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Abstract

Background: Leaf mold, one of the major diseases of tomato caused by Cladosporium fulvum (C. fulvum), can
dramatically reduce the yield and cause multimillion dollar losses annually worldwide. Mapping the resistance
genes (R genes) of C. fulvum and devising MAS based strategies for breeding new cultivars is an effective approach to
improve the resistance in tomato. Up to now, many C. fulvum genes or QTLs have been mapped using different
genetic materials, but few studies focused on Cf-10 gene positioning.

Results: In this study, we investigated the genetic rules for Cf-10 and used a novel combinatorial strategy to rapidly map
the Cf-10 gene. Initially, the performance of F1, F2 and BC1F1 individuals after infection, demonstrated that the
resistance against C. fulvum was controlled by a single dominant gene. Two pools of resistant and susceptible
individuals from F2 population were investigated, using mapping by sequencing approach and Cf-10 was found to be
localized to 3.35 Mb and 3.74 Mb on chromosome 1, employing SNP/InDel index methods, respectively. After
accounting for overlapping regions, these two algorithms yielded a total length of 3.29 Mb, narrowing down
the target region. We further developed five serviceable KASP markers for this region based on sequencing data and
conducted local QTL mapping using individuals from the F2 population, except for mapping by sequencing
as mentioned above. Finally Cf-10 gene was mapped spanning a region of 790 kb, where only one gene (Solyc01g007130.
3) was annotated as probable receptor protein kinase TMK1 with a LRR motif, a common R gene characteristic. The RT-
qPCR analysis further confirmed the localization and the relative expression of Solyc01g007130.3 in Ontario 792 and was
found to be significantly higher than that in Moneymaker at 9 dpi and 12 dpi, respectively.

Conclusion: This study proposed a novel combinatorial strategy by combining SNP-index, InDel-index analyses and local
QTL mapping using KASP genotyping approach to rapidly map genes responsible for specific traits and provided a robust
base for cloning the Cf-10 gene. Furthermore, these analyses suggest that Solyc01g007130.3 is a potential candidate to be
regarded as Cf-10 gene.
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Background
Cloning genes associated with important agronomic traits
is one of the major components of plant functional genom-
ics research. Map-based cloning is an important and reli-
able method, and many genes with vital functions from
economically important crops [1–5] and fruit trees [6, 7]
have been cloned, primarily using simple sequence repeat
(SSR), sequence-characterized amplified region (SCAR)

markers and/or cleaved amplified polymorphic sequence
(CAPS) based approaches. A number of genes or quantita-
tive trait loci (QTLs) such as ER4.1 [8], dl [9], Ty-2 [10],
ms10 [11], fw2.2 [12] and fw11.3 [13] were fine mapped
and isolated from tomato using SSR/InDel makers. How-
ever, the markers and CAPS derived from single nucleotide
polymorphisms (SNPs) to clone these genes often results in
low resolution and are time-consuming. Mapping and clon-
ing of genes quickly is a major challenge in the
post-genomic era. However, next-generation sequencing
(NGS) technologies provide an effective solution to the
problem and a number of genes were fine mapped and
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cloned by employing high-density genetic map based ap-
proaches. A high-density genetic map constructed by
using Illumina-based whole genome re-sequencing of
soybean genome, a 29.7 kb QTL containing two candidate
genes involved in resistance against southern root-knot
nematode (RKN) was mapped on chromosome 10 [14].
Another research highlighted the mapping of QTL-U5 re-
sponsible for fruit colour in cucumber spanning a region of
313.2 kb located on chromosome 5 containing 320 genes,
of which 39 were synonymous [15]. Mapping by sequencing
or bulked segregant analysis (BSA) is another method for
rapid gene mapping [16, 17]. Pandey et al. [18] identified a
region of 3.06Mb on pseudomolecule A03 responsible for
rust and late leaf spot (LLS) resistance using whole-genome
re-sequencing QTL-seq approach. The study further identi-
fied that about 25 candidate genes were affected by 30
non-synonymous SNPs besides other nine candidate genes
affected by three synonymous SNPs responsible for rust
and LLS resistance, respectively. The RNA Seq-BSA was
also adopted to identify SNPs associated with Yr15, in-
volved in resistance against yellow rust in wheat [19]. Sev-
eral other studies used similar methods to fine map genes
for different economically important traits [20–22].
Plants have evolved a plethora of resistance strategies

