size of our core-collection (73 acces-
sions), we have successfully shown that our method has
enough power to detect marker-trait associations for
bacterial canker resistance. Nevertheless, our population
might not have been large enough to capture SNPs with
minor effects due to a lack of statistical power with type
II (false-negative) errors. An interesting next analytic
perspective would be the use of genomic selection (GS)
models on a higher number of individuals [84]. This
would assess the effect of all markers and in particular
low-effect variants in the phenotypic variance regardless
of their frequency in the population, allowing to validate
the candidates while detecting new loci and thus giving
an overall better estimation of the genetic effects [85]. In
our case, due to genotypic sampling bias, these genetic
effects could have been either overestimated for the
detected loci [86] or underestimated for rare variants
possibly linked to resistance. For instance, the culti-
vars A0008 and A1314 noticed for particular pheno-
type of partial resistance were not highlighted by the
analysis of haplotypes in our study, but they might be
relevant material to cross in progenies. GS models or
linkage analysis using bi-parental, multi-parental or
interconnected progenies [63, 87–89] derived from
this material could thus map additional rare variants
which could have been removed in our study (filter
MAF < 0.05).

Specific intra and inter-chromosomal LD patterns give
insight into genomic variation through population history
This study allowed us to reveal intra and
inter-chromosomal patterns with either low or high LD
structure around the candidate loci. More specifically,
one of the main detected SNPs on chromosome 5
(LG5_5394803) displayed a high LD block overlapping
precisely with the underlying gene ppa000004m.g, while
all other associations targeted low LD regions even con-
sidering the other detected loci (LG5_4842835) located
552 kb downstream. We also detected a high level of
inter-chromosomal LD ( r2vs=9.76E-02) between the two
main detected SNPs included in the candidate genes of
interest ppa000004m.g and ppa018341m.g on chromo-
somes 5 and 6.
A high level of LD may often be interpreted as a direct

effect of selective breeding in a genomic area where genes
of agronomic interest are gathered. It also could be pos-
sibly due to a population structure confounding effect but
we have shown for both intra and inter-chromosomal LD
patterns that high levels of LD remain after correcting for
population structure and relatedness, indicating a bio-
logical relevance behind these allelic associations. Consid-
ering the broadly diverse germplasm we used through this
study, resulting from numerous recombination episodes
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through evolution, such strong LD patterns, especially be-
tween unlinked loci (over different chromosomes) are un-
expected. These observations could then suggest a
possible linkage due to a strong multi-locus linked selec-
tion acting as an evolutionary counterforce preserving an
efficient and functional synergy between ppa000004m.g
and ppa018341m.g. The same hypothesis could be drawn
from the long-range LD between LG5_5394803 and
LG5_4842835 impacting either G or G× Y variation of
superficial browning.
High LD between physically unlinked loci is likely to

happen when strong selection is applied in conjunction
with epistasis, pleiotropy [90] and/or co-adaptation on the
basis of biological mechanisms leading to a “functional
linkage” as it has been described in Arabidopsis thaliana
with the genes couple GS-OH and MAM1 [91]. These
two genes located respectively on chromosomes 2 and 5,
showed a significant long-range genome-wide correlation
and epistasis effects with favorable allelic combinations
impacting the biosynthetic pathway related to herbivore
resistance [91]. While the biological relation between
ppa000004m.g and ppa018341m.g needs further investiga-
tion, LG5_5394803 and LG5_4842835 were included in
two genes (encoding PH domain protein and IP5P2) re-
lated to phosphoinositide substrates and membrane com-
ponents. The proximity of ontologies between these two
genes located 0.5Mb apart suggests a functional linkage.
Both long-range and inter-chromosomal LD between

some of the markers of interest and the annotation of
their underlying genes emphasize the idea of a func-
tional network involved in bacterial canker resistance. In
addition, the particular LD block structure of
ppa000004m.g could be explained by a prevalent role of
this gene in this network, possibly as an immediate-early
gene involved in the initial steps of Ps infection. The
function of ppa000004m.g interacting with membrane
phosphoinositides corroborates the key-gene hypothesis
as the plasma membrane is one of the first battle
grounds in the plant-pathogen interaction.

