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Abstract

Background: The flowering transition which is controlled by a complex and intricate gene regulatory network
plays an important role in the reproduction for offspring of plants. It is a challenge to identify the critical transition
state as well as the genes that control the transition of flower development. With the emergence of massively
parallel sequencing, a great number of time-course transcriptome data greatly facilitate the exploration of the
developmental phase transition in plants. Although some network-based bioinformatics analyses attempted to
identify the genes that control the phase transition, they generally overlooked the dynamics of regulation and
resulted in unreliable results. In addition, the results of these methods cannot be self-explained.

Results: In this work, to reveal a critical transition state and identify the transition-specific genes of flower
development, we implemented a genome-wide dynamic network analysis on temporal gene expression data in
Arabidopsis by dynamic network biomarker (DNB) method. In the analysis, DNB model which can exploit collective
fluctuations and correlations of different metabolites at a network level was used to detect the imminent critical
transition state or the tipping point. The genes that control the phase transition can be identified by the difference
of weighted correlations between the genes interested and the other genes in the global network. To construct
the gene regulatory network controlling the flowering transition, we applied NARROMI algorithm which can reduce
the noisy, redundant and indirect regulations on the expression data of the transition-specific genes. In the results,
the critical transition state detected during the formation of flowers corresponded to the development of flowering
on the 7th to 9th day in Arabidopsis. Among of 233 genes identified to be highly fluctuated at the transition state,
a high percentage of genes with maximum expression in pollen was detected, and 24 genes were validated to
participate in stress reaction process, as well as other floral-related pathways. Composed of three major
subnetworks, a gene regulatory network with 150 nodes and 225 edges was found to be highly correlated with
flowering transition. The gene ontology (GO) annotation of pathway enrichment analysis revealed that the
identified genes are enriched in the catalytic activity, metabolic process and cellular process.

Conclusions: This study provides a novel insight to identify the real causality of the phase transition with genome-
wide dynamic network analysis.
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Background

The flowering plants undergo a succession of develop-
mental phases during their life cycle including germin-
ation, seedling, flowering and fruiting. As a special pattern
of plant development, phase transition is crucial for the
survival and reproduction of the plant, and the failure
implementation of phase transition will result in the dys-
function of development [1-3]. The phase transitions
related to plant development include the seed-to-seedling
transition [4], the juvenile-to-adult vegetative transition
[5], the vegetative-to-reproductive transition [6], the heter-
otrophic-to-autotrophic transition [7], the initiation-to-
maturation floral transition [8], and so on. These develop-
mental phase transitions form the main functional mecha-
nisms in plants [9].

Among the developmental phase transitions, flowering
transition has been extensively studied by the experimen-
tal biologists because flowering is an irreversible trans-
formation from vegetative to reproductive growth, an
important qualitative process, a key stage of plant develop
ment, and a reproduction for offspring [10]. The flowering
process include three phases, ie. the floral induction
phase, the floral primordia phase, and the floral organs
development phase [8]. During these phases, a series of
genes such as flowering time controlling genes, meristem
identity genes and floral organ identity genes are involved
in the regulation of flowering transition [11].

To understand the mechanism of flowering transition,
a series of intensive studies on flower development were
implemented in recent years and the results provided
some crucial clues [12-15]. For example, it is reported
that flower development is firstly characterized by dra-
matic changes in morphology such as floral patterning,
floral organ size and floral organ specification. These
changes are regulated by a great number of regulators
like transcriptional factors and miRNAs [8, 16]. The
growth cone is transformed from differentiation of leaves
to differentiation of flower buds in the ontogeny of
higher plant, which marks the transition from vegetative
growth to reproductive growth or the beginning of
flower development [11].

In recent years, it has become increasingly clear that
the phase transitions were controlled by distinct genetic
circuit incorporating endogenous and environmental
cues, such as the interaction between NF-YC and CLF,
the interaction between miR156 and miR173 [9], and so
on. These genes are involved the regulation of phase
transition by undergoing regular changes to form a com-
plex gene regulatory network (GRN) [11]. The flowering
mechanism of the model plant Arabidopsis is relatively
clear with a flowering gene regulatory network involving
signal transduction networks such as photoperiod, au-
tonomous, vernalization, and gibberellin pathways [17].
More and more researches demonstrate that the
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flowering developmental gene regulatory networks pro-
vide an important breakthrough for better understanding
the inherent mechanism of flowering transition.

Attribute to the advances of next-generational sequen-
cing technology, bioinformatics and computational biol-
ogy expedited the process of biological research by ge
nome-wide transcriptome analysis [18]. Transcriptome
analysis provides a perfect approach to study biological
problem because it gives not only a global view of gene ex-
pression patterns including biological function enrichment
but also a predictive dimension by identifying a set of
co-expressed genes [19, 20]. With above advantages, bio-
informatics analysis of high-throughput transcriptome
data provides a powerful tool to address the issues in
exploring the mechanism of the phase transition in a
genome-wide scale [21].

The transcriptome analysis by predicting GRN has been
used to discover the regulatory mechanism in plants [22].
Different types of tools have been developed to infer
large-scale GRNs from the gene expression data, such as
correlation-based methods [23], mutual information-
based method [24, 25] and regression-based methods
[26-28]. Our group previously have developed some GRN
inference tools such as NARROMI [29], PCA-CMI [30]
and CMI2NI [31, 32]. These methods have greatly im-
proved the accuracy of GRN inference by reducing the
noisy, redundant and indirect regulations.

Recently, the predictive GRN was used to analyze the
phase transition and some novel genes controlling the
seed-to-seedling phase transition in Arabidopsis were
identified [19, 33]. Not only that, the Arabidopsis floral
transition process was deciphered by integrating a
protein-protein interaction network and gene expression
data [34]. For the traditional analysis methods, it is diffi-
cult to catch up the truth of complex phase transitions
with the traits of temporal and spatial dynamics with
polygene interactions. Moreover, the research has fo-
cused on the mechanism of flower development under
undifferentiated stem cells but not the mechanism of
floral organ transformation to maturation [35]. In
addition, the current methods have not fully used the
dynamics character of phase transition and not necessar-
ily catch the real regulators controlling the phase transi-
tions [36]. While the time-course transcriptome data
with multiple replicates provide the materials for the
bioinformatics analysis to identify the regulators of phase
transition [37, 38].

With more and more time-course high-throughput
transcriptome data available, some dynamic network
analysis-based bioinformatics tools have been developed
and widely used to study the complex biological mech-
anism [39, 40]. For example, the dynamic network
biomarker identification tool, named DNB, was devel-
oped to detect the biomarker [41]. In this method, a
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complex biological process (e.g., differentiation pro-
cesses, aging processes, and phase transition of the cell
cycle, etc.) is divided into three phases or states, i.e. the
before-transition state, the critical transition state, and
the after-transition state [42]. In a focal system, a drastic
or qualitative transition from the critical transition state
to the post-transition state corresponds to a bifurcation
point in the dynamical systems theory [43]. When the
system is near to a critical point, a dominant group of
biomarkers become bifurcate. The biomarkers can be
defined by three conditions: isolated subnetwork or
functional module, high fluctuation of the members,
strong correlation between any pair of its members
while weak correlation between members and non-
members [44]. Dynamic network analysis with a solid
theory support has been successfully applied to real bio-
logical data [43-45].