in response to the invasion of pathogens [23–26], and
most prominent among them encompasses R gene in-
duced recognition, exploiting nucleotide-binding sites
and leucine-rich repeat (NBS-LRR) domains to trigger
the disease resistance response [27, 28].
C. fulvum series genes are special R genes that play

important roles in resisting tomato leaf disease caused
by Cladosporium fulvum, which can cause serious dam-
age to tomato yield and quality. To date, many C. ful-
vum genes have been mapped in different genomic
regions, but most of these C. fulvum genes are located
at the Milky Way site of chromosome 1 such as, Cf-4,
Cf-9, Hcr9-4E, Hcr9-9B, Cf-ECP1, Cf-ECP2, Cf-ECP3,
Cf-ECP4, Cf-ECP5 and Cf-19 genes [29–38]. Whereas,
other C. fulvum genes, such as Cf-2, Cf-5 and Cf-6,
were shown to be closely associated with chromosome
6 [39, 40]. Among all these genes, only Cf-2, Cf-4, Cf-5,
Cf-9 and Cf-19 have been cloned and well character-
ized. All of these cloned Cf genes belong to one of the
two multigene families designated as homologues of
Cladosporium fulvum resistance genes (Hcr). The Cf-9
and Cf-2 genes consisting of 28 and 39 LRRs respect-
ively, codes for transmembrane proteins [41, 42] while
Cf-5 gene has been predicted to encode a largely extra-
cytoplasmic protein containing 32 LRRs. On the other
hand, Cf-4 encodes a membrane-anchored extracellular
glycol-protein possessing only two LRRs which is much
less than the LLRs encoded by Cf-9 gene [31]. The candi-
date gene Cf-19 (Solyc01g006550.2.1) encodes 30 LRRs,
which is different from other Hcr genes. The C terminal

of the protein encoded by Cf-4 gene was similar to those
of Cf-9 and Cf-19 genes [38, 39]. These genes seem to be
evolutionarily conserved although, they have shown a cer-
tain degree of structural differences [38].
Previously, our research team had developed four

molecular markers associated with Cf-10 gene [43], but
this is far from gene positioning or cloning. Recently,
we investigated the expression patterns of differentially
expressed genes (DEGs) in Ontario 792 harbouring
Cf-10 gene after infection [44]. In the current study, we
explored the genetic characteristics of the Cf-10 gene
by developing a large F2 population and a BC1F1 popu-
lation. By combining the SNP/InDel-index sequencing
methods, we preliminarily mapped the Cf-10 gene and
then narrowed this key region by developing kompetitive
allele-specific PCR (KASP) markers for the primary map-
ping region to genotype the remaining individuals of F2
population. The RT-qPCR was used to validate the expres-
sion of candidate genes. Our results provide a novel, rapid
and labour-saving approach for mapping genes in general
and form the basis of cloning and deciphering molecular
dynamics of Cf-10 gene in particular.

Results
The variation in disease resistance and test crosses
To investigate the genetic basis of Cf-10, we evaluated
the disease resistance potential of Ontario 792, Money-
maker, F1, F2 and BC1F1 populations. Initially, we tested
the resistance response of the two parents to ten differ-
ent races (Table 1). Moneymaker demonstrated signifi-
cantly higher susceptibility to all these races, while
Ontario 792 was immune to race 1.2.4 and 1.4 besides be-
ing resistant to other eight races, indicating that Ontario
792 had broad-spectrum resistance against C. fulvum. Then
we adopted the predominant physiological race 1.2.3.4 in
Heilongjiang Province to test the performance of F1 and F2
individuals. To simplify the phenotype, plants with a disease
score between 0 and 3 points were marked as resistant,
while those with scores ≥5 points were marked as suscep-
tible. All F1 plants showed resistance against the disease
(Table 2), 391 individuals out of 529 from F2 population
showed disease resistance while remaining 138 were found
to be susceptible with a 3:1 segregation ratio as revealed by
Chi-square test results (Fig. 1c), suggesting that Cf-10 was
controlled by a single dominant gene. This hypothesis was
further supported by the BC1F1 population presenting a 1:1
Mendelian ratio (Fig. 1c; Table 2; χ2 = 0.011).

