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Abstract

Conclusions: The identification of gRDWN6"®

selection (MAS) in rice breeding programs.

Background: Nitrogen (N) is a major input cost in rice production, in addition to causing severe pollution to
agricultural and ecological environments. Root dry weight has been considered the most important component
related to crop yields than the other root traits. Therefore, development of rice varieties/lines with low input of N
fertilizer and higher root traits are essential for sustainable rice production.

Results: In this context, a main effect quantitative trait locus gRDWN
positively confers tolerance to N deficiency in the Indica rice variety XieqingzaoB, was identified using a
chromosomal segment substitution line (CSSL) population. gRDWN
IND90 on chromosome 6 based on association analysis of phenotype data from three N levels and 120
polymorphic molecular markers. The target chromosomal segment substitution line CSSL45, which has the higher
root dry weight (RDW) than indica cultivar Zhonghui9308 and carry gRDWN
BCsF,3 population derived from a cross between CSSL45 and Zhonghui9308 was constructed. To fine-map
gRDWN6"® we used the homozygous recombinant plants and ultimately this locus was narrowed to a 52.3-kb
between markers ND-4 and RM19771, which contains nine candidate genes in this region. One of these genes,
LOC_0s06g15910 as a potassium transporter was considered a strong candidate gene for the RDWN6E™ locus.

provides a new genetic resource for breeding rice varieties and a
starting point to improve grain yield despite the decreased input of N fertilizers. The newly developed and tightly
linked InDel marker ND-4 will be useful to improve the root system architecture under low N by marker-assisted
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6" on the long arm of chromosome 6 which

6 € was determined to be located near marker

6% was selected for further study. A

Background

Rice (Oryza sativa L.) is one of the most important three
major cereal crops for billions of people, most of who
live in rural and urban areas of tropical and subtropical
Asian countries [1, 2]. Therefore, rice production is play-
ing an important role in ensuring food security and
poverty alleviation in rice-eating countries in addition
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farmers’ incomes for the majority of the world popula-
tion [3]. According to previous estimates, the world’s
population will reach 8 billion by 2030 [4], and 9 billion
by 2050 [5]. The dramatically increasing population will
be exhausted the sustainable agricultural production
system, therefore rice production must be increased by
50% in order to meet the growing demand and food
needs in the future [4].

Nitrogen (N) is the most essential nutrient plant need
in crop developments and high quantity. It is often the
most yield-limiting nutrient in rice crop production in
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many countries [6, 7]. Nitrogen improves rice grain yield
and grain quality by improving; root system, panicle
numbers, leaf area, filled grains numbers, thousand grain
weight, grain formation, and protein synthesis [8]. Of
the total rice production costs, nitrogen fertilizers are
major input cost and cause environmental pollution in
case of excessive quantities used [9]. The problems and
negative environmental effects of excessive nitrogen (N)
quantities are well documented [10-12]. Nitrogen (N)
pollution from fertilizers is the biggest environmental
disaster affecting human health in multiple ways. There-
fore, it is necessary to develop new rice lines/varieties
with improved N use efficiency and high responses to N
deficiency stress for rice breeding programs and sustain-
able rice production [13, 14]. Nitrogen deficiency condi-
tions lead to a reduction in many agronomic traits and,
as a result, growth rate, grain and biomass yield decrease
[15]. Additionally, most of the physiological processes,
nitrogen metabolism, carbon metabolism, hormone me-
tabolism and photosynthetic, are negatively affected [16].
Thus, developing rice genotypes with high tolerance to
N deficiency is a highly desired characteristic for sustain-
able rice production [17].

Root traits are the important nitrogen-deficiency toler-
ance measurements, water uptake and as the major
interface between rice plant and various biotic and
abiotic stresses in natural soil [18]. Numerous studies
have measured root traits as the ratio of the trait values
under low nitrogen to those under normal, with a criter-
ion for selecting genotypes for the tolerance of low
nitrogen. Root number, root length, root volume, root
thickness, dry weight of roots, dry weight of the shoot
and the total dry weight, are important traits for study-
ing of nitrogen-deficiency tolerance in rice breeding
programs. Studying like these traits is difficult to handle
in soil environment. To meet these limitations, many of
studies grow rice seedlings in hydroponic system using
diverse mapping populations to identify the QTLs re-
sponses to nitrogen deficiency tolerance in rice [19-21].
Examination of N deficiency tolerance in rice using
hydroponic systems as controlled conditions is an alter-
native approach.