In this work, to provide a new insight into the flowering
developmental transition, we performed a genome-wide
dynamic network analysis on the time-course gene expres-
sion data in Arabidopsis. The dataset with 14 stages of
flowering from initiation to maturity and 3 replicates for
each stage provides a dynamic process of flowering devel-
opment. The genes that control the phase transition can
be identified by the difference of weighted correlations be-
tween the genes interested and the other genes in the glo-
bal network. To construct the gene regulatory network
controlling the flowering transition, we applied NAR-
ROMI algorithm which can reduce the noisy, redundant
and indirect regulations on the expression data of the
transition-specific genes. The results were validated by
biological experimental analysis and the predicted transi-
tion state is consistent with the real transition state of the
flowering in phenotype. We also performed a similar ana-
lysis of temporal gene expression profiling dataset of rice
flower development to support the conclusions drawn. Ul-
timately, we detected a critical transition state of flower
development in rice. This work provides a novel insight
into the identification of the transition state and the key
causal genes that control flowering transition by dynamic
network analysis of time-course gene expression data.

Results

A dynamic network biomarker(DNB) model for detecting
critical transition state of complex biological systems

In the phase transition model, a complex biological
process (e.g., differentiation processes, aging processes,
and changes in the phases of the cell cycle) can be gener-
ally divided into the three stages, i.e. the before-transition
state, the critical transition state, and the after-transition
state [42]. The before-transition state is relatively stable
but may change gradually because of certain internal and
external motivators (Fig. 1). The critical transition state
can be understood as the limit of the before-transition
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state just before a critical transition. Not only that, but it
can be easily reverted to the before-transition state by the
appropriate external interventions and thus it is consid-
ered reversible. While the after-transition state is stable
and irreversible even with intensive interventions. Throu
gh the identification of dynamic network biomarkers
(DNBs), we can control the complex system to avoid the
development of the system toward the bad state. In other
words, controlling the “causes” of the development of the
system can avoid the occurrence of “effects” or change the
shape of “effects”. It is crucial to crush the source of
trouble in the egg to achieve the ideal effect of achieving
effective control of complex systems at a lower cost.

The theoretical basis for detecting DNBs was summa-
rized by the following conditions (Fig. 1b and c). Briefly,
DNB is an observable subnetwork composed of a set of
special molecules in the original system which satisfies the
following four requirements only at the critical state [46]:

1. DNB molecules or markers are highly fluctuating,
i.e. deviations of the DNB members(genes) increase
drastically (high SD,).

2. All members of DNBs are highly co-expressed, i.e.
correlations among DNB members become stronger
(high PCC,).

3. DNB members are almost independent of non-DNB
members. DNB is an isolated subnetwork or func-
tional module, i.e. the correlation between any DNB
molecules and other non-DNB decreases (low
PCC,).

4. There are no drastic deviations or correlations
among all non-DNB molecules in the system.

To detect a reliable and unambiguous signal of the
critical transition state, a composite index(CI) is pro-
posed as follows

CI = (SDy, - PCC,)/PCC,,

where SD,; and PCC, are average standard deviation(SD)
and average Pearson correlation coefficient(PCC) of all
molecules in DNB module d respectively, while PCC, is
the average correlation between molecules in d and
others that are not in 4. When a biological system
approaches a critical transition state, CI provides a reli-
able and significant early-warning signal. Among all the
responsive CI modules, the maximum one is most likely
to be the DNB that corresponds to the critical stage of
the system.

Pipeline of genome-wide dynamic network analysis

To provide a new insight into the flowering developmental
transition, we performed a genome-wide dynamic network
analysis on the time-course gene expression data in
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Arabidopsis. The dataset with 14 stages of flowering from
initiation to maturity and 3 replicates for each stage pro-
vides a dynamic process of flowering development. How-
ever, the dynamic network analysis to effectively reveal the
critical developmental stage with a key sub-network is still
a challenge [8]. In addition, the data with matched case
and control samples are not available. Therefore, the ef-
fective data processing become crucial to identify the
DNBs for the flower developmental transition.

Previous studies have shown that Arabidopsis flowers
are sequentially activated so that the flowers in their in-
florescence are at different stages of development [47]. It
also has been found that the top-head flowers of the
Arabidopsis inflorescence remain quite synchronized
throughout the flower development and therefore the
time-series gene expression data of flowering could be
obtained [8]. To overcome the lack of data with the
matched case and control samples, the sample in former
time point was designated as the control sample, and
the neighbor later sample was designed as case sample.
And then the 14 different developmental stages from

initial to mature were divided into 13 case-control com-
binations with which we can detect the phase transition
of Arabidopsis flower development (Fig. 2a).

The DNB model which is powerful than the traditional
differential expression analysis was applied to detect the
critical differentiation state of flower development from
the time of initiation to maturation in Arabidopsis (Fig.
2b). NARROMI algorithm which can reduce the noisy,
redundant and indirect regulations on the expression
data of the transition-specific genes was used to con-
struct the gene regulatory network controlling the flow-
ering transition (Fig. 2c) [29]. With the identified DNBs,
key regulatory factors and metabolic pathways closely re-
lated to the phase transition of Arabidopsis flower devel-
opment from the time of initiation to maturation were
analyzed (Fig. 2d).

The identified critical transition state in Arabidopsis flower
development

Identifying the critical differentiation stage or critical
transition state of Arabidopsis flower development from
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from the time of initiation to maturation time

transition states. To overcome this problem, the DNB
model was developed to measure collective fluctua-
tions of molecules taking place of the traditional dif-

the time of initiation to maturation is crucial to clarify
the molecular mechanism that regulates plant flowering.
However, the traditional methods based on differential

expression analysis failed to detect the critical state
due to the lack of significant differential expressions

of molecules in the before-transition and critical

ferential expression analysis (see Methods). Traditional
methods often rely on the differential expressions of
molecules, while the DNB model uses both differential
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correlations and differential deviations among mole-
cules [41, 48]. Despite of the weak differential expres-
sion among genes in the before-transition state and
the critical transition state, significant differential cor-
relations and deviations among genes existed in these
two states.

We implemented the DNB model on the Arabidopsis
flower development datasets (NCBI access no.
GSE64581) to identify the critical transition and the
genes of flower development from the time of initiation
to maturation. Specifically, we compared the samples in
previous time point as the control sample with the sam-
ples in current time point as the case sample. Ultimately,
the 14 different developmental stages from initial to
mature were divide into 13 sampling time points. The
critical transition state of Arabidopsis flowering was
detected in the before-transition and after-transition
state at the 11th sampling point of the flower formation
shown by the red star (Fig. 3).

The 11th sampling time point shown in Fig. 3 corre-
sponded to the comparison of growth on the 7th to 9th
day of Arabidopsis flower development. Moreover, the
development of flower inflorescence was largely syn-
chronous until day 7. For the later time-points, only the
development of flowers at the tip of the inflorescence
(arrowheads) remained synchronized after phenotypic
assessment (Fig. 3) [8]. In order to verify the biological
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and statistical significance of the identified DNBs, we
conducted bootstrap analysis and the results showed
that the identified DNBs for flowering development in
Arabidopsis were highly significant compared with the
randomly chosen gene sets (Additional file 1: Figure S4).

The identified genes controlling the transition of
Arabidopsis flower development

Ryan et al. revealed that the development of Arabidopsis
flower inflorescence was largely synchronous until day 7.
After that, only the development of flowers at the tip of
the inflorescence remained synchronized after pheno-
typic assessment [8]. As result of our analysis, the pre-
dicted critical transition state from timepoint 7th to
9th day was consistent with their experimental results.
In other words, the critical transition state detected
during the formation of flowers corresponded to the
development of flowering in Arabidopsis. All identified
DNB members corresponding to the critical state of
flower formation were listed in Additional file 2:
Figure S1, and the detailed description of DNB members
was listed in Additional file 3: Figure S2. Functional
categories for up- and down-regulated genes in DNB
module were shown in Table 1, these genes were
crucial for flowering transition. Moreover, functional
categories for other genes in DNB module were
shown in Additional file 4: Table S1.