QTL-seq analysis combining SNP-index and InDel-index
A total of 116.30 Gb clean data were obtained by Illu-
mina sequencing, including 62.61 Gb from the parents
and 53.69 Gb from the two mixed pools, all of high
quality (94.33% >Q30 > 91.25%) and with a stable GC
content (36.77% > GC > 35.69%) (Table 3). The average
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sequencing depths for the two parents and the two F2 pools
were 33.50 × and 29 ×, respectively. These high-quality data
lay a robust foundation for subsequent analysis.
These reads were mapped onto the reference genome

of Solanum lycopersicum. The average mapping rate was
96.61% for these four samples. A total of 1,465,985 SNPs
were obtained from the parents, of which 10,293 SNPs
were non-synonymous. A total of 202,784 SNPs were
obtained from the two mixed pools. Notably, we de-
tected 214,921 small InDels amongst the parents and
51,348 small InDels from the mixed pools. Venn dia-
grams were used to demonstrate the relationships be-
tween SNP and InDels among the parents and the
mixed pools. As shown in the Venn diagrams, these four
samples share 159,740 SNPs and 74,988 InDels respect-
ively (Fig. 2a, b).
We used two different methods to map the QTLs re-

sponsible for Cf-10 resistance. As shown in Fig. 2, only
one QTL was identified and both the SNP-index and
InDel-index association algorithms mapped this QTL
to chromosome 1. More specifically, this QTL was lo-
cated in the region 0–3,350,000 bp (3.35Mb) using
SNP-index method while InDel-index method revealed
its presence in the region spanning 60,000–3,800,000 bp
(3.74Mb). By taking overlapping regions into account,
these two methods yielded a total length of 3.29Mb on
chromosome 1. A total of 408 genes were annotated in

this associated region, including 73 non-synonymous
genes, 16 frameshifted genes and 16 genes with an extra-
cellular LRR (eLRR) domain.

Further mapping of the Cf-10 gene
Since the 3.29-Mb region still contained a large number
of genes, we developed 16 KASP markers, and five valid
KASP markers in this region were used for genotyping
an additional set of 147 individuals. The KASP geno-
typing results obtained from Ontario 792, Moneymaker
and F1 individuals were consistent with our sequencing
results, indicating that the sequencing and SNP calling
results were reliable (Additional file 1: Table S5).
Furthermore, we developed genetic map and also per-
formed QTL mapping of this region so that the pos-
ition of Cf-10 resistance QTL was narrowed down and
was located between SNP 1 and SNP 2, a 790-kb region
(Fig. 3; Additional file 2: Figure S1). Fortunately, only
the Solyc01g007130.3 gene was annotated as probable re-
ceptor protein kinase TMK1 with a LRR motif, a common
R gene characteristic suggesting that Solyc01g007130.3 is a
potential candidate to be regarded as Cf-10 gene. Neverthe-
less, no SNPs or InDels were called in Solyc01g007130.3
from Ontario 792 and Moneymaker according to our
re-sequencing data. We further used Sanger sequencing to
compare Solyc01g007130.3 variation between Ontario 792

Table 1 The disease response of Moneymaker and Ontario 792 to different physiological races

Physiological races Moneymaker Ontario 792

Disease index Resistance level Disease index Resistance level

1.2 65.4 HS 15.7 R

1.2.3 50.1 MS 20.1 R

1.2.3.4 55.5 HS 11.4 R

1.2.4 76.1 HS 0.0 I

1.3.4 58.4 HS 12.5 R

2.3 70.7 HS 22.6 R

1.3 59.9 HS 26.8 R

1.4 55.2 HS 0.0 I

1.2.3.4.5 56.1 HS 20.4 R

1.2.3.4.9 62.3 HS 15.3 R

I immune, HR highly resistant, R resistant, MR moderately resistant, MS moderate susceptibility, HS highly susceptible

Table 2 Genetic analysis of the Cf-10 resistance gene in different populations

Generation Total No. of plants No. of resistant plants No. of susceptible plants The segregation ratio of R:S χ2

Ontario 792 50 50 0 – –

Moneymaker 50 0 50 – –

F1 20 20 0 – –

F2 529 391 138 2.83:1 0.082

BC1F1 45 23 22 1.045:1 0.011

χ2 0.05, 1 = 3.84
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and Moneymaker and that no apparent differences were
observed between them (data not shown).