Several quantitative trait loci (QTLs) associated with
nitrogen-deficiency tolerance in rice were detected in the
field and greenhouse experiments using diverse mapped
populations, e.g. in Chromosomal Segment Substitution
Lines [22—-24], Recombinant Inbred Lines [19, 25], Intro-
gression Lines [26] and Backcross Recombinant Lines
[27]. Feng et al. [28] detected seven QTLs associated with
N-deficiency tolerance on chromosomes 1, 2, 3 and 8 at
seedling stage. Zhao et al. [29] mapped 28 QTLs under
two N levels and 16 QTLs of their relative traits for
seedling traits related to low nitrogen tolerance in rice.
Main effect QTLs on chromosome 3 were mapped using
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a DH population under three nitrogen conditions [30].
Obara et al. [20] mapped gRL6.1, a major QTL on
chromosome 6 for root elongation of rice seedling under
different N levels. Many genes associated with utilization
of nitrogen (N) for root seedling traits have been identified
in rice [31-33]. Studying and understanding the mecha-
nisms of rice N utilization at a molecular level may help
to improve rice varieties for N deficiency tolerance.

The super hybrid rice Xieyou9308’ is one of the earliest
hybrids occupied greater areas in China [34]. Building on
our previous study, some QTLs were identified under N
deficiency using a set of chromosomal segment substitution
lines (CSSLs) derived from XieqingzaoB/Zhonghui9308 as
two parents of the hybrid Xieyou9308'. Here in this study,
the objectives were to validate and fine map a major QTL,
gRDWNG6™®, for root dry weight under N deficiency using
F,3 populations derived from a cross between the target
CSSL45 and genetic background parent Zhonghui9308.

Methods

Rice materials and fine mapping population

In our previous study, a set of 75 Chromosome Segment
Substitution Lines (CSSLs) were evaluated for root dry
weight and other related root traits under N deficiency
at the seedling. The donor parent XieqingzaoB (XQZB)
and recipient parent Zhonghui9308 (ZH9308) as paren-
tal lines of this population exhibited high and low of
RDW and other related root traits, respectively, under N
deficiency [24]. For this study, one line of CSSLs popula-
tion, namely CSSL45, which showed high root dry weight
(RDW) values compared with Zhonghui9308 under N~
deficiency and harboring the gRDWN6™® a root dry
weight conditioning locus, was crossed with the genetic
background parent Zhonghui9308, and a total of 2200
F,3(BCsF,3) seedlings obtained from the cross were
evaluated to perform fine mapping of the gRDWN6™®
locus under low nitrogen on chromosome 6 as reported
by our previous study [24]. Therefore, XieqingzaoB, Zhon-
ghui9308, CSSL45 and F,3(BCsF,3) population derived
from a cross between CSSL45/Zhonghui9308 were used
in this study. The development scheme of rice populations
used here is shown in Fig. 1.

Growth conditions in hydroponic culture

Seeds of XieqingzaoB, Zhonghui9308, CSSL45 and
F,3(BCsF,.3) populations were soaked in sterilized distilled
water for 2 days at 30 °C and then incubated at 29 °C for
24h (Fig. 2a). The healthy germinated seeds were trans-
planting into Eppendorf tubes for 1 week before starting
exposure to the solution (Fig. 2b, c). The experiment was
conducted at China National Rice Research Institute
(CNRRI) at Hangzhou, China, during 2017 and 2018. For
confirming and comparison of root dry weight and other
related root traits of XieqingzaoB, Zhonghui9308 and
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Fig. 1 The breeding strategy applied for QTL and fine mapping in this study