%1073

DNB score

7th to 9th day of Arabidopsis flower development

Fig. 3 Identification of the critical transition state of flower development in Arabidopsis thaliana. The DNB scores at 13 sampling time points is
shown in the FIGURE. For the black curve, the DNB score increased sharply from the 10th point and reached the peak at the 11th point. The 11th
sampling time point annotated by the red star is designated as a critical transition state, which corresponds to the comparison of growth on the
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Table 1 Functional categories for up- and down-regulated genes in the DNB module of Arabidopsis flower development

Gene name Fold change Transition state Description

Transcription factors
RAP2.6 0.73 down-regulated AP2/B3-like, related to AP2 6(RAP2.6)
AGL46 0.19 down-regulated MADS box transcription factor
AT2G31370 1.74 up-regulated Basic-leucine zipper transcription factor
AT5G46030 2.12 up-regulated transcription elongation factor-like protein
AT4G33280 0.71 down-regulated AP2/B3-like transcriptional factor family protein
AT1G21580 1.66 up-regulated Zinc finger C-x8-C-x5-C-x3-H type family
ZAP1 405 up-regulated zinc-dependent activator protein-1
WRKY36 0.07 down-regulated WRKY DNA-binding protein
AT1G59675 1.21 up-regulated F-box family protein
NAP 237 up-regulated NAC-like, activated by AP3/PI(NAP)
AT1G76590 163 up-regulated PLATZ transcription factor family protein
RIE 0.28 down-regulated RING-finger protein for embryogenesis
AT4G25610 035 down-regulated C2H2-like zinc finger protein

Protein kinase activity
AT3G46270 383 up-regulated receptor protein kinase-like protein
AT3G15240 361 up-regulated Serine/threonine-protein kinase WNK

(With No Lysine)-like protein

AT1G67720 042 down-regulated Leucine-rich repeat protein kinase family protein
AT3G23310 0.75 down-regulated AGC kinase family protein

Ras signaling pathway
AGL46 0.19 down-regulated MADS box transcription factor

Plant hormone signal transduction

SHY2 061
AIR12 0.79
IAA18 1.98

ABA signaling pathway

HIST-3 0.79
SLAH2 1.22
AT4G25610 035
AT4G33280 071
AT1G59675 1.21

down-regulated
down-regulated

up-regulated

down-regulated
up-regulated

down-regulated
down-regulated

up-regulated

AUX/IAA transcriptional regulator family protein
auxin-induced in root cultures-like protein

indole-3-acetic acid inducible 18

histone H1-3

SLACT homologue 2

C2H2-like zinc finger protein

AP2/B3-like transcriptional factor family protein

F-box family protein

A more reliable gene co-expression network controlling
critical transition

A DNB module containing 233 genes about Arabidopsis
flower development from the time of initiation to matur-
ation was detected using the DNB model [41]. With the
gene expression data of these transition-specific genes,
we used NARROMI algorithm which can remove the re-
dundant and indirect regulations to construct the gene
co-expression network controlling the flowering tran
sition. Network inference file was listed in Additional file
5: Table S3, and we got two new files by processing the
file. The degree of correlation between each pair of DNB
members of Arabidopsis flower development was listed

in Additional file 6: Table S4, and the node properties
file for the network was listed in Additional file 7: Table
S5.

By applying the NARROMI approach to the 233 genes
of the DNB module, we constructed a more accurate
and reliable gene regulatory network of the Arabidopsis
flowering transition. The file of gene regulatory network
was listed in Additional file 8: Table S6. Ultimately, the
members of DNB module and the correlations among
members were visualized in a molecular network con-
sisting of 150 nodes with 225 edges. In the network,
node color reflects the standard deviation of the corre-
sponding genes and the strength of correlations reflected
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higher correlation. For clarity, the strength of correlations was also reflected by edge color. a A more reliable co-expression gene regulatory
network of the Arabidopsis floral transition. b Three key subnetworks in DNB given separately

by edge width, where a wider edge corresponds to a
higher correlation (Fig. 4a). Three key subnetworks in the
DNB module are clustered separately because the stand-
ard deviation of the corresponding genes and the strength
of correlations in these subnetworks were significantly
different, and we deemed these distinct regions as the
most representative of this critical transition (Fig. 4b).

Functional classification of DNB members during the
critical transition state

The critical transition state during the formation of
flowers was identified by DNB approach, and it corre-
sponded to the development of flowering on the 7th to
9th day in Arabidopsis. To evaluate the potential functions
of DNB members, GO assignments were used to classify

the functions of DNB members during the critical transi-
tion of Arabidopsis flower development.

In the biological process category, two GO terms, i.e.
small molecule catabolic process and plant-type cell wall
biogenesis were enriched significantly in most DNB mem-
bers (Fig. 5a). In the cellular component category, there
were plenty of DNB members associated with AP-type
membrane coat adaptor complex, secondary cell wall, and
intrinsic component of mitochondrial inner membrane
(Fig. 5b). In the molecular function category, ion antipor-
ter activity was enriched significantly in most genes of the
DNB module, and phosphate ion transmembrane trans-
porter activity, serine-type endopeptidase inhibitor activity
and L-ascorbic acid binding were similarly enriched in the
DNB module (Fig. 5c).
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All the other overrepresented GO terms of DNB mem-
bers in the three GO categories (biological process,
cellular component, and molecular function) were listed
in Table 2. And the metabolic pathways were listed in
Additional file 9: Table S2. To further analyze key
regulatory factors that control the phase transition from
initiation to maturation in Arabidopsis flower develop-
ment, we inferred a transcriptional module that links key
regulatory factors with their potential targets (Fig. 6).

The detected key genes of the critical transition

We not only discovered a critical transition which oc-
curred between the seventh and ninth days of Arabidop-
sis flower development, but also found that 24 genes in
this DNB module participate in stress reaction process,
as well as in other floral-related pathways (Fig. 6b). Bio-
logical and abiotic stresses negatively affect plant growth
and development including flowering and thus reduce
productivity [49]. Adversity related genes included dis-
ease-, ABA-, JA-, drought-, low temperature and salt-rela
ted genes, i.e. CBP20, NAP, AT4G33280, RAP2.6, ECA1,
AT5G38760, WRKY36, HIS1-3, AT1G73490, RIE1, AT1
G52650, AT4G08520, AT1G59675, etc. Many of these
genes such as RIE1, ECA1 and NAP were predominantly
expressed from or after the 9th day which is the pollen
formation stage. Thus, these genes might be play a vital
role in the formation of microspores and the differenti-
ation of pollen grains to a large extent.

The cap-binding protein complex (CBC) plays an im-
portant role in RNA metabolism because the CBC binds
to the caps of all RNA polymerase II transcripts. As one
subunit of the Arabidopsis thaliana CBC, the Cap Binding

Protein 20 (CBP20) was determined to be involved in nor-
mal plant growth and development as well as RNA metab-
olism [50]. Studies have found that Arabidopsis cbp20 null
mutant exhibited abnormal development of leaves and
flowers and showed increased sensitivity to salt stress,
which suggests that CBP20 has a synergistic effect in salt
stress response [51]. Moreover, the drought-tolerant
cbp20 mutant could maintain normal growth and devel-
opment under drought stress, which might also point to a
new cellular output mechanism as targets of the ABA
regulatory pathway [52]. The plant specific NAM/ATAF1/
2/CUC2 (NAC) transcription factors play important roles
in abiotic stress-response signaling. We found that two
NAC-like genes named NAP and NAP57 (activated by
AP3/PI) as two of the important DNB members involved
in a trifurcate feed-forward pathway of the drought stress
response and their expression at the critical transition
state was different from other periods.