Screening of expression pattern of the candidate gene
We conducted a RT-qPCR assay to determine the expres-
sion response of Solyc01g007130.3 in Ontario 792 and
Moneymaker after inoculation. The RT-qPCR results dem-
onstrated that the expression of Solyc01g007130.3 was sig-
nificantly induced in Ontario 792, except at 16 dpi (Fig. 4).
No significant differences were observed between Ontario
792 and Moneymaker at 0 dpi, but at 9 dpi and 12 dpi, the
relative expression of Solyc01g007130.3 in Ontario 792 was
significantly higher than that in Moneymaker. At 5 dpi and
16 dpi, the difference in expression was higher in Ontario
792 than in Moneymaker but was of lesser statistical signifi-
cance. Considering these results together, we concluded

that Solyc01g007130.3 is a possible candidate for the gene
underlying the QTL for Cf-10 resistance.

Discussion
Rapid gene cloning from a large F2 population
Traditional map-based cloning is an efficient approach
to isolate genes/QTLs responsible for desired agronomic
traits [45–47]. Usually, a genetic map of an F2, double-
haploid (DH) or recombinant inbred line (RIL) popula-
tion based on hundreds of SSR or InDel markers is used
to make a primary map, and then a near-isogenic line
(NIL) is developed based on marker-assisted selection
(MAS; newly discovered in the primary mapping region)
to narrow down the region of interest to a sufficient size
to screen for a few candidate genes. Unfortunately, this
workflow always takes a relatively long time [48, 49].
Compared with genetic maps, the mapping by sequencing

Fig. 1 The phenotype and segregation patterns of tomato. a The performance of Ontario 792 (left) and Moneymaker (right) after inoculation at
21 dpi. b The performance of F2 individuals after inoculation at 21 dpi. The left leaf is susceptible, while the right one is resistant. c The
distribution of resistant and susceptible plants in the F2 and BC1F1 populations

Table 3 An overview of the sequencing results

Sample Clean Reads Clean Bases (Gb) Q30 (%) GC (%) Properly mapped (%)

R01 89,945,037 26.94 93.89 36.77 89.45

R02 119,076,889 35.67 91.25 35.69 89.53

R03 96,599,912 28.93 94.27 36.18 89.80

R04 82,672,515 24.76 94.33 36.30 90.47
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Fig. 2 SNP statistics and BSA analysis. a Venn diagram of SNP in the four pools. b Venn diagram of InDel in the four pools. c SNP-index algorithm to
map Cf-10 gene. d InDel-index algorithm to map Cf-10 gene

Fig. 3 Molecular mapping of the Cf-10 gene using SNP/InDel combinatorial approach
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using NGS is a faster and reliable method for mapping
QTLs [50]. Nevertheless, one mixed pool typically con-
tains approximately 20–100 individuals and generally
maps the target region at a Mb-level interval [19, 51–54]
because of insufficient meiotic recombination events. We
still have to perform fine mapping or use omics methods
such as RNA-seq to further screen the candidate genes
[55, 56].
KASP is one of the uniplex SNP genotyping plat-

forms [57] and has been successfully used to genotype
and map QTLs in bi-parental populations [58, 59]. Re-
cently, Xu et al. [60] developed KASP markers span-
ning a 303 kb region mapped by a 50 + 50 mapping
sequence strategy and genotyped 2274 F2 individuals.
Finally, the region was narrowed down to 36.1 kb, and
they identified a candidate gene, ARN6.1, responsible
for waterlogging tolerance.
In the present study, we used mapping by sequencing

by combining SNP-index and InDel-index analyses to pri-
marily position the Cf-10 gene to a 3.29Mb region. Five
KASP markers developed in this region helped us to nar-
row the Cf-10 gene to 790 kb region. We thus put forward
an approach that could rapidly fine map QTLs using only
a large F2 population, especially for those traits governed
by single nuclear-encoded genes or some threshold traits
(Fig. 5). Developing a large F2 population, mapping by se-
quencing analysis and KASP genotyping for QTL map-
ping could be completed in a short time, and a progeny
test could ensure accurate phenotype identification and
helps in achieving the desired objectives rapidly and ac-
curately. We believe that this approach can be adopted for
quick QTL fine mapping in the future.