CSSL45, fifteen seedlings of these parental lines were eval-
uated under both (N¥) normal and (N") deficiency condi-
tions. Yoshida rice nutrient solution was used with some
minor modifications [35]. For nitrogen (N”) deficiency
condition, the concentration of (NH,),SO, decreased to
0.42 (mg/l). The nutrient solution was prepared in distilled

water and renewed every 5 days. The plants were grown
and screened in the chamber with a 30 + 3/21 + 2 °C day/
night temperature and 70% relative humidity. The
F,3(BCsF,3) plants were evaluated only under nitrogen
deficiency (N7) treatment, and root dry weight under ni-
trogen deficiency (N7) was measured as RDWN. The root
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Fig. 2 Seed germination, hydroponic method and root phenotypes. (a) Rice seeds were germinated in incubator for 3 days. (b) After 72 h,
healthy germinated seeds were transplanting into eppendorf tubes. (c) Planting for one week before starting exposure to the solution. (d) Image
for root phenotypes taken from the seedling stage for ZH9308 and XQZB under N deficiency
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dry weight and other related traits were recorded after 5
weeks in a chamber (Fig. 2d).

Sampling and measurements

At seedling stage and after 5 weeks from growing, plants
were sampled for trait measurements and genotypic ana-
lysis. Multiple root traits including root number, root
length, shoot length, shoot dry weight, root dry weight
and total dry weight of parental lines (XieqingzaoB,
Zhonghui9308 and CSSL45) were measured under both
(N*) normal and (N7) deficiency conditions. Root dry
weight of F,3(BCsF,3) plants was measured as the
weight of root mass after 2 days of drying at 70 °C.

DNA extraction and development of molecular markers
DNA was extracted from the fresh leaves of each plants
of F,3 (BCsF,.3) population and their parents using the
CTAB method described by Luo et al. [36]. PCR proto-
col was performed in a 10-pL reaction volume contain-
ing 1.5 uL of 20.0 ng/pL template genomic DNA, 1.0 uL
of 10x PCR buffer, 0.25pL of 1.0 pmol/uL. dNTPs,
1.5 pL of 2.0 pmol/pL primer pairs, 0.06 uL of 5.0 U/uL
Taq DNA polymerase and 5.69 pL. of ddH,O. The ampli-
fication protocol consisted of an initial denaturation step
(94 °C for 5 min), followed by 32 cycles of 94 °C for 30s,
55°C for 30s, and 72°C for 1 min. The reactions were
completed with a final extension step of 72 °C for 7 min.
The PCR products were separated by electrophoresis on
8% non-denaturing polyacrylamide gels and then visual-
ized by silver staining [37]. New InDel markers in the
specific genomic region were designed according to gen-
ome sequence differences between the indica cv.
XieqingzaoB and the indica cv. Zhonghui9308. The se-
quences of these new markers used in this investigation
are listed in Table 1.

Statistical analysis of data
Mean phenotypic values for seedling root traits were
compared using the Student’s ¢-test. Previously, a total of
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120 SSR and Insertion/Deletion markers were distributed
along the rice genome and used for identifying the Ici-
Mapping QTLs in 75 CSSLs [24]. Phenotypic correlations
were calculated using a generalized linear model imple-
mented within the SAS statistical software package.

Results

Characterization of XQZB and ZH9308 under different N
levels

To identify the major QTLs responsible for nitrogen
deficiency tolerance in rice, a set of 75 CSSLs population
derived from an Indica cv XieqingzaoB as the donor
parent and Indica cv Zhonghui9308 as the recurrent
parent were used [24]. The phenotypic values for six
seedling root traits of XieqingzaoB and Zhonghui9308
under both low and normal N are shown in Fig. 3. There
were significant differences between XieqingzaoB and
Zhonghui9308 for all studied root traits (root number,
root length, root dry weight, shoot dry weight and total
dry weight). The two parents, XieqingzaoB and Zhon-
ghui9308 exhibited no differences in their shoot length
under both N levels (Fig. 3b). Zhonghui9308 was signifi-
cantly inhibited reductions in most of the root traits
compared with XieqingzaoB under N~ deficiency level.
The donor parent XieqingzaoB showing consistently
higher values than Zhonghui9308 in two N conditions,
thereby suggesting that Zhonghui9308 showed a smaller
response to N deficiency than XieqingzaoB (Fig. 3).