Conclusion
We aimed at targeting the genetic pattern controlling
susceptibility to bacterial canker in apricot by exploring
the natural genetic diversity in a panel of 73 apricot ac-
cessions. To achieve this goal, we used a very dense set
of 63,236 SNPs spread over the genome and performed
association mapping using both multi-locus and
multi-variate mixed models on two correlated pheno-
types resulting from controlled inoculations in the or-
chard during 2 years favorable for disease expression.
A total of 11 associations was detected with two main

components located on chromosomes 5 and 6 contribut-
ing to a large part of additive variation of the phenotype

(41 and 26% of PVE). Putative candidate genes linked to
the abscisic acid pathway were reported with a very pre-
cise resolution given the extremely low LD shaping the
apricot tree genome organization.
In terms of methodology, we also demonstrated the

complementary of genome-wide association multi-locus
and multi-variate mixed models allowing i) estimation of
the additive individual contribution of all associated loci
in the total phenotypic variation and ii) detection of
common genetic variants impacting the two phenotypes.
Subsequent analyses considering a bigger GWAS popu-
lation and/or the use of bi or multi-parental QTL map-
ping approaches would allow a further validation of the
associated loci.
In a breeding context, further research is required to as-

sess the extent of resistance due to all identified loci rela-
tive to the diversity of Ps in the orchard. Combining
resistance genes showing major and strain-specific effects
with genes displaying minor and non-specific effects was
suggested to be an efficient strategy to preserve sustain-
ability of the resistance by generating contradictory selec-
tion pressures on pathogen evolution [92, 93]. In this
perspective, the loci detected in this study could be used
in MAS in order to complement the global multi-trait se-
lection strategy [65]. Gene pyramiding would be a feasible
approach not only for apricot trees but also considering in
a larger perspective other Prunus species because of the
synteny between their genomes [94].

Methods
Plant material
A core-collection composed of 73 accessions of apricot
trees was used for this study (60 accessions were previ-
ously investigated for genetic determinism of resistance
to Plum Pox virus [30]). This population was grafted on
Manicot apricot rootstock from 1995 to 2001 at the
INRA experimental station ‘Domaine de l’Amarine’
(Gard, France). Name, geographical origin and further
information of the plant material are presented in
Additional file 11.

Experimental design & phenotyping
Controlled inoculations over the core-collection (one
tree for each accession, three replicates per tree) were
performed annually at the end of November over 4 years
(2013 to 2016) according to a previously described pro-
cedure [14]. Briefly, bacterial inoculum was prepared
from a culture of strain (called ‘41A’, highly aggressive
and initially isolated from an infected apricot orchard)
from phylogroup 2 of Ps [37] grown on King’s B medium
[38] for 48 h at 24 °C. The concentration of the suspen-
sion was adjusted with sterile demineralized water to
108 CFU.ml− 1 using a spectrophotometer.
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Three one-year old shoots per tree were injured by
performing a standardized one-centimeter-long incision
in the bark. A 25 μl aliquot of inoculum was injected by
pipetting through the wound before wrapping with a
parafilm band. For each accession, an additional shoot
served as a negative control and was inoculated with the
same volume of sterile water. Symptoms were allowed to
develop for 6 months in the orchard before pruning of
inoculated shoots for disease visual assessment. Evalu-
ation of phenotypes was carried out by several operators
according to a balanced design in order to be able to as-
sess the effect of operators on phenotypic variability.
After inoculation, and according to the pedo-climatic
conditions and to the genotypes, a degradation of cam-
bium tissues occurred. The symptoms (Fig. 4) issued
from the destruction of the tissues are characterized by
an alteration of the longitudinal and the lateral shapes of
the shoot with a flattening zone observed and measured
(the length of the longitudinal flat-zone is named “lgc”).
These external symptoms can be associated with internal
disorders among them superficial browning is measured
as indicator of the reaction (the length of the longitu-
dinal browning zone is named “bs”). These two indica-
tors jointly related to the observed susceptibility to
bacterial canker are used to phenotype the accessions).
Furthermore, several covariates that might have been

correlated with the phenotypes were assessed, including
the diameter of the lower-part of the shoot as a measure
of the vigor of the accession [39] and the height of the
branch in the tree as a measure related to the local
temperature close to the inoculation point.