Moreover, we also found NAP12 to be involved in the
gametogenesis of Arabidopsis with two genes of ECA1l
(Early Culture Abundant 1) gametogenesis-related family
genes, AT5G60945 and AT5G36657. The ECA1l family
proteins can be activated transcriptionally during the
transition of microspores from the gametophytic to
the embryogenic pathway. In addition, RIE1 and LEA
(AT5G38760), two genes in the DNB module were
found to be involved in the embryonic development
of Arabidopsis. A RIE1 gene encoding a RING-H2
zinc-finger protein was identified in Arabidopsis, and
it might be a membrane-associated protein, possibly
relating to chloroplast. The late embryogenesis Abun-
dant (LEA) protein family plays a role in drought
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Table 2 Significance of GO terms obtained by R package topGO
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GO GO.ID Term Annotated P-value
biological process GO:0044282 small molecule catabolic process 196 0.0044
G0:0009832 plant-type cell wall biogenesis 174 0.00428
GO:0006643 membrane lipid metabolic process 101 0.00801
GO:0009640 photomorphogenesis 95 0.00081
G0:0032101 regulation of response to external stimu... 85 0.00713
GO:0090691 formation of plant organ boundary 16 0.00943
G0O:0010244 response to low fluence blue light stimu... 9 0.00719
GO:0010264 myo-inositol hexakisphosphate biosynthet... 8 0.00617
GO:0000967 rRNA 5%end processing 7 0.00401
GO:0052746 inositol phosphorylation 5 0.00133
cellular component G0:0030119 AP-type membrane coat adaptor complex 18 0.015
G0:0031304 intrinsic component of mitochondrial inn... 18 0.052
GO:0009531 secondary cell wall 16 0.053
GO:0005880 nuclear microtubule 7 0.031
GO:0016442 RISC complex 5 0.047
G0:0031332 RNAi effector complex 5 0.047
G0:0034098 VCP-NPL4-UFD1 AAA ATPase complex 3 0.014
G0:0032541 cortical endoplasmic reticulum 2 0.022
GO:0000312 plastid small ribosomal subunit 2 0.041
GO:0005971 ribonucleoside-diphosphate reductase com... 2 0.051
molecular function GO:0099516 ion antiporter activity 94 0.0125
GO:0015114 phosphate ion transmembrane transporter ... 26 0.0019
GO:0004867 serine-type endopeptidase inhibitor acti.. 22 0.0018
G0:0031418 L-ascorbic acid binding 13 0.008
GO:0048038 quinone binding 10 0.0031
GO:0005242 inward rectifier potassium channel activ... 10 0.013
GO:0016639 oxidoreductase activity, acting on the C... 6 0.0041
G0O:0050284 sinapate 1-glucosyltransferase activity 4 0.004
GO:0004148 dihydrolipoyl dehydrogenase activity 4 0.0069
GO:0016629 12-oxophytodienoate reductase activity 3 0.0082

stress tolerance. How to improve reproductive develop-
ment by this transition depended on the interactions be-
tween regulatory factors. These regulators were important
for signal transduction to control the transition of Arabi-
dopsis flower development.

The APETALA2 (AP2) transcription factors (TFs) plays
an important dynamic role in the embryo development,
seedling built, flowering as well as stress response process
[53, 54]. Two genes including RAP2.6 and AP2/B3-like
(AT4G33280) were identified by DNB method. The Arabi-
dopsis transcription factors RAP2.6 and AP2/ERF were
found to be involved not only in ABA, salt and drought
stress responses, but also in stamen emergence [55].
WRKY genes are a family of regulatory genes isolated
from plants. WRKY proteins encoded by WRKY genes
constitute a large family of plant-specific transcription

factors. WRKY36, one of the WRKY gene family mem-
bers, was identified in DNB module. Recent research
found that UVRS interacts with WRKY36 to regulate HY5
transcription and hypocotyl elongation in Arabidopsis,
while we found that WRKY36 plays an important role in
the critical transition [56].

As result of our analysis, 233 genes were identified to be
highly fluctuated at the transition state and formed the
DNB module. More importantly, a high percentage of
genes with maximum expression in pollen was detected,
which were predominantly expressed from or after the 9th
day. For example, we found that two NAC-like genes
named NAP and NAP57 (activated by AP3/PI) as two of
the important DNB members were involved in a trifurcate
feed-forward pathway of the drought stress response and
they were up-regulated at the critical transition state [57].
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Numerous studies have shown that class B MADS-box
genes (AP3/PI) are crucial for stamen development [58].
Thus, the critical transition state detected during the for-
mation of flowers was regarded as the pollen formation
stage.

Some genes involved in cell differentiation were de-
tected in this DNB module with predominant expression
at late stages of flower development. These genes were
predominantly expressed from or after the 9th day which
is the pollen formation stage. For example, the regulator
of ovule and seed development SEEDSTICK (STK) was
significantly upregulated between days 7 and 9 [49]. DUO
POLLENI1 (DUOL1), a regulator of male germline develop-
ment, was found for the first time to be expressed at the
same stage [50]. And thus, these genes may be involved to
a large extent in the differentiation of microspores into
pollen grains. Gene Ontology (GO) analysis also showed

that secondary cell wall synthesis related genes were
enriched significantly in this critical transition (GO:000
9531). The tapetum was developed from the secondary
cell wall, which was the important component of pollen
[59]. While many changes in gene expression may be
owing to the activation of specific gene sets during the late
pollen development, genes with significant regulatory
functions such as genes coding APETALA2 (AP2) tran-
scription factors and MADS-domain proteins often show
intermittent expression at various stages of flower devel-
opment [54, 55].

Genes involved in different plant hormone responses
such as abscisic acid, auxin, and jasmonic acid were also
detected as enriched significantly in this DNB module.
This discovery is consistent with the known roles of these
hormones in various biological processes in the late-stage
flower development, such as the formation of stamen and
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pollen as well as the maturation of petals [60]. For ex-
ample, AGL46 (AT2G28700), encoding the Arabidopsis
MADS-box transcription factor was found to be involved
in the CCKR signaling map, gonadotropin-releasing
hormone receptor pathway, PDGF signaling pathway,
interleukin signaling pathway, Ras Pathway and p38
MAPK pathway by KEGG analysis. Studies have
shown that members of the MADS-box gene family
play vital roles in flower development from early de-
termination of floral meristem identity to later deter-
mination of floral organ primordial identity [58]. In a
nutshell, the critical transition state detected during
the formation of flowers and key regulators identified
in the transition might answer the complex mecha-
nisms of floral organ formation.

A critical transition state of flower development in Rice

To support the conclusions drawn, a similar analysis
was performed on the flowering development data in
rice. The dataset with spatio-temporal gene expression
profiling throughout entire growth in rice was down-
loaded from the NCBI Gene Expression Omnibus
(GEO) database under the accession number GSE21396
(www.ncbi.nlm.nih.gov/geo). The dataset include 15
time-points and 3 replicates for flowering development
from initiation to maturity in rice [61]. To overcome the
lack of distinction between the case sample and the con-
trol sample in this dataset, we compared the samples in
both the previous and current time points. The samples
in previous and current time points were designated as
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the control and case samples respectively. Thus, 15 dif-
ferent developmental stages from initial to mature were
divided into 14 combinations for the detection of the
critical transition. The pipeline of genome-wide dynamic
network analysis was performed on the processed data
with 14 combinations and a critical transition state of
flower development was detected (Fig. 7). The critical
transition state detected during the formation of flowers
corresponded to the development of specific floral or-
gans (anther and pistil) in rice [61].

Not only that, we also detected the DNB biomarkers
with 206 genes that may herald the imminent critical tran-
sition during the formation of flowers. The genes detected
in the critical transition state were listed in Additional file
10: Figure S3. The anther showed a unique growth charac-
teristic in which most anther-specific genes were
expressed only in a particular developmental stage [61].
We found that a pollen-specific gene (LOC4341399) cod-
ing for a pollen-specific leucine-rich repeat extensin-like
protein was up-regulated in the critical transition. This re-
sult indicated that our researches can conduce to reveal
the complex regulatory mechanisms of gene expression
during anther growth and development as well as pollen
germination.