Correlation analysis among root traits

Phenotypic correlations coefficient analysis between root
dry weight and other related root traits like root length
and root number under both N conditions were per-
formed (Fig. 4). Data by red color correspond to correla-
tions under low N~ level and data by black color
correspond to correlations under normal N* level. As
shown in Fig. 4, three phenotypic seedling root traits were
significant and highly significant correlation coefficients
across two N levels except for correlations between root

Table 1 DNA primers sequences for polymorphic markers designed for fine mapping of gRDWNE™® on chromosome 6

Marker Marker type Forward primer sequence Reverse primer sequence Purpose Size
RM5963 SSR TCAAGTTACGGGAAATGTGTGG CTGCCTAGCTTCCGTTTCTCC Primary mapping 139
InD90 InDel CCTCATCCAGGGGTCATGTA CGGTCAAGTGTCATCCAGGT Primary mapping 19
RM20069 SSR GCGAGCGAGAGGAGAGATAGACG CGAATTCGGCACGAGTAATAGGG Primary mapping 157
ND-3 InDel AGACGGTGATATCGGTGAGT GGAGTTTAGTGGCTGCATCA Fine mapping 258
ND-4 InDel AAAACACCAAAGAATCCGGC AGGATAGGAAAACCGTGCAA Fine mapping 282
ND-5 InDel GCTTTAGCTACGGTTTCCGA TTTGACTCGTCCCAATAGGC Fine mapping 225
ND-11 InDel CCGAGTAGCGAAGCTCAAAT CTAGCATGGACGAACGGATG Fine mapping 103
ND-13 InDel ATTCAGCGTTCCTTAACCCG GACAGAGTCGAGAAACCGTG Fine mapping 116
ND-15 InDel AGATCTCACATGATTATATTCCGA TCTGCAACAAAGTGAAATCCT Fine mapping 117

SSR Simple Sequence Repeat, InDel Insertion/deletion
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Fig. 3 Phenotypic characterization of XQZB and ZH9308. (a) Comparison of XQZB and ZH9308 at seedling stage under both N* and N~ levels.
(b, ¢, d, e, f and g) Comparison of shoot length, root length, root number, shoot dry weight, root dry weight and total dry weight
between XQZB and ZH9308 under both N* and N~ levels. Five plants (n=5) were used to measure the growth parameters. The asterisks
represent statistical significance between XQZB and ZH9308, determined by a student’s t-test (**P < 0.01)

dry weight and root number, and between root length and
roots number under normal nitrogen (N*). The strongest
phenotypic correlations were found between root dry
weight and both root number and root length under N de-
ficiency level, with the correlation coefficients of 0.647**
and 0.616**, respectively. Simultaneously, there was a
highly significant correlation coefficient between root
length and root number with the value of 0.442** under
N~ level. On the other hand, the significant correlation be-
tween root length and root dry weight was found with the
value of 0.377* under N* level.

gRDWN6*® mapping using a CSSL population

In our previous study and by using 75 CSSLs population
derived from a cross between two parents (XieqingzaoB
as a donor and Zhonghui9308 as a recipient) differ
markedly for seedling root traits under N~ deficiency,
gRDWN6™® as a major QTL for root dry weight (RDW)
against N-deficiency was detected. Using 120 simple se-
quence repeat (SSR) and insertion/deletion (InDel)
markers, which were distributed along the whole rice

genome according to previously reported linkage maps
and known polymorphisms between the parents were
used to identify the QTLs in CSSLs population based on
a cut-off LOD value > 2.0. Analysis of variance based on
genotype, treatment, and genotype x treatment inter-
action effects on root dry weight (RDW) revealed highly
significant variance between the two N levels in the CSSL
population (Table 2). RDW displayed a continuous vari-
ation and followed a normal frequency distribution under
low N level (Fig. 5). This locus (named gRDWN6*?) de-
tected in the region between RM5963 and RM20069
markers on the long arm of chromosome 6. It had the
highest LOD score of 3.00, PVE% (phenotypic variance
explained) of 16.84% and additive value of 6.14, which in-
dicated that the gRDWN6™® is likely the main effect QTL
(Table 3). The positive allele from XieqingzaoB increased
the root dry weight under N~ deficiency condition. One
CSSL namely CSSL45, which had higher root dry weight
values compared with Zhonghui9308 under N~ deficiency
and harboring the gRDWN6™*, was selected for advanced
investigation and their genotypes were shown in Fig. 6.
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Fig. 4 Phenotypic correlations among root dry weight and other related traits. The red and black numbers represent Person correlation coefficients
between the traits under N~ and N, respectively. Single and double asterisk represent statistical significant at P < 0.05 and 0.01, respectively