Statistical modelling of phenotypic data
All statistical analysis were performed using R software
(https://www.r-project.org/) and the ASReml-R package
[40]. Prior to modelling, phenotype distribution was nor-
malized using a ln(x + 1) transformation in order to

achieve a normal distribution of the residuals (Shapiro
test p > 0.05).
Analyses of Variance (ANOVA) were used to assess

significance of fixed effects: year, operator, genotype,
genotype-by-year interaction and the fixed covariates
diameter and height of the branch on lgc and bs accord-
ing to the following model:

Pijk ¼ μþ Y i þ Y=hð Þi þ Y=ϕð Þi þ Y i=Oj

þGk þ Gk � Y i þ eijk

where Pijk is the phenotypic value of accession k noted
by the jth operator in year i, μ the overall mean, Yi the ef-
fect of year i, (Y/h)i and (Y/ϕ)i the nested effects of the
shoot diameter and height, respectively within the year i,
Yi/Oj the nested effect of the jth operator within the year
i, Gkthe effect of the accession k, Gk × Yi the interaction
term between year i and genotype k, and eijk the random
independent and identically distributed residual term.
Two main approaches have been conducted for char-

acterizing the influence of the inoculation into the ob-
served accessions: a multi-years and within-year models
through the use of linear mixed models.
The multi-years model integrated the effect of the Year

(Y) (as fixed factor) and both – Genotype (G) and Geno-
type x Year (G x Y) interactions (as random factors). This
model was used to model correlations of the same pheno-
type between years. Preliminary analysis revealed that gen-
etic variances differed significantly between years. Thus, a
homogenous correlation (corh) variance-covariance (vcov)
matrix was fitted on the interaction term in the model. The
residual error was modeled either for all years or for each
year independently. In order to select the optimum model
for each phenotype, a goodness-of-fit comparison was
made based on Restricted Maximum Likelihood (REML)
statistics using the Akaike Information Criterion (AIC).
Due to the expected annual effect on phenotypes and

the missing data in our design (Additional file 11), a

Fig. 4 Photograph of typical bacterial canker symptoms on branches after controlled inoculation. Canker length lgc (blue arrows) and superficial
browning bs (red arrows) as observed 6months after inoculation
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within-year model was performed for each year accord-
ing to the following linear mixed model:

Pjk ¼ μþ hþ ϕ þ Oj þ Gk þ ejk

Moreover, by considering a within-year model for each
phenotype, we ensured the biological relevance of miss-
ing data replacement in the multi-year model allowed by
the imputation due to the corh vcov structure.
Best unbiased linear predictors (BLUPs) were subse-

quently assessed from both within-year and multi-year
models on G and G × Y random effects for the pheno-
types lgc and bs. These predictors extracted from the
multi-year model were then used as phenotypic input
data for GWAS. A validation of the results was per-
formed using the within-year BLUPs. In the case of G ×
Y BLUPs, imputed data were removed for missing indi-
viduals in each year in order to avoid statistical redun-
dancy with the G BLUP prediction. REML estimates of
genetic (σ2G ) and residual (σ2e ) variances were also com-
puted from the multi-year model. Broad-sense heritabil-
ity H2 for each phenotype per year was calculated as:

H2 ¼ σ2G

σ2G þ σ2
e

n

where n =3 is the number of replicates per accession.

Genotyping and SNP marker data filtering
Genotyping and SNPs alignment were previously de-
scribed in [30]. Briefly, the set of plants for GWAS was
genotyped using NGS-Illumina HiSeq 2000/2500 se-
quencing with estimated depths between 15 to 25 folds
depending on the accession. SNPs alignment was per-
formed using the Prunus persica (P. persica) v1.0 refer-
ence genome and considering gene-space regions over
the eight chromosome-level scaffold assemblies covering
99% of the genome [41]. Genotype assignment was per-
formed according to an inference method based on max-
imum likelihood for estimating allele frequencies by
using base counts at each position [42].
For our study, a minor allele frequency (MAF) thresh-

old of 5% (according to [43]) was applied on the initial
set of SNPs in order to remove rare variants and thus
avoid false-positive associations. Then a filter on physical
map position, discarding one of a pair of consecutive
SNPs whose pairwise distance was less than 10 bp, was
performed to limit the number of multiple statistical
tests. After conducting all bioinformatic filters, a selec-
tion of 63,236 SNPs was kept for association study.
Markers were named according to their physical posi-
tions on the genome, ‘LG1_72881’ for a SNP located on
chromosome 1 at 72,881 bp, for example.