The Gene Ontology (GO) analysis exhibited that pro-
tein kinase-encoding genes were significantly enriched
among the down-regulated genes (Table 3). The results
indicated that several signal transduction pathways in-
volved in protein phosphorylation might undergo com-
plex changes during this critical transition phase. Several

DNB score

Fig. 7 Identification of the DNB of flower development in rice. The DNB scores at 14 sampling time points is shown in the FIGURE. For the black
curve, the DNB score increased sharply from the 7th point and reached the peak at the 8th point. The 8th sampling time point annotated by the
red star is designated as a critical transition state, which corresponds to the development of specific floral organs (anther and pistil) in rice

8 9 10 11 12 13 14
Time point
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Table 3 Functional categories for up- and down-regulated genes in the DNB module of rice flower development

Gene name Fold change  Transition state Description

0s04g0417400  6.80 up-regulated U box domain containing protein.

LOC4340069 193 up-regulated DNA-binding protein (Homeodomain-leucine zipper transcription factor)

LOC4346839 1.82 up-regulated Disease resistance protein family protein.disease resistance protein RGA5-like

LOC4341399 1.74 up-regulated pollen-specific leucine-rich repeat extensin-like protein 1

LOC4326659 1.59 up-regulated Cytochrome P450 monooxygenase CYP72A5

LOC4338660 1.56 up-regulated UDP-sulfoquinovose synthase, chloroplast precursor (Sulfolipid biosynthesis protein)
LOC4345661 143 up-regulated Myb-like protein (transcription factor CSA-like)

LOC4324767 1.36 up-regulated TPR-like domain containing protein.

LOC4339280 1.36 up-regulated Cyclin-like F-box domain containing protein (F-box protein At5g46170)

LOC4332901 1.32 up-regulated Sugar transporter-like protein

LOC4324342 1.32 up-regulated Plant lipid transfer/seed storage/trypsin-alpha amylase inhibitor domain containing protein
LOC4351030 132 up-regulated Hypothetical protein

LOC4341957 1.31 up-regulated Macrophage migration inhibitory factor family protein

LOC112936214  1.32 up-regulated eukaryotic cysteine peptidase active site family protein (putative F-box protein At5g15660)
LOC4324302 137 up-regulated Myb-related protein 5 (transcription factor MYB59)

LOC4338652 1.31 up-regulated ABC transporter G family member 23

LOC4338416 0.79
LOC4329899 0.71
LOC4348579 0.78
LOC4338491 0.76
LOC4350151 0.76
LOC4349274 0.75
LOC4335569 0.69
LOC4324503 057
LOC4335392 049
LOC9272032 0.35

down-regulated
down-regulated
down-regulated
down-regulated
down-regulated
down-regulated
down-regulated
down-regulated
down-regulated

down-regulated

Helicase-like protein

ABC-1 domain containing protein (protein ACTIVITY OF BC1 COMPLEX KINASE 3, chloroplastic)
Galactosyltransferase associated protein kinase p58/GTA (Cell division cycle 2-like 2)

Protein kinase APK1B (EC 2.7.1-)

Ribulose bisphosphate carboxylase

probable sucrose-phosphate synthase 5

Zn-finger, RING domain containing protein (NEP1-interacting protein 1)

Ribosomal protein S8 family protein.
Allergen V5/Tpx-1 related family protein (pathogenesis-related protein 1)

probable LRR receptor-like serine/ threonine-protein kinase At1g51810

transcription factors including 3 F-box-, 1 U-box-, 2 M
YB-family genes were also up-regulated during this crit-
ical transition phase. Many studies have indicated that
F-box proteins constituted one of the eukaryotic protein
families, which played pivotal roles in regulating various
developmental processes of plants. For example, a F-box
gene DDF1 was a crucial genetic factor with pleiotropic
effects in the development of rice floral organs [62].
CSA, a gene encoding the R2R3 MYB transcription
factor which preferentially expressed in anther tapetal
cells was identified [63]. These researches indicated that
the F-box-, U-box-, MYB-family genes detected in this
critical transition phase might be play pivotal roles in
regulating anther development in rice. Other up- and
down-regulated genes also play a crucial role in the
process of rice pollen development.

These results supported the conclusions drawn on the
development of Arabidopsis flower. Therefore, the tran-
scriptomic profiling analysis using DNB and MARROMI

method could provide new insight to characterize the
formation of flowers and detect key regulatory factors
that might control the transition from initiation to mat-
uration in Arabidopsis flower development.

Discussion

The formation of flowers is one of the main models for
studying the regulation mechanisms of plant growth and
development. In past botanical studies, the floral transi-
tion was recognized as the progression from vegetative
growth to reproductive growth [34, 38]. Although some
network-based bioinformatics analyses attempted to
identify the phase transition which indicate the progres-
sion from vegetative growth to reproductive, there is no
research on identifying the critical transition stage of
flower formation from the time of initiation to matur-
ation. Differentiation of floral organs is more complex
than other parts of the plant, especially the formation of
pollen [61]. In this study, we discovered a critical
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transition stage of Arabidopsis flower development using
the DNB theory. It is the first time that DNB model has
been used in plant research. We found that the phase
transition occurred between the seventh and ninth days
of Arabidopsis flower development. The development of
flowers on a given inflorescence was uniformly synchro-
nized until day 7, then the expression of flowering re-
lated genes has changed dramatically. Not only that, we
found that this critical transition state detected during
the formation of flowers corresponded to the develop-
ment of specific floral organs (anther). We also detected
the DNB members composed by 233 genes that may
herald the imminent critical transition during the forma-
tion of flowers. Moreover, the interactions between these
genes also regulate the critical transition process.

To construct the gene regulatory network controlling
the flowering transition, we applied NARROMI algorithm
which can reduce the noisy, redundant and indirect regu-
lations on the expression data of the transition-specific
genes. We further found that 24 genes in this DNB mod-
ule participate in stress reaction process, as well as in
other floral-related pathways such as gametogenesis and
embryo development. Our research here suggests that
previously unknown regulatory genes identified in the
transition region might be through known regulatory
mechanisms to promote the formation of flowers. There-
fore, a further study of co-expressed genes in the transi-
tion region might answer the connection between co-
expressed genes and critical transition.

In addition, the highlight of this article is the effect-
ive combination of DNB and NARROMI methods. In
contrast to the traditional methods or biomarkers
based on differential expressions of molecules, DNB
method can identify a critical transition state of a
complex biological process based on collective fluctu-
ations and correlations of different metabolic mole-
cules at the network level. Thus, even if there are no
significant differential expressions in the before-tran
sition state and the critical transition state, we can
detect significant differential correlations and devia-
tions in these two states by DNB method [35].

In contrast to the traditional methods to construct
the gene regulatory network controlling the flowering
transition, NARROMI algorithm can reduce the noisy,
redundant and indirect regulations on the expression
data of the transition-specific genes. Firstly, NAR-
ROMI algorithm can calculate the causal intensity be-
tween gene pairs by quantifying the non-linear corre
lation mutual information (MI), so that we can re-
duce interference regulators with low correlation.
Then, ordinary differential equation-based recursive
optimization (RO) is used to gradually reduce the re-
dundant and indirect regulations. Ultimately, we ob-
tained a topology of a non-linear sparse gene regu
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latory network by network integration which was the
most similar gene regulatory network to the real net-
work. NARROMI algorithm could be regard as a fur-
ther improvement of the DNB model.

We also performed a similar analysis of temporal
gene expression profiling dataset of rice flower devel-
opment to support the conclusions drawn. Ultimately,
we detected a critical transition state of flower devel-
opment in rice. This critical transition state detected
during the formation of flowers corresponded to the
development of specific floral organs (anther and pis-
til) in rice. Not only that, we also detected the DNB
members composed by 206 genes that may herald the
imminent critical transition during the formation of
flowers. We found that the genes detected in this
critical transition phase might be play pivotal roles in
regulating anther development in rice. These results
supported the conclusions drawn on the development
of Arabidopsis flowering. In addition to the applica-
tion of DNB and NARROMI algorithm to detect the
critical state of Arabidopsis flowering transition, they
can be used to detect the critical transition of any
biological process.

