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Abstract

ramet number-associated candidates in ramie.

Background: Ramie (Boehmeria nivea L.) is one of the most important natural fiber crops and an important forage
grass in south China. Ramet number, which is a quantitative trait controlled by multigenes, is one of the most
important agronomic traits in plants because the ramet number per plant is a key component of grain yield and
biomass. However, the genetic variation and genetic architecture of ramie ramet number are rarely known.

Results: A genome-wide association study was performed using a panel of 112 core germplasms and 108,838
single nucleotide polymorphisms (SNPs) detected using specific-locus amplified fragment sequencing technology.
Trait-SNP association analysis detected 44 significant SNPs that were associated with ramet number at P < 0.01. The
favorable SNP Marker20170-64 emerged at least twice in the three detected stages and was validated to be associated
with the ramie ramet number using genomic DNA polymerase chain reaction with an F; hybrid progeny population.
Comparative genome analysis predicted nine candidate genes for ramet number based on Marker20170-64. Real-time
quantitative polymerase chain reaction analysis indicated that six of the genes were specific to upregulation
in the ramie variety with high ramet number. These results suggest that these genes could be considered as

Conclusions: The identified loci or genes may be promising targets for genetic engineering and selection for
modulating the ramet number in ramie. Our work improves understanding of the genetics of ramet number
in ramie core germplasms and provides tools for marker-assisted selection for improvement of agricultural traits.
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Background

Ramie (Boehmeria nivea L.), which is native to China
and commonly known as China grass, is one of the old-
est fiber crops worldwide [1]. It has a history of over
4000 years as a fiber crop in China and has been popu-
larly used as animal feed and for the phytoremediation
of heavy metal-contaminated farmlands over the past
decades. The superior fiber obtained from its woody
stem is long and highly durable, pure white in color, and
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silky in texture, with a high degree of hygroscopicity and
superior heat dissipation. These superior characteristics
make ramie a highly versatile and useful natural raw tex-
tile material. Generally, raw ramie fiber can be preserved
for 20-30 years. The peak period of global ramie produc-
tion occurred between 2001 and 2007, and this provided
many raw ramie stocks, that have met the processing and
consumption demand in recent years. The total produc-
tion of ramie worldwide has declined in recent years,
whereas the consumption has increased annually (http://
www.fao.org/faostat/en/#home), indicating an increasing
requirement for raw ramie fiber. High-end textile products
fabricated with natural fiber have become increasingly
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popular and, consequently, the demand for ramie raw tex-
tile material could be predicted to rise in the future. Ramie
has a high tolerance and strong ability to absorb multiple
heavy metals such as cadmium [2], lead [3], and arsenic [4]
from contaminated soil. It is therefore considered to be
one of the most potentially useful plants for remediation
of heavy metal contaminated land. Plants with high bio-
mass have an advantage in heavy metal absorption and,
thus, improving the biomass of ramie is meaningful. In
addition, because ramie is used as animal feed, high bio-
mass is beneficial for promoting the development of the
ramie feed industry. Taken together, these factors indicate
the considerable significance of improving the fiber and
biomass yield of ramie.

The number of ramet (in clonal plants), or tiller (in
monocotyledons), is an important factor influencing
crop yield [5]. For instance, the tillering ability is one of
the most important traits in rice since it can have a sig-
nificant effect on the future production of panicles [6],
which in turn is highly correlated with grain yield [7].
For perennial plants, the ramet formation ability is an
important indicator of their potential biomass produc-
tion. In Eupatorium adenophorum, a perennial clonal
plant, the biomass increases with increasing ramet num-
ber [8]. Ramie is a perennial herbaceous plant, and its
ramet number is one of the most important targets in
ramie breeding. Compared with the plant height and leaf
number, the ramet number is the main factor affecting
ramie biomass [9]. Bai et al. [10] showed that there is a
significant correlation between fiber yield and ramet
number in ramie. Therefore, improving the ramet num-
ber in ramie is important for the biomass or the fiber
product.