The characteristics of the potential candidate gene
Solyc01g007130.3
We used ProtComp 9.0 for the sub-cellular localization of
Solyc01g007130.3 and found that the encoded product
was located in the plasma membrane (Additional file 3:
Table S6), in agreement with other Cf genes. The CDD
online protocol (https://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi) predicted that Solyc01g007130.3 encodes a
member of the STKc_IRAK-like superfamily and the
PKc-like superfamily with 10 LRRs associated with disease
resistance [61]. To further investigate the relationship be-
tween Solyc01g007130.3 and other Cf genes, we used
MEGA 5.05 to perform multiple DNA sequence align-
ment analyses. A long evolutionary distance was ob-
served between Solyc01g007130.3 and other Cf genes
(Hcr2, Cf-2, Cf-4, Cf-5, Cf-9) (Additional file 4: Figure
S2, A), strongly suggesting that comparatively different
resistance mechanisms underlie Cf-10 gene. Amino acid
sequence clustering also support these results. More
follow-up experimental investigation is required to further
understand the molecular function of Solyc01g007130.3.

The casual variation in Cf-10 responsible for disease
resistance
Most plant disease resistance genes (R genes) cloned so far
encode NBS-LRR proteins [27, 28]. Therefore, when we lo-
cated the Cf-10 gene in the 790-kb interval, we only
screened for genes containing the LRR domain. Fortunately,
we only found one gene containing this domain (Solyc0
1g007130.3), and RT-qPCR analysis showed that significant
or highly significant expression differences existed at 9 dpi
and 12 dpi. However, Solyc01g007130.3 was not included in

Fig. 4 RT-qPCR analysis of Solyc01g007130.3 in the QTL region on chromosome 1 in response to C. fulvum inoculation. Both Ontario 792 and Moneymaker
were inoculated with C. fulvum for 5, 9, 12, and 16 d. The blue and red bars represent Moneymaker and Ontario 792, respectively. The
results were statistically analysed using Student’s t-test (*, P< 0.05; **, P< 0.01) and the asterisks indicate that the difference in gene expression in Ontario
792 and Moneymaker plants was highly significant
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the set of DEGs at 16 dpi in our previous transcriptome
research [44]. This phenomenon may be explained by the
fact that Solyc01g007130.3 expression was significantly
higher in the early stage of infection and that, in the later
stage, downstream regulation played a leading role, but
the hypothesis requires validation.
We also compared the parental re-sequencing data and

found that no SNP or InDel variation was observed be-
tween the two parents. To better understand this step, we
used Sanger sequencing to compare Solyc01g007130.3
between the parents and found that no difference in this
gene existed between the parents (data not shown). We
did not rule out the possibility of a methylation modifi-
cation difference between the parents [62] and also
compared the 5 kb region upstream of this gene. Unfortu-
nately, this region could not be cloned by traditional PCR.
Using reference genome information available for tomato
(ftp://ftp.solgenomics.net/tomato_genome/assembly/build
_3.00/), we found that the GC content of this 5 kb region
upstream of Solyc01g007130.3 was 24.14%, which was
much lower than the average value (35.20%) of the entire
genome. This could be the possible reason hindering PCR
based cloning of the region. In future research, we plan to
establish the bacterial artificial chromosome (BAC) library
for Ontario 792 to solve this problem of cloning the 5 kb
sequence upstream of Solyc01g007130.3. Recently, a new
method for cloning R genes that utilizes a three-step

method (MutRenSeq) combining chemical mutagenesis
with exome capture and sequencing to clone genes with
specific domains may solve the problems associated with
cloning the Cf-10 gene [63].