Conclusions

We studied the flower developmental phase transition
from the time of initiation to maturation in Arabidopsis
using dynamic network biomarker model. The critical
transition state of flowering development was detected
and a cluster of genes as dynamic network biomarkers
controlling the phase transition of flower development
from the initiation to maturation were identified. In con-
trast to the traditional methods based on differential
gene expression analysis, our analysis can exploit collect-
ive fluctuations and correlations of different metabolites
at a network level to identify a critical transition state of
a complex biological process. We also detected the dy-
namic network biomarkers composed of several genes
that may herald the imminent critical transition during
the formation of flowers. To construct the gene regula-
tory network controlling the flowering transition, we ap-
plied NARROMI algorithm on the expression data of
the transition-specific genes. The redundancy reduction
technique-based network reconstruction method NAR-
ROMI algorithm could be regard as a further improve-
ment of the dynamic network biomarker model, which
can reduce noisy and indirect regulations to improve the
accuracy of the network inference. Our research suggests
that the critical transition state detected during the for-
mation of flowers and key regulators identified in the
transition might answer the complex mechanisms of
floral organ formation. The bioinformatics analysis used
in this work can also be used to detect the critical state
of any biological process.
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Methods

Gene expression data collection

The Arabidopsis flower developmental gene expression
profiling dataset was downloaded from the NCBI Gene
Expression Omnibus (GEO) database under the accession
number GSE64581 (www.ncbi.nlm.nih.gov/geo). The data-
set includes 14 different time-points with 3 replicates of
gene expression data from initiation to maturity, i.e. 0d,
1d, 1.5d, 2d, 2.5d, 3d, 3.5d, 4d, 4.5d, 5d, 7d, 9d, 11d and
13d (Fig. 6a). The data was downloaded from GEO data-
base already pre-processed, and we followed procedure
outlined in Ryan et al, 2015 and some other protocol.
Ryan et al’s article is an Open Access article distributed
under the terms of the Creative Commons Attribution Li-
cense (http://creativecommons.org/licenses/by/4.0).

The data was downloaded from GEO database was a
time-courses gene expression matrix. The horizontal
row indicated the expression value of one gene in differ-
ent samples, and the column represented the expression
value of the gene pool of one sample. We used the func-
tion ‘genelowvalfilter’ in MATLAB to filter genes. After
removing those genes whose expression values were less
than a certain threshold, we used the remaining genes
for further processing. Because some of the transcrip-
tional changes are caused by specific gene regulatory
events or tremendous alterations in floral size and morp
hology during the flower development, we compared the
gene expression level between consecutive as well as
neighbor (within a 2d time interval) time-points to
minimize the effect of morphological changes [8].

Network inference
In general, a mathematical model based on mass action
kinetics and Michaelis—Menten kinetics can describe the
transcriptional regulation process [64]. However, the
noise inherited in the gene expression data can decrease
the performance of these models [65]. Therefore, to im-
prove the accuracy of the network inference, NARROMI
algorithm was used to reduce noisy, redundant and in-
direct regulations [29]. It initially calculates the causal
strength between gene pairs by quantifying the non-lin-
ear correlation mutual information (MI), which can re-
duce noisy regulations in gene expression data [66].
Then, ordinary differential equation-based recursive
optimization (RO) is used to gradually reduce the redun-
dant and indirect regulations to obtain a final topology
of a non-linear sparse gene regulatory network (Fig. 6c).
The script that was used to apply the NARROMI algo-
rithm was listed in Additional file 11: Script 1. By com-
paring with GENIE3, ARACNE etc, NARROMI
outperformed these popular methods in most cases,
thereby verifying its effectiveness [29].

To obtain a more reliable gene co-expression network,
a composite index is proposed combining mutual
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information(MI) and recursive optimization(RO)-based
estimation of parameters:

= sign(*°) (|| + (1-)p™)

where ™' is the MI value which is positive, f° is the
regulatory strength (positive or negative) inferred by RO
algorithm, sign(8*°) is the sign (+) of X2, |B*°| is the
absolute of S and parameter o is the weighting coeffi-
cient. The final regulatory strength is decided by the par-
ameter S, and the network topology is then determined.

GO enrichment and visualization

The identified DNB members were analyzed for func-
tional enrichment analysis by R package topGO 2.30.1.
The topGO package provided tools for testing GO terms
while accounting for the topology of the GO graph. Dif-
ferent test statistics and different methods for eliminat-
ing local similarities and dependencies between GO
terms can be implemented and applied. The enrichment
analysis process consists of input of normalized gene ex-
pression measurements, gene-wise correlation or differ-
ential expression analysis, enrichment analysis of GO
terms, interpretation and visualization of the results.
The data preparation process is critical before running
the enrichment test. The user needs to provide the gene
universe, GO annotations and either a criteria for select-
ing interesting genes (e.g. differentially expressed genes)
from the gene universe or a score associated with each
gene. The GO database used in our research was a set of
annotation maps describing the entire Gene Ontology
assembled using data from GO Version: 3.5.0.

Moreover, we also analyzed key regulatory factors and
key metabolic pathways that were closely related to DNB
of Arabidopsis flower development from initiation to mat-
uration time (Fig. 6d). The results of the gene regulatory
networks were imported in Cytoscape (www.cytosca-
pe.org) for visualization.

Regulatory circuits and regulators prediction

We further predicted the regulatory circuits and regula-
tors controlling the critical transition based on the Ara-
bidopsis Gene Regulatory Information Server (AGRIS;
http://arabidopsis.med.ohio-state.edu) [67]. We can ob-
tain a comprehensive resource for Arabidopsis gene
regulatory studies from the AGRIS. There are three
interlinked databases, AtTFDB, AtcisDB and AtRegNet.
The updated and comprehensive information on tran-
scription factors (TFs) could be obtain from AtTFDB,
which is the key to study the Arabidopsis gene regula-
tory networks.


http://www.ncbi.nlm.nih.gov/geo
http://creativecommons.org/licenses/by/4.0
http://www.cytoscape.org
http://www.cytoscape.org
http://arabidopsis.med.ohio-state.edu

Zhang et al. BMC Plant Biology (2019) 19:11

Additional files

Additional file 1: Figure S4. Comparison results of the DNB-based
method, bootstrap analysis. (DOCX 313 kb)

Additional file 2: Figure S1. List of genes for the DNB module during
Arabidopsis flower development. (TXT 2 kb)

Additional file 3: Figure S2. Detailed description of the identified DNB
module for Arabidopsis flower development. (TXT 95 kb)

Additional file 4: Table S1. Functional categories for the DNB members
of Arabidopsis flower development. (TXT 7 kb)

Additional file 5: Table S3. Network inference file. (TXT 32 kb)

Additional file 6: Table S4. The degree of correlation between each
pair of DNB genes during Arabidopsis flower development. (TXT 7 kb)

Additional file 7: Table S5. Node properties file for the network.
(TXT 4 kb)

Additional file 8: Table S6. The gene regulatory network Cytoscape
file. (TXT 7 kb)

Additional file 9: Table S2. The DNB members of Arabidopsis flower
development enriched GO terms and metabolic pathways. (TXT 2 kb)

Additional file 10: Figure S3. The DNB members of flower
development in rice. (TXT 9 kb)

Additional file 11: Script 1. Tair_DNB_narromi. (DOCX 14 kb)

Abbreviations

ABA: Abscisic acid; CBC: Cap-binding protein complex; DNB: Dynamic
network biomarker; ECA1: Early Culture Abundant 1; GRN: Gene regulatory
network; LEA: Late embryogenesis Abundant; MI: Mutual information;
PCC: Pearson correlation coefficient; RO: Recursive optimization

Acknowledgements

We thank Dr. P.T. Ryan (Smurfit Institute of Genetics, Trinity College Dublin)
for providing Arabidopsis floral gene expression data and members of our
labs for discussion. We also thank O.0. Collins (University of Chinese
Academy of Sciences) for providing invaluable assistance in writing this
article.

