CORRECTION Open Access

Correction to: Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]

Wen-Li Wang[†], Yong-Xin Wang[†], Hui Li, Zhi-Wei Liu, Xin Cui and Jing Zhuang^{*}

Correction to: Wang et al. BMC Plant Biology https://doi.org/10.1186/s12870-018-1502-3

Following publication of the original article [1], the author reported that there was a mismatch between figures and their legends. The correct figures and legends are as follows:

Correction 1: Page 3 (Fig. 1).

Please change the legend to 'Fig. 1 Gene sequences of *CsMYB2* and *CsMYB26* with the deduced amino acid sequences. (A) *CsMYB2* gene. (B) *CsMYB26* gene.'.

Correction 2: Page 4 (Fig. 2).

Please change the legend to 'Fig. 2 Unrooted phylogenetic tree of CsMYB2 and CsMYB26 with R2R3-MYB-type *A. thaliana* TFs. A phylogenetic tree was built using the neighbor-joining method with MEGA 5 software. The putative functions of all R2R3-MYBs are listed on the right.'.

Correction 3: Page 5 (Fig. 3).

Please change the legend to 'Fig. 3 Phylogenetic relationships among CsMYB2, CsMYB26 and flavonoid-related R2R3-MYBs from other plant species.

A phylogenetic tree was built using the neighbor-joining method with MEGA 5 software. The putative functions of all R2R3-MYBs are listed on the right.'.

Correction 4: Page 6 (Fig. 4).

Please change the legend to 'Fig. 4 Alignment of the deduced amino acid sequences of CsMYB2 and CsMYB26 with those of R2R3-MYB proteins from other plant species.'

Correction 5: Page 6 (Fig. 5).

Please change the legend to 'Fig. 5 Subcellular localization of CsMYB2.

BF: Bright-field microscopy image. GFP: Green fluorescence image. Merge: Merged bright-field and green fluorescence images.'

Correction 6: Page 7 (Fig. 6).

Please change the legend to 'Fig. 6 Interaction network of CsMYB2, CsMYB26 and the structural genes involved in flavonoid biosynthesis.'.

Correction 7: Page 8 (Fig. 7).

Please change the legend to 'Fig. 7 Expression profiles of *CsMYB2*, *CsMYB26* and structural genes under ABA and shading treatments. (A) ABA treatment. (B) shading treatment.'.

Correction 8: Page 8 (Fig. 8).

Please change the legend to 'Fig. 8 Relative expression analyses of *CsMYB2* and *CsMYB26* in the leaves from different sites in tea plant.'.

Correction 9: Page 9 (Fig. 9).

Please change the legend to 'Fig. 9 Relative expression analyses of genes involved in the flavonoid biosynthesis pathway in the leaves from different sites in tea plant.'.

Correction 10: Page 9 (Fig. 10).

Please change the legend to 'Fig. 10 HPLC chromatogram of catechins in leaves from different sites in the 'Longjing 43' and 'Baiye 1 hao' cultivars.'.

Correction 11: Page 10 (Fig. 11).

Please change the legend to 'Fig. 11 Various catechin monomer content analyses were performed.'.

Correction 12: Page 10 (Fig. 12).

Please change the legend to 'Fig. 12 Content analysis of anthocyanins and soluble proanthocyanidins. (A) Anthocyanin content. (B) Soluble proanthocyanidin content.'.

Correction 13: Page 12 (Fig. 13).

^{*} Correspondence: zhuangjing@njau.edu.cn

[†]Wen-Li Wang and Yong-Xin Wang contributed equally to this work. Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, China

Wang et al. BMC Plant Biology (2019) 19:36 Page 2 of 11

Wang et al. BMC Plant Biology (2019) 19:36 Page 3 of 11

Fig. 2 Unrooted phylogenetic tree of CsMYB2 and CsMYB26 with R2R3-MYB-type *A. thaliana* TFs. A phylogenetic tree was built using the neighbor-joining method with MEGA 5 software. The putative functions of all R2R3-MYBs are listed on the right

Wang et al. BMC Plant Biology (2019) 19:36 Page 4 of 11

Fig. 3 Phylogenetic relationships among CsMYB2, CsMYB26 and flavonoid-related R2R3-MYBs from other plant species. A phylogenetic tree was built using the neighbor-joining method with MEGA 5 software. The putative functions of all R2R3-MYBs are listed on the right

Wang et al. BMC Plant Biology (2019) 19:36 Page 5 of 11

Fig. 4 Alignment of the deduced amino acid sequences of CsMYB2 and CsMYB26 with those of R2R3-MYB proteins from other plant species

Wang et al. BMC Plant Biology (2019) 19:36 Page 6 of 11

Fig. 5 Subcellular localization of CsMYB2. BF: Bright-field microscopy image. GFP: Green fluorescence image. Merge: Merged bright-field and green fluorescence images

Wang et al. BMC Plant Biology (2019) 19:36 Page 7 of 11

Wang et al. BMC Plant Biology (2019) 19:36 Page 8 of 11

Wang et al. BMC Plant Biology (2019) 19:36 Page 9 of 11

Wang et al. BMC Plant Biology (2019) 19:36 Page 10 of 11

Wang et al. BMC Plant Biology (2019) 19:36 Page 11 of 11

Fig. 14 The two tea plant cultivars, ${\bf a}$ 'Longjing 43' plant, ${\bf b}$ 'Baiye 1 hao' plant

Please change the legend to 'Fig. 13 A possible functional network of the flavonoid biosynthetic pathway and associated regulated genes in tea plant.'.

Correction 14: Page 12 (Fig. 14).

Please change the legend to 'Fig. 14 The two tea plant cultivars. (A) 'Longjing 43' plant. (B) 'Baiye 1 hao' plant..'

The original article has been corrected.

Published online: 21 January 2019

Reference

 Wang, et al. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biol. 2018;18:288. https://doi.org/10.1186/s12870-018-1502-3.