Characterization of CSSL45 compared to ZH9308 under
N~ deficiency

To confirm the effect of gRDWN6™? for root dry weight
under N deficiency, one chromosome segment substitu-
tion line (CSSL) namely CSSL45, harboring this QTL
and have the segment from XieqingzaoB between the
markers RM5754 and RM162 (Fig. 7b, c), was crossed
with the background parent Zhonghui9308. When
Zhonghui9308 and CSSL45 in addition to XieqingzaoB
were evaluated under N deficiency in hydroponic condi-
tion, the root dry weight in the CSSL45 was significantly
higher than that of Zhonghui9308 (Fig. 7a, f). For other
related root parameters and compared to Zhonghui9308,
CSSL45 showed a longer root length and higher root
number under low nitrogen (Fig. 7d, e). Therefore, the
CSSL45 was backcrossed with the parent ‘Zhonghui9308’
and a total of 2200 F,.3 (BCsF,3) seedlings obtained from
the cross were screened for a fine mapping of gRDWN6?
under N deficiency using the homozygous recombinant
plants (Fig. 8).

Fine mapping of the gRDWN6*® to a 52.3-kb genomic
region

For genetic analysis and fine mapping of gRDWN6™%, a
total of 2200 F, 3 individual plants derived from CSSL45/
ZH9308 were screened and subjected to marker analysis
by scanning RM5963 and RM20069 flanking gRDWN6™?

in the preliminary mapping (Fig. 9a). Out of 65 Simple
Sequence Repeats (SSR) markers located in this genomic
region (http:www.gramene.org/), nine markers were identi-
fied as polymorphic between the parents CSSL45 and
ZH9308 (Fig. 9b). An analysis of RM5963 detected 98
recombination events between the marker and gRDWN6"?
on one side, while an analysis of RM20069 identified 169
recombination events between the marker and gRDWN6"?
on the other side. Simultaneously, the SSR markers
RM20034, RM19986, InD90, RM19844, RM19840,
RM19834, RM19831, RM19807 and RM19804 revealed
158, 155, 148, 121, 102, 99, 90, 86 and 48 recombinants,
respectively, while RM19765 showed 51 recombinants on
the other side (Fig. 9b). Therefore, the gRDWN6E™® was
mapped to a 1003-kb genomic region between the interval
RM19765 and RM19804. In this genomic region and out
of 13 SSR markers, only four markers exhibited poly-
morphism between the two parents and used to narrow
the region of gRDWN6"® using the homozygous recom-
binant plants. The SSR markers RM19766, RM19771, and
RM19776 were found to co-segregate with gRDWNG™”
and nine recombinant plants were revealed at RM19771,
therefore gRDWN6® was mapped in the 247.3-kb interval
of RM19766 to RM19776 (Fig. 9c). To narrow the targeted
region of gqRDWNG6™”, fifteen new Insertion/Deletion
(InDel) markers located at the substituted interval were de-
signed and of which six markers exhibited polymorphism

Table 2 Analysis of variance to determine the contribution to root dry weight (RDW) of genotype, treatment and their interaction in

CSSLs population

Source of variance (S.0.V) Degree of freedom (df) Mean square (MS) F-value (F) P-value (P)
Genotype 75 43.795 362.30 **
Treatment ° 1 4291.216 86.55 **
Genotype x treatment 75 55.696 328.19 **
Residual 152 24.87

2 Including two N levels (normal N* and low N7)
**Significant at the 0.01 level
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between the parents CSSL45 and ZH9308 (Table 1). Fur-
ther recombinant screening with the newly designed Inser-
tion/Deletion markers as well as RM19766, RM19771, and
RM19776 showed that the gene was narrowed between
ND-4 and RM19771 (Fig. 9d). With these newly designed
markers and selected the homozygous recombinant plants,
we evaluated the gene effect and then validated the pheno-
typic performance of root dry weight and two closely
related traits, which varied from 28.9-41.4 mg for root dry
weight, 11.3-13.8cm for root length and 8-12 for root
number. Finally and on the basis of the phenotypic and
genetic analysis, the targeted region of gRDWN6" was
localized to a 52.3-kb between the ND-4 and RM19771
markers (Fig. 9d).