Population stratification analysis
An additional filter based on LD pairwise pruning, that
involved discarding markers for which squared correl-
ation r2> 0.2 (window 50 - stepwise 5 SNPs), was exe-
cuted in order to keep a set of 21,942 independent
markers (under the assumption of linkage equilibrium)
for inferring population structure.
The Admixture program [44] was used for computing

maximum likelihood estimations of individual ancestry
fractions while testing scenarii from k = 2 to k = 10 ances-
tral groups. The model choice criteria was based on
minimization of the cross-validation error. In order to
insure the reliability of the optimal choice of k, a comple-
mentary PCA analysis was performed on the genotype
matrix. Inference of relatedness between individuals re-
sulted in the calculation of an identity-by-state (IBS) allele
sharing matrix from the same subset of 21,942 SNPs using
the emmax-kin function implemented in the EMMAX
(Efficient Mixed-Model Association eXpedited) program
[45]. Both the ancestral proportion fraction matrix (Q)
calculated according to the optimum model from Admix-
ture and the IBS pairwise matrix between individuals (K)
were used in GWAS to correct inflation of p-values due to
stratification artefacts in the population.

Linkage disequilibrium estimation
Pairwise LD from a sampling of 1000 markers per
chromosome was computed using r2. A corrected pro-
cedure compacted in the LDcorSV R package [46] was
used allowing removal of population stratification bias
on LD. Considering a set of markers on each chromo-
some, both initial and corrected r2 estimates (r2vs ) were
then plotted against physical distances in order to inves-
tigate intra-chromosomal LD decay according to the fol-
lowing model assuming drift-recombination equilibrium
[47] r2 ¼ 1

1þ4bd þ e where r2 is the square of loci correl-
ation between a marker pair, d is the pairwise physical
distance between the two markers, b is a decay coeffi-
cient calculated with least squares estimates in a
non-linear regression (nls function in R software) and e
refers to a residual estimate.

Genome-wide association analysis
Cumulative effects of K and Q matrices over genotypic
data were first tested with EMMAX [45] as a covariance
genetic matrix and fixed ancestral covariates impacting
expression of phenotypes. Quantile-quantile (Q-Q) plots
were realized to select the best predictive model between
K, Q and K +Q for each phenotype using the qqman R
package [48]. Thus according to the best model choice,
two supplementary mixed models were performed: a re-
cently implemented multi-locus mixed-model [49] from
the MLMM algorithm [50] (on both G and G × Y BLUPs
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from the multi-year model) and a multi-variate linear
mixed-model (mvLMM) algorithm (between lgc and bs
G BLUPs from the multi-year model) developed in
GEMMA software [51]. Multi-locus models consist of
forward stepwise mixed-model regressions with an in-
creasing number of included markers (regressors) while
re-estimating genetic and residual variance components
at each step. The implementation from MLMM allows a
more suitable handling of the so-called “high dimension
issue” resulting from a low population size and a high
number of possible regressors introduced into the model
[49]. Instead of using a classical p-value threshold that
considers only the number of multiple tests (number of
SNPs), the model selection criterion is based on the cal-
culation of a more permissive extended Bayesian Infor-
mation Criterion eBIC [52]. P-values of marker-trait
associations are given considering both the optimal
model (with possibly several regressors) and each associ-
ated SNP as unique regressor avoiding p-value inflation
due to forward regressor inclusion.
The multi-trait model takes advantage of the correlation

structure between multiple phenotypes to increase power
to detect not only pleiotropic genetic variants but also
specific variants affecting only one of the correlated phe-
notypes [51]. Multi-testing correction on output p-values
was performed considering False Discovery Rate (FDR)
[53] control per chromosome (5% significance level).
For all significant associations, we computed the allelic

effect α as (Minor allele mean – Major allele mean)/2
and the individual percentage of phenotypic variance ex-
plained (PVE). Furthermore, for each trait, strict sense

heritability was calculated as the ratio h2 ¼
σ2P

SNP

σ2P
SNP

þσ2E

where σ2P
SNP

is the additive genetic variance explained

by all associated loci and σ2
E is the remaining variance

linked to both dominance, epistasis genetic effects and
non-genetic residual error. In order to ensure their reli-
ability, all detected associations were subjected to further
validations (ANOVA tests) on BLUPs from the
within-year model.
Estimates of r2vs around marker-trait-associated loci were

computed to give a graphical representation of the pair-
wise LD using a modified version from the snp.plotter R
package [54]. Moreover, performing genome-wide sam-
pling of 1000 markers, r2vs distributions were prospected
considering both inter-chromosomal and candidate loci
SNP pairs, and compared to intra-chromosomal scale in
order to detect any specific linkages.