Single nucleotide polymorphism (SNP) refers to the
DNA sequence polymorphism caused by the variation of
single nucleotide at the genomic level. SNP often occurs
in the genome and is the most abundant and stable form
of genetic variation, which provide valuable markers for
the study of agronomic traits in crops [11]. Specific
locus amplified fragment sequencing (SLAF-seq) is a
relatively new high-resolution strategy that can fast, ac-
curately, efficiently, and economically develop large-scale
SNP and InDel markers. The flowchart of SLAF-seq
technology comprises: i) pre-design scheme for SLAF se-
lection, ii) SLAF-seq library construction, and iii) high-
throughput sequencing and genotyping [12].

Ramet or tiller number per plant is a quantitative trait
controlled by multigenes, and is reported to be equally
regulated by additive and dominant gene effects [13].
Genome-wide association study (GWAS) is a powerful
tool for complex trait dissection in plants [14]. Com-
pared to biparental linkage mapping, GWAS has the
advantages of high resolution, cost-efficiency, and not
requiring the creation of a mapping population. With
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the rapid development of DNA and RNA-sequencing
technologies, high-density genotyping with single nucleo-
tide polymorphisms (SNPs) has become easily accessible,
enabling GWAS to be performed in many plants including
maize [15], rice [16], cotton [17], canola [18], sorghum
[19], foxtail millet [20], and Arabidopsis [21].

Significant SNPs and candidate genes associated with
quantitative traits have been detected in a large variety
of plants using GWAS. In cotton, one favorable SNP as-
sociated with verticillium wilt resistance was identified
from 17 significant SNPs detected using GWAS based
on SLAF-seq technology, and 22 candidate genes for
verticillium wilt resistance were predicted based on a fa-
vorable SNP [22]. Six candidate genes with pleiotropic
effects on stalk cell wall components in maize have been
identified using the GWAS method [23]. Furthermore,
in Arabidopsis, a gene associated with leaf arsenic accu-
mulation was identified using GWAS [24]. Previously,
five QTLs were identified in an F, agamous line popula-
tion of ramie using 114 SSR markers, although they were
not confirmed in a different population [25]. To better
understand the genetics of ramie ramet formation, fur-
ther investigations are needed.

To investigate the genetic components underlying the
natural variation in ramie germplasms and discover fa-
vorable SNPs associated with ramet number, we per-
formed a GWAS using SLAF-seq technology on 112
ramie core germplasms. The favorable SNPs associated
with ramet number were further validated in a hybrid
progeny population using a genome DNA polymerase
chain reaction (PCR) strategy. Furthermore, the candi-
date genes associated with ramet number are discussed.
This study will be helpful in clarifying the genetic struc-
ture of the ramie core germplasms and providing infor-
mation about candidate quantitative trait loci (QTL) and
genes that control the ramet number in ramie.

Material and methods

Ethics statement

The collection of ramie specimens used in this study were
planted in our scientific research field, which is owned by
our institution. Therefore, no specific permissions were
required for using these specimens.

Plant materials and statistics of ramet number

A total of 112 core germplasms of ramie planted in the
Institute of Bast Fiber Crops, Chinese Academy of Agri-
cultural Sciences were used for SNP development in this
study. These germplasms were collected from China,
India, Indonesia, Brazil, and Cuba (Additional file 1). An
F; hybrid progeny population and its parents (two ramie
varieties: Zhongzhu NO.1 and Hejianggingma with high
and low ramet numbers, respectively), were used for SNP
validation using PCR. All ramie plants were propagated by
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asexual propagation, and planted in a field (N 28° 21', E
112° 59°) at Changsha, China, in 2014. For each core
germplasm, four plants were taken from the side branches
of the same parent plant, and these were planted in a row
with four plots (one plant per plot), with a distance of 40
cm between plots and 60 cm between rows. Each F; hy-
brid progeny was planted with one plant per plot, four
plots per row, with 40 cm between plots and 60 cm be-
tween rows. For the 112 core germplasms and the F; hy-
brid progeny, three biological replicates were set up with a
randomized block design for each replicate.

The ramet number of the core germplasm was re-
corded in May, August, and November 2016, when the
plants had grown to 80 cm in height. The ramet number
of the F; hybrid progeny population was recorded in
March and November 2017.