Candidate genes at the RDWN6*® locus

Based on Rice Genome Annotation Project Database
(http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/)
and within the 8,981,538-9,033,871 bp in the target gen-
omic region of RDWN6™® on chromosome 6, there are
nine predicted genes in this 52.3-kb region (Table 4).
LOC-0s06g¢15830 and LOC_Os06g15890 expressed pro-
tein, LOC_Os06¢15840 and LOC_QOs06g15850 transposon
protein, LOC_Os06g15860, LOC_0Os06g15870 and LOC_
Os06g15880 retrotransposon protein, LOC_Os06g15900
conserved hypothetical protein and LOC_Os06¢g15910
potassium transporter 24. LOC_Os06¢g15910 has been
reported previously as a major potassium transporter gene
OsHAK?24, so it was nominated and considered the most

likely and strong candidate gene for the RDWN6™* locus
associated with nitrogen deficiency tolerance.

Discussion

Genetic populations played an important role in quanti-
tative trait loci (QTLs) identifying and gene mapping.
With different genetic segregating populations, such as
F, populations, chromosome segment substitution lines
(CSSLs), double haploid lines (DH), near-isogenic lines
(NILs) and recombinant inbred lines (RILs), hundreds
genomic regions associated with several root-related
traits under macro-nutrients deficiency have been identi-
fied in rice, but few have been fine mapped or cloned
[38]. CSSLs have been a successful and effective tool for
QTL mapping and positional cloning [39, 40]. Recently,
there have been an increasing number of published stud-
ies on the genetic, molecular and and physiological regu-
lation for root architecture as related to rice nutrient
efficiency. A number of genes which are involved in
changing the root development and root system archi-
tecture to facilitate enhanced nutrient acquisition have
been identified in rice [33, 41, 42]. Two major QTLs,
TONDI, confers tolerance to N deficiency tolerance in
rice [33], DEPI, increases the tolerance to N deficiency
[42], have been cloned. In our previous study, we ana-
lyzed the genomic regions in the XQZB/ZH9308 CSSLs
population and found three putative QTLs under N defi-
ciency during seedling stage using hydroponic culture.
Among them, one strong QTL (gRDWN6~?) had the
highest LOD value and that corresponds to the root dry

Table 3 Descriptive statistics for gROWNG™® mapped under low N in the CSSL population derived from XQZB and ZH9308

Trait Nitrogen level QTL Chr.

Marker name LOD score PVE (%) Add

RDW N~ gRDWNE'® 6

IND90 3.00 16.84 6.14



http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/

Anis et al. BMC Plant Biology (2019) 19:12 Page 8 of 13
P
1 2 3 4 5 6 7 8 9 10 1 12
3 3 K3 - 3 -—' 3
r r — InDel 156
- RM7003
InDel 159
-
— — b —
2 - RM5754
£
InDel 90
)
RM162
..
- L) -
. S
~. .t
. .J
. S
.. .
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weight was identified in the genomic region of
RM5963-RM20069 on the long arm of chromosome 6
[24]. In the same chromosome, major QTLs for some
root traits were also identified [19, 20, 26, 43] and affect-
ing root system architecture, suggesting gRDWN6""
might be a common genetic factor for root traits in vari-
ous rice genotypes. Previous studies revealed that root
dry weight (RDW) was significantly correlated with the
other root traits under N deficiency, such as root num-
ber (RN), root length (RL), root thickness (RT) and root
volume (RV), suggesting that these traits might be
controlled and inherited by common genes [44, 45].
Root dry weight has been considered the most important
component associated with crop yields than the other
root traits. Therefore, significantly correlations analysis
between root dry weight (RDW) and other related root
traits like root number (RN) and root length (RL)
under N deficiency were observed (Fig. 4). In this
study, we delimited the chromosome segment con-
taining gRDWN6~? and fine mapped to a 52.3-kb for
the first time. One CSSL, CSSL45-gRDWN6™Z, which
consistently produced higher root dry weight was selected
for advanced study and crossed with the genetic back-
ground parent Zhonghui9308 and a total of 2200 F,.3
(BCsF,.3) seedlings obtained from the cross were screened
for a fine mapping of gRDWN6™? under N~ deficiency
condition. In addition, CSSL45 as a line harboring this
locus was significantly higher than Zhonghui9308 in root
dry weight (RDW) under two nitrogen levels (N* and N7),
indicating gRDWN6"? could stably express in different
conditions and there were more CSSLs with high RDW
under N~ deficiency than that of the two parents (Fig. 5).
This transgressive segregation of root traits including