Funding

This work was supported by grants from National Natural Sciences
Foundation of China(NSFC), no.61402457, CAS Pioneer Hundred Talents
Program and the National Project of Cause Control Theory,
no.1716315XJ00200303.

Availability of data and materials
The data sets are included within the article and its Additional files.

Authors’ contributions

X.Z. designed the research; F.Z. performed the research, F.Z. analyzed the
data; L.C, ZJ, X.L. and A.Z. provided many critical suggestions and approved
the manuscript; F.Z. and X.Z. wrote the article. All authors read and approved
the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 16 of 18

Author details

'Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture,
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074,
China. 2University of Chinese Academy of Sciences, Beijing 10049, China.
*Key Laboratory of Systems Biology, Innovation Center for Cell Signaling
Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Received: 20 July 2018 Accepted: 4 December 2018
Published online: 07 January 2019

References

1. Rougvie AE. Intrinsic and extrinsic regulators of developmental timing: from
miRNAs to nutritional cues. Development. 2005;132(17):3787-98.

2. Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;
61(6):1001-13.

3. Kubota A Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T. Co-option of
a photoperiodic growth-phase transition system during land plant
evolution. Nat Commun. 2014;5:3668.

4. Jia H, Suzuki M, McCarty DR. Regulation of the seed to seedling
developmental phase transition by the LAFL and VAL transcription factor
networks. Wiley Interdiscipl Rev Dev Biol. 2014;3(1):135-45.

5. Moose SP, Sisco PH. Glossy15 controls the epidermal juvenile-to-adult phase
transition in maize. Plant Cell. 1994:6(10):1343-55.

6. Araki T. Transition from vegetative to reproductive phase. Curr Opin Plant
Biol. 2001;4(1):63-8.

7. Chen M, Thelen JJ. The plastid isoform of triose phosphate isomerase is
required for the postgerminative transition from heterotrophic to
autotrophic growth in Arabidopsis. Plant Cell. 2010;22(1):77-90.

8. Ryan PT, O'Maoileidigh DS, Drost HG, Kwasniewska K, Gabel A, Grosse |,
Graciet E, Quint M, Wellmer F. Patterns of gene expression during
Arabidopsis flower development from the time of initiation to maturation.
BMC Genomics. 2015;16:488.

9. Huijser P, Schmid M. The control of developmental phase transitions in
plants. Development. 2011;138(19):4117-29.

10.  Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman
NS, dePamphilis C, Leebens-Mack J. The floral genome: an evolutionary
history of gene duplication and shifting patterns of gene expression. Trends
Plant Sci. 2007;12(8):358-67.

11. Wellmer F, Riechmann JL. Gene networks controlling the initiation of
flower development. Trends Genet. 2010,26(12):519-27.

12. Gong X, Shen L, Peng YZ, Gan Y, Yu H. DNA topoisomerase lalpha
affects the floral transition. Plant Physiol. 2017;173(1):642-54.

13. Wang L, Kong D, Lv Q, Niu G, Han T, Zhao X, Meng S, Cheng Q, Guo S, Du
J, et al. Tetrahydrofolate modulates floral transition through epigenetic
silencing. Plant Physiol. 2017;174(2):1274-84.

14. Jiang L, Li D, Jin L, Ruan Y, Shen WH, Liu C. Histone lysine
methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral
transition in Brassica napus. Plant J. 2018,95(4):672-85.

15. Brambilla V, Martignago D, Goretti D, Cerise M, Somssich M, de Rosa M,
Galbiati F, Shrestha R, Lazzaro F, Simon R, et al. Antagonistic
transcription factor complexes modulate the floral transition in Rice.
Plant Cell. 2017;29(11):2801-16.

16. Bellaire A, Ischebeck T, Staedler Y, Weinhaeuser |, Mair A, Parameswaran S,
lto T, Schonenberger J, Weckwerth W. Metabolism and development -
integration of micro computed tomography data and metabolite profiling
reveals metabolic reprogramming from floral initiation to silique
development. New Phytol. 2014;202(1):322-35.

17. Putterill J, Laurie R, Macknight R. It's time to flower: the genetic control of
flowering time. Bioessays. 2004;26(4):363-73.

18. Huang J, Vendramin S, Shi L, McGinnis KM. Construction and optimization
of a large gene Coexpression network in maize using RNA-Seq data. Plant
Physiol. 2017;175(1):568-83.

19. Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HW, Predictive
Coexpression A. Network identifies novel genes controlling the seed-to-
seedling phase transition in Arabidopsis thaliana. Plant Physiol. 2016;
170(4):2218-31.

20. Vesty EF, Saidi Y, Moody LA, Holloway D, Whitbread A, Needs S, Choudhary
A, Burns B, McLeod D, Bradshaw SJ, et al. The decision to germinate is
regulated by divergent molecular networks in spores and seeds. New
Phytol. 2016;211(3):952-66.


https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6
https://doi.org/10.1186/s12870-018-1589-6

Zhang et al. BMC Plant Biology

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

(2019) 19:11

Chen P, Liu R, Li Y, Chen L. Detecting critical state before phase transition of
complex biological systems by hidden Markov model. Bioinformatics. 2016;
32(14):2143-50.

Harkey AF, Watkins JM, Olex AL, DiNapoli KT, Lewis DR, Fetrow JS, Binder
BM, Muday GK. Identification of transcriptional and receptor networks that
control root responses to ethylene. Plant Physiol. 2018;176(3):2095-118.
Hong S, Chen X, Jin L, Xiong M. Canonical correlation analysis for RNA-seq
co-expression networks. Nucleic Acids Res. 2013;41(8):e95.

Wang J, Chen B, Wang Y, Wang N, Garbey M, Tran-son-Tay R, Berceli SA, Wu
R. Reconstructing regulatory networks from the dynamic plasticity of gene
expression by mutual information. Nucleic Acids Res. 2013;41(8):e97.

Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A.
Reverse engineering of regulatory networks in human B cells. Nat
Genet. 2005;37(4):382-90.

Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic
networks and identifying compound mode of action via expression
profiling. Science. 2003;301(5629):102-5.

Cantone |, Marucci L, lorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di
Bernardo M, di Bernardo D, Cosma MP. A yeast synthetic network for in vivo
assessment of reverse-engineering and modeling approaches. Cell. 2009;
137(1):172-81.

Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EE, Lawrence ND,
Rattray M. Model-based method for transcription factor target
identification with limited data. Proc Natl Acad Sci U S A. 2010;107(17):
7793-8.

Zhang X, Liu K, Liu ZP, Duval B, Richer JM, Zhao XM, Hao JK, Chen L.
NARROMI: a noise and redundancy reduction technique improves accuracy
of gene regulatory network inference. Bioinformatics. 2013;29(1):106-13.
Zhang X, Zhao XM, He K, Lu L, Cao Y, Liu J, Hao JK, Liu ZP, Chen L. Inferring
gene regulatory networks from gene expression data by path consistency
algorithm based on conditional mutual information. Bioinformatics. 2012;
28(1):98-104.

Zhang X, Zhao J, Hao JK, Zhao XM, Chen L. Conditional mutual inclusive
information enables accurate quantification of associations in gene
regulatory networks. Nucleic Acids Res. 2015;43(5):e31.