SNP genotyping and quality control

Fresh leaves of four plants were mixed as one sample for
each core germplasm. Total genomic DNA was extracted
from each sample using the modified cetyltrimethylam-
monium bromide method described by Luan et al. [26].
DNA quality and quantity were determined using a
Nanodrop 2000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA) and an Agilent 2100
Bioanalyzer (Agilent Technologies, Waldbronn, Germany).
Quantified DNA was diluted to 100ngpL™' for SLAF
sequencing. The SLAF library was constructed as previously
described [12] with slight modifications. The genome of
Cannabis sativa (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCA/003/417/725/GCA_003417725.2_ASM341772v2/)
was used as a reference to electronically predict the re-
sult of enzyme digestion and determine an optimal re-
striction enzyme solution according to the following
criteria: (1) the proportion of restriction fragments in
the repeated sequence is as low as possible, (2) restric-
tion fragments are distributed as evenly as possible in
the genome, (3) simulated fragments align uniquely to
the reference genome, and (4) a high number of SLAF
tags [27]. Furthermore, the restriction enzyme combin-
ation of Rsal and Haelll was selected. Plant DNA was
digested with a combination of Rsal + Haelll (NEB,
Ipswich, MA, USA) to obtain the SLAF tags (defined as
enzyme fragment sequences of 264—394bp), followed
by dual-index paired-end adapter ligation, PCR amplifica-
tion, and target fragment selection for the SLAF library
construction. The selected fragments and a control (Oryza
sativa ssp. japonica) were sequenced using the Illumina
Hi-Seq 2500 sequencing platform (Illumina Inc., San
Diego, CA, USA) at Biomarker Technologies Corporation
in Beijing (http://Biomarker.com.cn/). The raw data were
assessed using the dual-index to obtain reads for each
sample. After filtering out adapter reads, the sequence
quality was evaluated by analyzing the guanine-cytosine
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content and the Q30 quality score (Q = — 10 x log® ¢, indi-
cating a 0.1% chance of an error and, thus, 99.9% confi-
dence) quality score. Effectiveness and accuracy were
evaluated using enzyme-cut rate information from the
control. All reads were checked using cluster analysis
based on sequence similarity. Reads from different sam-
ples were classed into one set named the SLAF tag. A
SLAF tag that exhibited differences in sequences from
other samples was defined as polymorphic. Using the
Burrows-Wheeler Alignment tool software [28], the se-
quenced reads were compared with the reference tag,
which was the deepest sequence in each SLAF tag. The
GATK38 [29] and SAMtools [30] packages were used to
perform SNP calling, and the SNPs obtained by both of
these methods were treated as reliable SNPs. Finally,
the reliable SNPs were filtered out with integrity > 0.8
and MAF > 0.05.

Population structure and kinship analysis

The population structure of the 112 core germplasms
was analyzed using an admixture software [31]. The
number of simulation subgroups (K value) was set from
1 to 10. The statistic AK was calculated using STRUC-
TURE HARVESTER [32] (http://taylor0.biology.ucla.edu/
structureHarvester/). The AK was set as the determinant
factor for evaluating the optimal value of K [33]. The
Q-matrix was obtained using the CLUMPP software
[34]. The phylogenetic tree of the 112 core germplasms
was constructed using MEGA 5.1 with the neighbor-
joining (NJ) method (1000 bootstraps) [35]. The kinship
(K) matrix was estimated using SPAGeDi version 1.4b [36].

GWAS

Phenotype—genotype association analysis and allele
effect calculations were performed using the TASSEL
software. Two models, the general linear model (GLM)
adjusted using the O-matrix (GLM [Q]) and the mixed
linear model (MLM) correcting for both Q-matrix and
K-matrix (MLM [Q + K]), were used to reduce errors
from population structure and relative kinship. Those
with P<0.01 adjusted by the Bonferroni method were
defined as significant trait-associated SNPs.