RDW under different N treatments was also observed in
introgression lines [26] and recombinant inbred line (RIL)
population [28].

In rice crop, the important functions of the root sys-
tem are the responses to low N availability and mainly
through enhanced root traits like root number, root
length, root density and root thickness to absorb water
and primarily nutrients [23, 46—48]. Root dry weight is
better related to crop yields and important measurement
because it is a summary of all root traits. In this investi-
gation, we identified gRDWN6™®, a major QTL enhan-
cing tolerance of N deficiency in rice. This QTL is the
first locus fine mapped for root dry weight under N defi-
ciency in the target region 8,981,538 - 9,033,871 bp on
chromosome 6. Numerous studies have identified several
QTLs/genes for nitrogen use efficiency on the same
chromosome. For example, Song et al. [49] identified
AspAT3 gene within the 23,738,029 - 23,738,154 bp
region, which is contributed to nitrogen and carbon
metabolism in rice. Around the waxy gene on chromo-
some 6, Shan et al. [50] mapped gNUEp-6 as a major
QTL for nitrogen utilization in the 1.76-2.09 Mb re-
gions. Under normal and low nitrogen conditions and
within the 28.13-29.63 Mb regions, Tong et al. [22]
identified QTLs associated with dry weight and grain
yield on the chromosome 6. Using rice chromosome
segment substitution lines (CSSLs) a novel QTL of ef-
fective panicle and yield in the range of 2.29-2.83 Mb
was detected by Wang et al. [51]. Also, a novel locus
related to NUE was identified using a genome-wide
association analysis of 184 rice genotypes at 4,845,258 -
4,845,375 bp and near the SSR marker RM314 [52]. Yang
et al. [53] delimited the gNUE6 locus in 8,647,275 -
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Fig. 7 Phenotypic and genotypic performance of the parental lines. (@) Root morphology of CSSL45, XQZB and ZH9308 under N deficiency.
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qRDWNéXB on chromosome 6 (maps to the interval in Red). (d, e and f) Root length, root number and root dry weight of CSSL45, XQZB and
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8,913,783 bp region. However, these QTLs/genes are not
the same loci as gRDWN6™®; therefore, this QTL is a
newly discovered locus controlling nitrogen deficiency
tolerance in the target region. Among the nine predicted
genes in the fine-mapped region 52.3-kb, only one gene
LOC_0Os06¢15910 has been reported previously as a
major potassium transporter gene OsHAK24 [54], it was
considered the most likely and strong gene for the
RDWN6™® locus and might be the candidate gene re-
sponsible for nitrogen deficiency tolerance. Previous
studies have demonstrated different genes controlling

nitrogen use efficiency and nitrogen deficiency tolerance
in rice. In the concentrations of low and high nitrate
ions, two genes NRTI1.IB had a nitrate-transporting
activity and NRT?2 a high-affinity transporter were found
by Hu et al. [55] but NRT2 can’t transfer NO~?2 inde-
pendently. OsNRT2.3b able to increase the uptake of
nitrogen and phosphorus, nitrogen use efficiency and
improving the grain yield [56]. At different levels of
nitrate, Yan et al. [57] showed that OsNAR2.1 is able to
interact with OsNRT2-1, OsNRT2-2, and OsNRT2-3
genes, and can enhance nitrate uptake by rice roots at