Zhao J, Zhou Y, Zhang X, Chen L. Part mutual information for quantifying
direct associations in networks. Proc Natl Acad Sci U S A. 2016;113(18):5130-5.
Bassel GW, Lan H, Glaab E, Gibbs DJ, Gerjets T, Krasnogor N, Bonner AJ,
Holdsworth MJ, Provart NJ. Genome-wide network model capturing seed
germination reveals coordinated regulation of plant cellular phase
transitions. Proc Natl Acad Sci U S A. 2011;108(23):9709-14.

He F, Zhou Y, Zhang Z. Deciphering the Arabidopsis floral transition
process by integrating a protein-protein interaction network and gene
expression data. Plant Physiol. 2010;153(4):1492-505.

Dinh JL, Farcot E, Hodgman C. The logic of the floral transition: reverse-
engineering the switch controlling the identity of lateral organs. PLoS
Comput Biol. 2017;13(9):e1005744.

Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich
J, Renou JP, Grini PE, Colot V, et al. Polycomb repressive complex 2 controls
the embryo-to-seedling phase transition. PLoS Genet. 2011;7(3):¢1002014.
Wils CR, Kaufmann K. Gene-regulatory networks controlling inflorescence
and flower development in Arabidopsis thaliana. Biochim Biophys Acta.
2017;1860(1):95-105.

Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M. A gene
regulatory network model for floral transition of the shoot apex in maize
and its dynamic modeling. PLoS One. 2012;7(8):e43450.

Varala K, Marshall-Colon A, Cirrone J, Brooks MD, Pasquino AV, Leran S,
Mittal S, Rock TM, Edwards MB, Kim GJ, et al. Temporal transcriptional logic
of dynamic regulatory networks underlying nitrogen signaling and use in
plants. Proc Natl Acad Sci U S A. 2018;115(25):6494-9.

Greenham K, McClung CR. Time to build on good design: resolving the
temporal dynamics of gene regulatory networks. Proc Natl Acad Sci U S A.
2018;115(25):6325-7.

Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for
sudden deterioration of complex diseases by dynamical network
biomarkers. Sci Rep. 2012,2:342.

Liu R, Wang X, Aihara K, Chen L. Early diagnosis of complex diseases by
molecular biomarkers, network biomarkers, and dynamical network
biomarkers. Med Res Rev. 2014;34(3):455-78.

Ge J, Fan XY, Xue XL, Li GP, Zhong SS, Shen X, Yin HY, Chen LN. Discovery
of dynamical network biomarkers (DNB) during the progression of

45.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Page 17 of 18

atherosclerosis using multiple omic techniques and systems biology. J Am
Coll Cardiol. 2017,70(16):C34-5.

Sa R, Zhang W, Ge J, Wei X, Zhou Y, Landzberg DR, Wang Z, Han X, Chen L,
Yin H. Discovering a critical transition state from nonalcoholic
hepatosteatosis to nonalcoholic steatohepatitis by lipidomics and dynamical
network biomarkers. J Mol Cell Biol. 2016;8(3):195-206.

Li MY, Zeng T, Liu R, Chen LN. Detecting tissue-specific early warning signals
for complex diseases based on dynamical network biomarkers: study of type 2
diabetes by cross-tissue analysis. Brief Bioinform. 2014;15(2):229-43.

Chen P, Liu R, Chen L, Aihara K. Identifying critical differentiation state of
MCF-7 cells for breast cancer by dynamical network biomarkers. Front
Genet. 2015;6:252.

Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in
arabidopsis. Plant Cell. 1990;2(8):755-67.

Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11(10):12.

Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC. The Arabidopsis transcription
factor NACO16 promotes drought stress responses by repressing AREB1
transcription through a trifurcate feed-forward regulatory loop involving
NAP. Plant Cell. 2015;27(6):1771-87.

Kierzkowski D, Kmieciak M, Piontek P, Wojtaszek P, Szweykowska-
Kulinska Z, Jarmolowski A. The Arabidopsis CBP20 targets the cap-
binding complex to the nucleus, and is stabilized by CBP80. Plant J.
2009;59(5):814-25.

Kong X, Ma L, Yang L, Chen Q, Xiang N, Yang Y, Hu X. Quantitative
proteomics analysis reveals that the nuclear cap-binding complex
proteins arabidopsis CBP20 and CBP80 modulate the salt stress
response. J Proteome Res. 2014;13(5):2495-510.

Jager K, Fabian A, Tompa G, Deak C, Hohn M, Olmedilla A, Barnabas B,
Papp I. New phenotypes of the drought-tolerant cbp20 Arabidopsis
thaliana mutant have changed epidermal morphology. Plant Biol
(Stuttg). 2011;13(1):78-84.

Krishnaswamy S, Verma S, Rahman MH, Kav NN. Functional characterization
of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in
Arabidopsis. Plant Mol Biol. 2011,75(1-2):107-27.

Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H. The Arabidopsis AP2/
ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress
responses. Gene. 2010;457(1-2):1-12.

Nag A, Yang YZ, Jack T. DORNROSCHEN-LIKE, an AP2 gene, is necessary for
stamen emergence in Arabidopsis. Plant Mol Biol. 2007,65(3):219-32.

Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H.
UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl
elongation in Arabidopsis. Nat Plants. 2018;4(2):98-107.

O'Maoileidigh DS, Graciet E, Wellmer F. Gene networks controlling
Arabidopsis thaliana flower development. New Phytol. 2014;201(1):16-30.
Chen F, Zhang X, Liu X, Zhang L. Evolutionary analysis of MIKCc-type MADS-
box genes in gymnosperms and angiosperms. Front Plant Sci. 2017;8:395.
Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB.
Tapetum degeneration retardation is critical for aliphatic metabolism
and gene regulation during rice pollen development. Mol Plant. 2008;
1(4):599-610.

Chandler JW. The hormonal regulation of flower development. J Plant
Growth Regul. 2010;30(2):242-54.

Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami
H, Kamatsuki K, Kusaba M, Hirochika H, et al. Field transcriptome revealed
critical developmental and physiological transitions involved in the
expression of growth potential in japonicarice. BMC Plant Biol. 2011;11(1):10.
Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Lan T, Guan H, Pan R, Xue Y,
et al. Dwarf and deformed flower 1, encoding an F-box protein, is critical
for vegetative and floral development in rice (Oryza sativa L.). Plant J. 2012;
72(5):829-42.

Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D. Carbon starved
anther encodes a MYB domain protein that regulates sugar partitioning
required for rice pollen development. Plant Cell. 2010,22(3):672-89.

Tian TH, Burrage K, Burrage PM, Carletti M. Stochastic delay differential
equations for genetic regulatory networks. J Comput Appl Math. 2007;
205(2):696-707.

Lozoya OA, Santos JH, Woychik RP. A Leveraged Signal-to-Noise ratio
(LSTNR) method to extract differentially expressed genes and multivariate
patterns of expression from Noisy and low-replication RNAseq data. Front
Genet. 2018,9:24.



Zhang et al. BMC Plant Biology (2019) 19:11 Page 18 of 18

66. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information:
detecting and evaluating dependencies between variables. Bioinformatics.
2002;18:5231-40.

67. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M,
Grotewold E. AGRIS: Arabidopsis gene regulatory information server, an
information resource of Arabidopsis cis-regulatory elements and
transcription factors. BMC Bioinf. 2003;4:11.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	A dynamic network biomarker(DNB) model for detecting critical transition state of complex biological systems
	Pipeline of genome-wide dynamic network analysis
	The identified critical transition state in Arabidopsis flower development
	The identified genes controlling the transition of Arabidopsis flower development
	A more reliable gene co-expression network controlling critical transition
	Functional classification of DNB members during the critical transition state
	The detected key genes of the critical transition
	A critical transition state of flower development in Rice

	Discussion
	Conclusions
	Methods
	Gene expression data collection
	Network inference
	GO enrichment and visualization
	Regulatory circuits and regulators prediction

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