Validation of favorable SNPs

The F; hybrid progeny population described above, con-
sisting of 241 lines, was used for validation of the favor-
able SNPs via a genomic DNA PCR strategy with special
primers (Additional file 2) designed based on SNP se-
quence according to the method described by Chen et al.
[37]. DNA samples were extracted from young leaves of
each line using a DNeasy plant mini kit (Tiangen, Beijing,
China). PCR amplification was performed in a 20 mL reac-
tion volume consisting of 1 x EasyTaq buffer, 0.2 mmol/L
dNTPs, 0.5 mmol/L of each of the forward and reverse
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primers, 2.5 units of EasyTaq DNA Polymerase (Trans-
gen Biotech, China), 100 ng of DNA template, and an
appropriate amount of sterile double-distilled water.
The amplification schedule was run as follows: an ini-
tial denaturation at 95° for 5 min, followed by 33 cycles
of 95° for 30s, 58° for 45s, and 72° for 1 min. PCR
products were separated using 8% polyacrylamide gels,
and silver staining was conducted according to the
method of Luan et al. [26]. Molecular weights were es-
timated using a DNA marker (DNA Marker 2000, Bio-
Teke Co., Beijing, China). Clear amplified bands were
recorded as 1 and the absence of bands was recorded
as 0. The products of clean bands were sequenced at
Biomarker Technologies Corporation to ensure the au-
thenticity of the target sequences.

Spearman correlation analysis using IBM SPSS Statis-
tics 19.0 (IBM, NY, USA) was performed to determine if
the ramet number in the F; hybrid progeny had any cor-
relation with the SNPs. A difference between means was
considered statistically significant at P < 0.05.

Identification of candidate genes and quantitative PCR
(gPCR) analysis

Sequences of favorable SNPs were used to blast the ramie
genome [38], and genes located in the region 150 kb up-
stream or downstream of the ramet number associated
SNPs were identified as candidate associated genes.

Three replicates of each of two germplasm plants
(Chuanzhu NO.2 and Quxianzhuma, Additional file 1)
were used for the qPCR analysis. For the expression of
candidate genes, total RNA was extracted from the leaf
and stem bark of each germplasm using a plant RNA puri-
fication kit (Tiangen, Beijing, China). Briefly, 0.5 ug total
RNA was used to synthesize cDNA (in 10-mL reaction
volumes) using a PrimeScript RT perfect real-time reagent
kit (TaKaRa, Japan). Subsequently, the cDNA was diluted
four times. The qPCR analysis was performed using a
Lightcycler 480 engine (Roche, Germany) using the 2 x T5
Fast qPCR Mix (SYBR Green I, TSINGKE Biological Tech-
nology, Beijing, China) in a 20-mL reaction volume con-
sisting of 10 uL 2 x T5 Fast qPCR mix, 0.4 pmol/L of each
of the forward and reverse primers (listed in Additional file
3), 2 pL diluted cDNA, and an appropriate amount of ster-
ile double-distilled water. The PCR conditions consisted of
an initial denaturation step at 95° for 1 min, followed by
40 cycles of denaturation at 95° for 10, annealing at 60°
for 55, and extension at 72° for 15s. The relative expres-
sion was calculated using the 24" method [39] using the
housekeeping gene 18S as an internal control.

Results

Phenotypic characteristics of ramet number

For the 112 core germplasms, the ramet number of each
germplasm varied widely in each season (Table 1), ranging
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from 2.00 to 13.83, with an average of 7.66, in May 2016;
from 5.00 to 18.00, with an average of 9.48, in August
2016; and from 4.33 to 21.50, with an average of 11.68, in
November 2016. These data illustrated the large variation
amplitude of the core germplasm population, indicating
that it could be an excellent population for marker-trait
GWAS.

For the hybrid progeny population (validation popula-
tion), the ramet number of 241 lines was analyzed in
two seasons (in March and November 2017). The vari-
ation in ramet number was 10-fold in March 2017, from
1 to 10, and 9-fold in November 2017, from 2 to 18
(Table 1). The variation of the ramet number in the two
seasons showed a normal distribution curve (Additional
file 4). The large variation in ramet number in the valid-
ation population was an advantage for validation of fa-
vorable SNPs.

SNP-based genotyping of ramie accessions

To finely map the ramet number associated genes and
investigate beneficial haplotypes in the ramie germplasm,
a haplotype map of the 112 core germplasms was con-
structed using the SLAF-seq approach. In total, over
364.29 Mb reads were generated for the 112 genotypes
(Table 2). Approximately 2,458,923 high-quality SLAF
tags were identified from the total reads, and 336,623 of
the high-quality SLAF tags showed high polymorphism.
The SLAF tags used to call the SNPs had an average
depth of 10.89-fold per individual among the 112 germ-
plasms. In total, 1,113,711 SNPs were initially called for
this set of lines; after further exclusion at MAF > 0.05
and integrity > 0.8, 108,888 high-consistency SNPs were
retained for the analysis. These SNPs were used to assess
population structure and GWAS analysis.