Conclusion
We used two steps of bioinformatic analysis named
SNP-index and InDel-index to co-location and narrow
down the Cf-10 gene region to 3.29Mb. Then QTL map-
ping analysis adopting a total of five KASP markers devel-
oped by SNPs in this region further mapped Cf-10 gene to
790 Kb. This combinatorial approach can rapidly map or
fine map genes responsible for specific traits just utilizing
a big F2 population. Furthermore, we screened possible
candidate genes according to their annotation information
and found that Solyc01g007130.3 harbored a receptor pro-
tein kinase TMK1 with a LRR motif. Different expression
by RT-qPCR validated that Solyc01g007130.3 was a candi-
date gene for Cf-10. The location and candidate gene
screening of Cf-10 could lay a robust foundation for later
cloning the Cf-10 gene and applications in MAS selection
programs.

Methods
Plant materials and breeding strategy
In order to map the Cf-10 gene in tomato using map-based
strategy, we crossed accession Ontario 792 (Institute of

Fig. 5 A novel combinatorial strategy to rapidly fine map genes
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Vegetable and Flowers, Chinese Academy of Agricul-
tural Science) harbouring the Cf-10 resistant gene (R
gene) with the susceptible accession Moneymaker (To-
mato Genetic Resource Center, LA2706) to harvest F1
and an F2 population subsequently containing 529 indi-
viduals, generated by selfing F1 population. At the same
time, a BC1F1 population was also generated by back-
crossing the F1 plants with Moneymaker to test the
genetic basis of the Cf-10 gene. All plants were grown
at the Horticultural Experimental Station of Northeast
Agricultural University by applying normal water and
fertilizer practices while weeds were managed manually.

Cladosporium fulvum inoculation and resistance evaluation
Ten physiological races (1.2, 1.2.3, 1.2.3.4, 1.2.4, 1.3.4,
2.3, 1.3, 1.4, 1.2.3.4.5, 1.2.3.4.9) provided by tomato re-
search group of Horticulture College, Northeast Agri-
cultural University were used to test the resistance
potential of Ontario792 and Moneymaker. The disease
score (0–9 points) for the severity of symptoms was
assessed according to Zhao et al.’s method [38]. The
disease index and the classification criteria were judged
as per Li et al. [64] recommendations.
At five-to-six leaf stage, the seedling of Ontario 792 (50

pure lines), Moneymaker (50 pure lines), F1, F2 and BC1F1
plants were inoculated with C. fulvum race 1.2.3.4, which
is a predominant physiological race in Heilongjiang Prov-
ince, China. To ensure that the leaves of each individual
were successfully inoculated, we sprayed the C. fulvum
suspension at 1 × 107 sporangia per mL in the morning,
afternoon and evening of a sunny day as mentioned by
Liu et al. [44]. The plants were assessed for disease sever-
ity as described by Wang et al. [65]. The disease severity
of the plants was converted to a disease score of 0–9
points according to the method of Zhao et al. [38]. Scor-
ing in the range of 0–3 points was demarcated as resistant
and a score ≥ 5 points was defined as susceptible. For the
subsequent linkage analysis, the resistant and susceptible
phenotypes were assigned as 1 and 0, respectively. Chi-
square analysis was performed to test the segregation ratio
of the resistant and susceptible individuals of F2 popula-
tion and BC1F1 population.

DNA extraction, library construction and whole-genome
re-sequencing
Using a minor modified cetyltrimethylammonium brom-
ide (CTAB) method [66], all young leaves of 529 F2 indi-
viduals were harvested separately for total genomic
DNA extraction. Of these, 20 resistant and 20 suscep-
tible plants from the F2 population and the two parents
were chosen for library construction and whole-genome
re-sequencing. To simplify the description in later parts
of this paper, we abbreviate Ontario 792 as R01, Money-
maker as R02, resistant pool as R03 and susceptible pool

as R04. The isolated DNA was quantified using a Nano-
Drop 2000 spectrophotometer (Thermo Scientific, Fre-
mont, CA, USA). All 20 resistant and 20 susceptible
plants were precisely quantified on Qubit® 2.0 Fluorometer
(Life Technologies, CA, USA). Equal amounts of DNA
from the resistant and susceptible plants were mixed to
prepare R03 and R04. These two samples along with R01
and R02 were sonicated to generate 350-bp fragments
using S2/E210 Ultrasonicator (Covaris, Woburn, MA,
USA); which were subsequently end repaired and nucleo-
tide (A) overhangs were generated. Afterwards, sequen-
cing adapters were ligated using T4 DNA ligase and PCR
was performed. The PCR products were then purified and
loaded onto an Illumina sequencing platform (Illumina,
Inc., San Diego, CA, USA) for paired-end sequencing ac-
cording to the manufacturer’s recommendations.