8 L <= 9 -

Fig. 8 Genotypes of the parental lines ZH9308, CSSL45 and BCsF,3 population using RM19807 marker. Number (1), indicate the genotypes of the
homozygous ZH9308 allele, number (2) homozygous CSSL45 allele and number (3) heterozygous allele
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Fig. 9 Mapping results of gRDWN6E® on chromosome 6. (a) The genetic linkage map of the gRDWN6E® based on 75 CSSLs. (b, ) the high
resolution linkage map of the gRDWN6E*® region generated using BCsF»5 population; the allele was mapped to the region between markers
RM19766 and RM19776. (d) Genotypes and phenotypes of the parental lines (CSSL45 and ZH9308) and the homozygous recombinants plants for
fine mapping. The white and black bars denote the marker genotype of ZH9308 and CSSL45, respectively. Root dry weight (RDW), root length
(RL) and root number (RN) are presented as means + SD

different levels of nitrate. TONDI as a major QTL was
detected on chromosome 12 and its over-expression en-
hanced the nitrogen deficiency tolerance in rice [33].
OsAMTI-1, OsAMTI1-2, and OsAMTI1-3 are the major
three ammonium transporter genes were identified in rice
and played a pivotal role in absorbing NH** [58-60)].
These results have greatly enhanced our understand-
ing of the regulation of nitrogen use efficiency and nitro-
gen deficiency tolerance in rice. Here, we report the
characterization and identification of a novel QTL,
gRDWN6™®, that regulates root dry weight in rice to a
region of 52.3-kb (Fig. 9d), and identified nine predicted
genes as viable candidates for it. One of them,

LOC_Os06g15910 previously reported as a major potas-
sium transporter gene OsHAK24 [54] might play an
important role in nitrogen deficiency tolerance in rice.
The annual consumption of N fertilizers increases year
after year, causing severe pollution to agricultural and eco-
logical environments. Only 30-45% of N fertilizer is
efficiently used by rice plants [61]. Therefore, the rice
cultivars harbor the gRDWN6™® may significantly de-
crease the use of N fertilizers, reduce the cost of rice
production, alleviate pollution and protect the environ-
ment. gRDWN6™ is expected to have wide use potential
in rice breeding programs and will play an important role
in the ‘Second Green Revolution’.
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Table 4 Candidate genes located within 52.3-kb physical regions for gRDWNE™® on chromosome 6

Gene ID Gene start (bp) Gene end (bp) Putative function

LOC-0Os06g15830 8,986,168 8,987,101 Expressed protein

LOC_Os06g15840 8,992,763 8,996,095 Transposon protein, putative, CACTA, En/Spm sub-class, expressed
LOC_Os06g15850 8,999,300 9,004,290 Transposon protein, putative, CACTA, En/Spm sub-class, expressed
LOC_Os06g15860 9,006,419 9,007,843 Retrotransposon protein, putative, unclassified, expressed
LOC_Os06g15870 9,009,481 9,014,615 Retrotransposon protein, putative, unclassified, expressed
LOC_Os06g15880 9,017,523 9,018,636 Retrotransposon protein, putative, unclassified

LOC_Os06g15890 9,019,348 9,019,788 Expressed protein

LOC_0s06g15900 9,021,414 9,022,376 Conserved hypothetical protein

LOC_Os06g15910 9,033,862 9,037,775 Potassium transporter 24, putative, expressed

Conclusions

In summary, a major QTL, gRDWN6® was identified in
the rice response to N deficiency and found that it en-
hances a positive regulator of root system architecture.
Based on the target CSSL and homozygous recombinant
population, gRDWN6™® was delimited to a 52.3-kb
region on chromosome 6. Nine candidate genes were
identified in the target region using gene annotation
information. LOC_Os06g15910 previously reported as a
potassium transporter gene in this region and might play
an important role in nitrogen deficiency tolerance of
rice. The identification of gRDWN6™® provides a new
genetic resource for breeding rice varieties and a starting
point to improve grain yield despite the decreased input
of N fertilizers. The newly developed and tightly linked
InDel marker ND-4 will be useful to improve the root
system architecture by marker-assisted selection (MAS) in
rice breeding programs. But to understand how RDWN6"?
affects the agronomic characteristics of rice, further study
is needed to clarify their molecular and biological functions
through cloning and transgenic approaches.
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