Population structure and kinship

Considering the fact that the authenticity of QTL map-
ping could be affected by population structure, it is crit-
ical to understand the structure matrix in GWAS
populations. In this study, the number of subgroups in
the 112 core germplasms was estimated with two
methods based on the genotypic database. First, the
Bayesian clustering from K=1 to 10 was calculated
with the STRUCTURE software. The delta K value
reached the lowest point at K=4 (Fig. 1a), suggesting
that the population could be divided into four sub-
groups (Fig. 1b, Additional file 1): Groups I, II, III, and
IV. Secondly, an NJ phylogeny based on genetic dis-
tances also showed that the 112 core germplasms were
outlined with four main clusters (Fig. 1c), which was
consistent with the result of the STRUCTURE analysis,
despite some accessions overlapping in the four clusters.
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Table 1 Phenotypic variation of ramet number in association analysis and validation population

Population Detected stage Mean SD Min Max CV (%)

Association analysis population May, 2016 7.66 234 2.00 13.83 3049
August, 2016 948 261 5.00 18.00 27.56
November, 2016 11.68 3.15 433 2150 2697

Validation population March, 2017 529 1.96 1.00 10.00 37.14
November, 2017 829 3.23 2.00 18.00 3891

SD standard deviation, CV coefficient of variation

Marker-trait GWAS

The GWAS was performed using GLM and MLM
models with 108,888 high-consistency SNPs. To confirm
the potentially significant SNPs associated with ramet
number, genotypes from three stages of the 112 core
germplasms were analyzed. For the GLM model, a total
of 2553, 2256, and 4288 significant SNPs were detected
at P<0.01 in May, August, and November in 2016, re-
spectively, and 44 common significant SNPs were shown
in all three stages (Additional files 5 and 6). For the MLM
model, 1067, 815, and 4049 significant SNPs were found
at P<0.01 in the three stages, and four of the SNPs
(Marker38532—124, Marker54845—111, Marker57363—43,
and Marker75993-18) emerged in all three stages at the
same time. Some of the detected significant SNPs emerged
at least twice in the same stages; for example, the SNP
(Marker20170-64) generated using the MLM model
emerged twice in May.

Identification and validation of favorable SNPs associated
with ramet number

To understand the effects of allelic variation on the ra-
met number, 20 significant SNPs, which emerged at least
twice in the three stages analyzed, were identified as fa-
vorable alleles. An F; hybrid progeny population of 241
lines and its parents were used to verify the authenticity
of the favorable SNPs using genomic DNA PCR with
specific primers (Additional file 2). First, DNA of the
parents was used as a template for amplification with
the 20 pairs of primers, and the results showed that two
(Marker20170—-64 and Marker142939-43) of the favorable
SNPs amplified a product in one but not in the other
parent (Additional file 7). Five of the favorable SNPs
(Marker70439—-41, Marker13742—63, Marker15847-131,

Table 2 Summary of statistic data generated by specific-locus
amplified fragment sequencing (SLAF-seq) technology

Name Number
Total reads 364.29 Mb
High-quality SLAF tags 2458923
High polymorphism reads 336,623
High-consistency SNPs 108,888

SNP single nucleotide polymorphisms

Marker21174-109, and Marker18389-39) amplified a
product in both parents. The remaining 13 favorable
SNPs did not amplify any product in either parent.
After verifying the amplification products by sequen-
cing, Marker20170-64 and Marker142939-43 SNPs
were selected for further amplification using the DNA
samples of the 241 lines as templates. As shown in
Fig. 2, amplification was successful in 126 of the 241
lines using Marker20170—64, which was close to the
ratio of 1:1 (Table 3), whereas 222 of the 241 lines
were amplified using Marker142939-43. The results
of the correlation analysis between the trait (ramet
numbers of the 241 lines) and the amplification re-
sults, suggests that the SNP Marker20170-64 was as-
sociated with the ramet number in ramie (Table 4).

Candidate gene identification and expression analysis

As validated above, the SNP Marker20170-64 may be a
major genetic locus responsible for ramet number in
ramie. Thus, the haplotype block structure was investi-
gated within 150 kb on either side of Marker20170-64 to
determine candidate genes. A total of nine genes were
found in the region of Marker20170-64. Bioinformatic
analysis showed that three of these genes lacked any defin-
ite annotation for their biological functions and four genes
were linked to biological pathways involved in plant
growth and development (Additional file 3).