QTL-seq and linkage mapping analysis
The raw sequencing data were filtered [reads with more
than 50% of bases having Q-value ≤10 or an ambiguous
sequence content (“N”) exceeding 10%] using an in-
house Perl script available with Biomarker Technologies
Co. Ltd. (Beijing, China). Then, these high-quality data
were mapped onto the Solanum lycopersicum genome
sequence (ftp://ftp.solgenomics.net/tomato_genome/asse
mbly/build_3.00/) using a Burrows-Wheeler Aligner (Li
et al. 2009). Picard software (https://sourceforge.net/pro-
jects/picard/) was used to mark duplicates. The SNP and
InDel (1–5 bp) calling were realized by GATK [67] using
default settings. In order to obtain highly accurate SNP
and InDel set, a range of filters were also employed [68].
Both SNP-index [69] and InDel-index [17] methods were
used for the association analysis. The SNP-index dot
loess was obtained by regression fitting as described by
Abe et al. [69]. The threshold value to map Cf-10 resist-
ant gene controlled by a dominant locus was expected
to be 0.667 for an F2 population.
Using information from the QTL-seq analysis on the

SNPs in the QTL region, a total of 16 KASP markers were
designed using Primer 5.0 (Additional file 5: Table S1) to
genotype 147 individuals, including 141 from F2 and two
from each of F1, Ontario 792 and Moneymaker individuals
respectively. The KASP assays were performed in a 1536-
well plate format following the protocol of LGC Genomics
(LGC, Middlesex, UK). The KASP reaction mixture system
is shown in Additional file 6: Table S2. A S1000TM Ther-
mal Cycler PCR (Bio-Rad, Hercules, CA) was used with the
following settings: thermal activation at 95 °C for 15min,
denaturation at 95 °C for 20 s, primer annealing at 65 °C for
60 s (decreasing by 1 °C per cycle, 10 cycles totally) and fi-
nally 30 cycles of amplification (95 °C for 10 s; 57 °C for 60
s). The Synergy H1 full-function microplate reader (FLUO
star Omega, BMG Labtech, Germany) was used to read the
fluorescence signal upon completion of the reaction.

Liu et al. BMC Plant Biology           (2019) 19:15 Page 8 of 11

ftp://ftp.solgenomics.net/tomato_genome/assembly/build_3.00
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_3.00
https://sourceforge.net/projects/picard
https://sourceforge.net/projects/picard


Real time quantitative PCR (RT-qPCR) analysis
The RT-qPCR assay was carried out in order to explore
the expression pattern of candidate genes in Ontario 792
and Moneymaker at 0, 5, 9, 12 and 16 days post-infection
(dpi). The leaves from Ontario 792 and Moneymaker
individuals were sampled independently for total RNA ex-
traction using Trizol (Invitrogen) as per manufacturer’s
recommendations. The primers for candidate genes were
designed using primer 5.0 software. Actin-EFα1 was used
for internal normalization. The primer sequences and
reaction system are shown in Additional files 7 and 8:
Tables S3 and S4, respectively and the RT-qPCR was
performed in an iQ5 system (Bio-Rad, USA). A 20 μL re-
action mixture, including 2 μL of cDNA (1:10 dilution),
10 μL of 2× TransStart Top Green qPCR SuperMix (Trans-
Gen, China), 0.5 μL of each primer (10 μmol/μL) and
ddH2O, was prepared. Reaction conditions were as follows:
95 °C for 7min; 40 cycles at 95 °C for 10 s, 58 °C for 30 s,
and 72 °C for 20 s and then 71 cycles at 95 °C for 10 s, 60.5 °
C for 10 s, and 95 °C for 10 s. The relative gene expression
levels were calculated using the 2−ΔΔCt method [70].
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Additional file 2: Figure S1. QTL mapping analysis by Icimapping
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