Haplotype analysis
Groups of markers were constructed by considering all
detected loci for each G and G × Y BLUP phenotype.

Marker haplotypes were identified among all the acces-
sions according to the genotypes on the candidate loci
for each group of markers. Mean phenotypic distribu-
tions of the different haplotypes comprising at least two
accessions were compared using HSD post-hoc tests (α
= 5%) for the associated G BLUP phenotypes considering
both multi-year and within-year models. For haplotypes
represented by only one individual, mean value was
compared with the significantly differing groups from
the HSD tests. Favorable (and unfavorable) haplotypes
were defined for each multi-year and within-year model
G BLUP phenotype according to the following criteria:
(i) showing a significantly lower (or upper) group mean
value than all other haplotypes groups and (ii) with
stable performances among years.

Candidate gene identification
For each detected loci, candidate genes were identified
and localized on the first and second version of the
peach genome (P. persica v1.0 and v2.1, publicly avail-
able at https://www.rosaceae.org/species/prunus/all). Pu-
tative homolog protein annotations were obtained
following Blastp searches upon the Arabidopsis thaliana
(A. thaliana) genome using the TAIR10 database
(https://www.arabidopsis.org/). SNP gene localization
and effect on the protein sequence were determined
using the JBrowse tool (https://www.rosaceae.org/tools/
jbrowse) on the P. persica v1.0 genome and ORFfinder
(https://www.ncbi.nlm.nih.gov/orffinder/), respectively.
Then, the predicted impact of non-synonymous SNP on
the biological function of the protein was evaluated with
Provean v1.1.3 web-interface software (http://provean.jc
vi.org/index.php) [55].

Additional files

Additional file 1: Time series of degree-days over winter period in
l’Amarine. 2013 to 2016 annual data from November 15th to March 31st.
February month is delimited by the red arrows. (PDF 294 kb)

Additional file 2: Genetic (G) and genetic x year (G × Y) distributions of
lgc and bs BLUPs. A. and B. lgc and bs density plots of G (red), (G × Y)2013
(green) and (G × Y)2015 (blue) adjusted BLUPs. C. Scatterplot showing the
regression line between lgc and bs G BLUPs including 95% confidence
interval. All BLUP values are represented on a ln(x + 1) scale. (TIFF 347 kb)

Additional file 3: Population Structure (Q) of the apricot core-collection
based on data of 21,942 independent SNPs. Genotypic data pruned in
order to keep markers with pairwise r2 values < 0.2. (A) Cross-validation
estimation from k = 2 to k = 10 groups. Calculations performed using
Admixture program [45]. (B) Barplot of Principal Component Analysis
(PCA) eigenvalues from PC1 to PC73. The three first components explain
35.23% of the total variability. (C) Distribution of the ancestral fractions for
each accession according to a structure divided into 3 groups: Central
and Eastern Asia (yellow), Continental Europe (orange), Irano-Caucasian
and Mediterranean Basin area (red). (PDF 169 kb)

Additional file 4: Relation between susceptibility phenotypes lgc and bs
G BLUPs and ancestral fractions in the apricot core-collection. Ancestral
fractions Q1 to Q3 are displayed as supplementary variables (in blue) in
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the PCA. The contribution of the first component reached 78.46% of the
total variability. (PDF 97 kb)

Additional file 5: Linkage disequilibrium (LD) decay over physical
position in the apricot core-collection. Pairwise r2 values were computed
considering markers in a 1 kb-window. Estimated LD decay according to
a non-linear regression is represented for each chromosome. Black curves
show non-corrected estimates. Curves of corrected r2 estimates with
relatedness K (red), structure Q (orange) and both K and Q (blue) are
displayed. r2 mean and standard deviation values are indicated. r2=0.10
threshold are represented with dashed horizontal lines. (PDF 2325 kb)

Additional file 6: QQ (quantile-quantile) plots of the observed p-values
distribution for lgc and bs G and G × Y BLUPs. Non-corrected generalized
linear model (glm – green), glm accounting for structure Q (glm.Q – orange),
linear mixed model correcting for relatedness K (emmax.K – blue) and both
for K and Q (emmax.KQ – brown) output p-values are compared. The 95%
confidence interval is indicated in grey. (PDF 387 kb)