To determine the genes responsible for ramet number in
ramie, a qPCR analysis was performed using two ramie var-
ieties with significantly different ramet numbers (Fig. 3a).
The results showed that six genes (Bn23049, Bn23037,
Bn23055, Bn23053, Bn23057, and Bn23041) were upregu-
lated in different tissues (leaf and stem bark) of the high
ramet number genotype Quxianzhuma (Fig. 3b). Two
(Bn23037 and Bn23053) of these six genes showed
functions in regulating root development, one (Bn23049)
in regulating seed germination, and one (Bn23041) was as-
sociated with cell fate determination and maintenance of
floral/inflorescence/shoot apical meristem identity.

Discussion

Application of GWAS in ramie

Ramet number is a significant quantitative trait in ramie,
which is controlled by multigenes. Understanding the
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Fig. 1 Population structure of 112 core germplasms of ramie. a AK values plotted from 1

to 10. b Population structure of the 112 core germplasms
1 to 10. ¢ Neighbor-joining (NJ) tree of 122 core germplasms based on Nei's genetic distances

mechanism of ramet number determination through
gene/SNP/QTL analysis and breeding high ramet number
cultivars using marker-assisted selection are thought to be
the most practical and effective strategies to manage this
trait. However, it is difficult to reliably identify effective
SNPs/QTLs associated with ramet number in ramie for
various reasons, including the low genome coverage of the
available molecular markers, the slight effects of most loci,
the limited allelic segregation, and recombination of bipa-
rental populations in linkage mapping. In this study, we
used an association population consisting of 112 core
germplasms collected from China, Japan, India, Indonesia,
and Cuba, for ramet number-associated SNP detection,
which offered more historical recombination events, to
overcome the limitations of biparental populations.

In this study, GWAS, which has been used to map
complex quantitative traits in plants [21, 40—42], was
performed for the first time in ramie to detect associ-
ation between SNPs and quantitative traits. The power
of GWAS depends on four main factors: the richness of
genetic diversity, the veracity of trait acquisition, the
marker density, and the statistical methods. The core
germplasms used for the GWAS in our study were col-
lected from different regions of China, representing the
typical characteristics of various ramie varieties. Further-
more, they have high levels of genotypic and phenotypic
diversity (Table 1), which is suitable for GWAS. Because
ramet production in ramie can be affected by nutrient,
harvest time, and other environmental factors [43, 44],
phenotypic data from three stages were analyzed to ensure

that the detected SNPs were reliable. Two models, GLM
and MLM, were employed to reduce errors associated
with population structure and relative kinship. Each step
was verified to ensure that the significant SNPs identified
in this study were reliable and reproducible.

Verification of significant SNPs associated with ramet
number

Some false positives may occur in plant GWASs because of
genetic heterogeneity among different varieties, resulting in
some SNPs being significant in one population but not in
others [45]. Therefore, it is necessary to verify the significant
SNPs detected using GWAS with different populations. In
this study, 20 significant SNPs, which emerged at least twice
in the three stages analyzed were identified as favorable
alleles and verified using an F; hybrid progeny population of
241 lines. The SNP (Marker20170-64) was found to be as-
sociated with ramet number in the hybrid progeny popula-
tion, confirming its authenticity and demonstrating the need
to verify significant SNPs detected by GWAS. Additionally,
three loci (Marker20170-57, Marker20170-1, Marker
20,170-103) close to the Marker20170—64 were identified
using SLAF-seq technology. All of these loci emerged at
least twice in the three stages analyzed (Additional file 8),
further confirming the authenticity of the Marker20170—64.

Identification of candidate genes

In perennial plants such as ramie, Potentilla anserina,
Rubus saxatilis, Linnaea borealis, and tussock, ramet
number is a complex trait [46—48]. For instance, the size
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Fig. 2 Verification of favorable single nucleotide polymorphisms (SNPs) in an F; hybrid progeny population of ramie using genomic DNA polymerase
chain reaction (PCR). a Results of PCR amplified using specific primers of Marker20170-64. The target product size was 241 bp. The first lane on the left
is DNA marker. The numbers 200, 300, and 400 denote 200, 300, and 400 bp, respectively. b PCR amplification using specific primers of Marker142939-
-241 denote 241 lines of the F; hybrid progeny population. The first lane on the left is DNA
marker. The numbers 100, 200, and 300 denote 100, 200, and 300 bp, respectively
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of the ramet population in Carex humilis increases with
age; flowering ramets do not produce any offspring ra-
mets, and larger parent ramets produce more and larger
offspring ramets [47]. At the molecular level, many
genes that control tiller number per plant have been
cloned from diverse plant species. PvSPL2, an SBP-box
transcription factor that affects lignin biosynthesis in
switchgrass, predominantly modulates tiller initiation
and stem elongation [49]. In rice, OsHTD2, which is in-
volved in the strigolactone biosynthetic pathway, nega-
tively regulated tiller bud outgrowth via the strigolactone

Table 3 Test for goodness-of-fit (%) between ramet number and
PCR results in validation population

pathway [50]. Os[AA6, a member of the rice Aux/IAA
gene family, is involved in drought tolerance and tiller
outgrowth [51]. These research findings show that there
are multiple factors and pathways controlling ramet/
tiller number in different plants. In this study, the PCR
results in the validation population showed that the ratio
of presence and absence of bands in the offspring with
high and low ramet number was close to 1:1. These re-
sults indicate that ramie ramet number may be con-
trolled by a single gene pair. However, the average ramet
number of the validation population was normally dis-
tributed, which denotes that the ratio of low ramet num-
ber to high ramet number was not 1:1, indicating that
ramie ramet number is a quantitative trait controlled by

Amplification Ramet Ramet O-F (o-£-172%€  Table 4 The correlation (1) between single nucleotide

band type number (O) number (£) polymorphisms (SNPs) and ramet number

None 115 120.5 —55 0.2075 Trait Marker20170 Marker142939
Exist 126 120.5 55 0.2075 Ramet number in March 2017 -0.201° 0.039

Total 241 241 0 04150 Ramet number in November 2017 —0.094 0013

O denotes observed value, E denotes theoretical value

?denotes significant difference between phenotypes and genotypes at P < 0.01
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multiple genes. By comparing the Marker20170-64 to
the ramie genome, we identified six genes that appeared
to be related to ramet number, suggesting that ramet
number is controlled by multiple genes in ramie.

The potential role of these six target genes in controlling
ramet number was indicated by their up-regulated expres-
sion in the high ramet number genotype Quxianzhuma
and their roles in the regulation of root development
(Bn23037 and Bn23053), seed germination (Bn23049), and
cell fate determination and maintenance of floral/inflores-
cence/shoot apical meristem identity (Bn23041). A hom-
ologous gene of Bn23037 in Arabidopsis, AtERF4 (EREF,
ethylene response factor), has a vital function in regulating
leaf growth and development by responding to nutrition
stress [52]. AtTZF5, whose CDS shows the highest hom-
ology with Bn23049, affects seed germination by control-
ling genes critical for abscisic acid and gibberellic acid
response [53]. AtRING1a, a homologous gene of Bn23041,
plays a primary role in the maintenance of meristem func-
tion by inhibiting the expression of a Class I KNOTTED-
like homeobox transcription factor [54]. Plant hormones
such as ethylene, abscisic acid, and gibberellic acid play a
key role in controlling multiple aspects of plant growth
and development, including tissue differentiation, root
elongation, shoot branching, and flowering time [55]. The
up-regulated expression of the six candidate genes may
affect the changes of plant hormones and further regulate
ramet development in ramie. However, because of the
dearth of related literature on the ramet number of ramie,
the biological function of the candidate genes identified in
this study should be further verified using biological ex-
periments. Taken together, the genes identified in our
study could be used as candidate resources for the mo-
lecular improvement of ramet number in ramie.

Conclusions

Using the GWAS method for the first time in ramie, we
genotyped 112 ramie core germplasms and identified 44
SNPs significantly associated with ramet number across
three stages and nine genes. Collectively, the identified
SNPs and genes could be used as candidate resources
for the molecular improvement of ramet number in
ramie. In conclusion, our study provides technological
strategies for quantitative trait studies of ramie.
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