Additional file 7: Effect of all detected loci using genome-wide
multi-locus and multi-variate (mvLMM) mixed models on lgc and bs
G and G × Y BLUPs. (A) Manhattan Plots displaying the –log10 (p-values)
over physical positions in approximate 100 to 300 kb windows surrounding
associations. Significance level determined with eBIC criterion. Detected SNPs
were shown with red stars and overlapping candidate genes indicated with
blue arrows. As an indication, Bonferroni threshold =−log10(p-value-thr) =
6.10. Pairwise LD heatmaps (r2vsÞ were drawn within the genomic window
around each candidate. (B) Boxplot displaying the allelic effect for the
associated marker. For the loci detected with mvLMM on chromosome 7, the
allelic effect is represented for both lgc and bs G BLUPs. (PDF 575 kb)

Additional file 8: Distribution of r2vs unbiased estimates between intra-
chromosomal, inter-chromosomal and detected loci random pairs of
markers. Inter-chromosomal, intra-chromosomal and in between detected
loci LD distributions are displayed in green, blue and red, respectively.
Calculations performed considering 4.9E+ 06 intra-chromosomal and
4.3E+ 04 inter-chromosomal random pairs of markers. 99th percentile
lines of r2vs are drawn for intra-chromosomal and inter-chromosomal
distributions. Correlations between candidate loci pairs LG6_15273858-
LG5_5394803 (1st arrow) and LG5_5394803-LG5_4842835 (2nd arrow) are
indicated. (TIFF 76 kb)

Additional file 9: Individual/multi-locus ANOVA and post-hoc mean
comparison tests of all associated markers on G BLUPs from the within-year
model. *** shows p-value below 0.001, ** between 0.001 and 0.01,*
between 0.01 and 0.05, and ‘ns’ indicates non-significant p-values. Significant
results are indicated in red. Results with p-values slightly over the 5%
significance level (noted as (.)) are indicated in italic. SS = ratio sum of
squares (factor/total variation). For ‘multi-locus’ ANOVA, strict-sense
heritability estimates h2 are indicated. Comparison of means between
groups were performed for individual locus-ANOVA only on phenotypes
associated to a unique locus. AA/BB = homozygotes major/minor allele.
AB = heterozygous. Letters indicate means differencing significantly
between groups (HSD post-hoc test α = 5%). Group sizes are indicated
between brackets for HSD post-hoc tests. (XLSX 15 kb)

Additional file 10: Marker haplotype composition of the apricot core-
collection considering all detected loci. Groups of markers were constructed
by considering all detected loci for each phenotype according to G and
G × Y BLUPs. For markers, 0,1 and 2 are allelic codes according to minor
allele dose. (i) Global G BLUPs from multi-year and within-year models
associated with the haplotype. (ii) P-value of association between haplotype
and trait. (iii) Number of accessions carrying the haplotype. (iv) Mean
(± standard deviation) of associated trait per haplotype. (v) Post-hoc group
mean comparison test (HSD α = 5%). HSD post-hoc tests were performed
on G BLUPs from the multi-year and within-year models considering all
haplotypes classes with n > 2. Green and red cases: extreme group values
related to partially resistant and susceptible accessions for each phenotype.
For haplotypes carried by only one individual, assessment was performed in
comparison with significantly different groups from HSD post-hoc tests. Bold
values show outliers in individual haplotypes from the extreme groups
(values over the mean ± standard deviation of the extreme significant
groups issued from HSD post-hoc tests). (XLSX 19 kb)

Additional file 11: Information of plant material used in the study:
geographical origin, name and number of year repetitions through 2013
to 2016 phenotyping period. (XLSX 11 kb)

Additional file 12: Q ancestral covariates,G, G × Y BLUPs from the
multi-year and G BLUPs from the within-year model of phenotypic data
in the apricot core-collection. NA: missing values. Q1, Q2 and Q3
covariates are relative to ancestral fractions from (i) Central & Eastern Asia,
(ii) Continental Europe and (iii) Irano-Caucasia & Mediterranean Basin,
respectively. (XLSX 23 kb)

Additional file 13: Genotypic data of the 63,236 SNPs used for GWAS.
MAF: Minor Allele Frequency. Genotypes are coded according to minor
allele dose. 0/2 = homozygous major/minor allele. 1 = heterozygous.
Markers names are indicated as LG[chromosome number]_[physical
position in bp]. (XLSX 17724 kb)
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