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Abstract

Background: High-molecular-weight glutenin subunits (HMW-GS) play important roles in the elasticity of dough
made from wheat. The HMW-GS null line is useful for studying the contribution of HMW-GS to the end-use quality
of wheat.

Methods: In a previous work, we cloned the Glu-1E°x gene from Thinopyrum bessarabicum and introduced it into
the wheat cultivar, Bobwhite. In addition to lines expressing the Glu-1E° gene, we also obtained a transgenic line
(LH-11) with all the HMW-GS genes silenced. The HMW-GS deletion was stably inherited as a dominant and conformed
to Mendel's laws. Expression levels of HMW-GS were determined by RT-PCR and epigenetic changes in methylation
patterns and small RNAs were analyzed. Glutenins and gliadins were separated and quantitated by reversed-phase
ultra-performance liquid chromatography. Measurement of glutenin macropolymer, and analysis of agronomic traits
and end-use quality were also performed.

Results: DNA methylation and the presence of small double-stranded RNA may be the causes of post-transcriptional
gene silencing in LH-11. The accumulation rate and final content of glutenin macropolymer (GMP) in LH-11 were
significantly lower than in wild-type (WT) Bobwhite. The total protein content was not significantly affected as
the total gliadin content increased in LH-11 compared to WT. Deletion of HMW-GS also changed the content of
different gliadin fractions. The ratio of w-gliadin increased, whereas a/p- and y-gliadins declined in LH-11. The
wet gluten content, sedimentation value, development time and stability time of LH-11 were remarkably lower
than that of Bobwhite. Bread cannot be made using the flour of LH-11.

Conclusions: Post-transcriptional gene silencing through epigenetic changes and RNA inhibition appear to be
the causes for the gene expression deficiency in the transgenic line LH-11. The silencing of HMW-GW in LH-11
significantly reduced the dough properties, GMP content, wet gluten content, sedimentation value, development time
and stability time of flour made from this wheat cultivar. The HMW-GS null line may provide a potential material for
biscuit-making because of its low dough strength.
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Background

Wheat (Triticum aestivum L.) is a staple crop grown
widely in the world as a source of flour for various kinds
of foods due to the presence of gluten proteins in its seeds.
Gluten is commonly classified into glutenins and gliadins.
Gliadins are responsible for the extensibility and viscosity
of dough [1]. Glutenins are of two major types: high-mole-
cular-weight glutenin subunits (HMW-GS) and low-mole-
cular-weight glutenin subunits (LMW-GS), both of which
affect the strength and elasticity of wheat dough [2]. It
was reported that HMW-GS constitute linear chains and
protein networks, while LMW-GS exist as clusters and ag-
gregates formed by branching from linear chains. Gliadins
are equally spread throughout the dough, exhibiting
‘space-filling’ roles [3], whereas, the HMW-GS are the
major factors affecting the end-use quality of wheat [1, 4].

The HMW-GS are encoded by Glu-Al, Glu-B1, and
Glu-D1 which are located at the Glu-1 loci on the long
arms of chromosomes 1A, 1B and 1D, respectively [5].
Each locus is comprised of two tightly linked genes en-
coding an x-type and a y-type subunit which have differ-
ent electrophoretic mobilities [1]. In theory, there should
be six HMW-GS (including 1Ax, 1Ay, 1Bx, 1By, 1Dx,
and 1Dy) in hexaploid common wheat. Owing to the si-
lencing of some HMW-GS genes, only three to five sub-
units are present in an individual common wheat variety
[6]. For example, genes 1Bx, 1Dx, and 1Dy are normally
expressed, whereas 1Ay is often not expressed in com-
mon wheat [7]. The HMW-GS have many repeat units
such as nona- (GYYPTSL/PQQ), hexa- (PGQGQQ) and
tri-peptides (GQQ) in the central repetitive domain. The
central domain is flanked by two highly conserved
non-repetitive N- and C-terminal domains that are rich
in charged residues [8]. It is demonstrated that the cen-
tral repetitive domain constitutes -turns, while both the
N- and C-terminal domains are rich in a-helices by mo-
lecular modeling and secondary structural analyses [9,
10]. Since the disulphide bonds between the cysteine
residues affect the conformation and structure of the
protein, the number and distribution of cysteines in each
of the three domains of HMW-GS are particularly inter-
esting. Most cysteines are in the terminal domains. Nor-
mally, there is only one conserved cysteine in the
C-terminus, while there are three and five conserved
cysteine residues in the N-terminal domain of the larger
x-type subunits and the smaller y-type subunits, respect-
ively [11]. These are the most crucial features of the glu-
tenins associated with the physical properties of wheat
dough [12].

The discovery of HMW-GS from wheat relative spe-
cies not only enhances end-use quality but also broadens
the genetic diversity. Many studies have focused on dif-
ferent landraces, wild species and wheat relatives [4, 13]
because they provide abundant diversity of Glu-1 loci in
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comparison with bread wheat. People have identified 22
alleles for Glu-Al, 52 for Glu-B1 and 36 for Glu-DI
based on the Grain Genes 2.0 database [7]. For example,
the Glu-RI locus of rye [14], Glu-EI locus of Elytrigia
elongata [15], Glu-V1 locus of Dasypyrum villosum [16,
17], Glu-U1 locus of Aegilops umbellulata [18] and
Glu-CI locus of Aegilops caudata [19] have been pre-
sumed or confirmed to be the loci of interest encoding
HMW-GS corresponding to wheat.

The combinations of HMW-GS subunits are thought to
account for up to 70% of the good bread-making qualities
of wheat [20, 21]. The Glu-DI locus has the largest effect
on the rheological properties and dough quality of the
wheat flour [22]. As an important breeding strategy, scien-
tists try to aggregate superior HMW-GS together to im-
prove wheat dough quality. The cultivars with a
combination of 1Dx5+ 1Dy10 have suitable viscoelastic
properties for good loaf volume [23, 24]. The 1Ax2" at
Glu-Al is related to greater dough strength and better
bread-baking [25]. The 1Bx17 + 1ByI8, 1Bx13 + 1By16 and
1Bx7 + 1By8 at Glu-B1 show higher elastic moduli and vis-
cosity coefficients which have positive effects on bread
volume [26, 27]. However, their allelic variants such as
1Ax null, 1Bx6 + 1By8, and 1Dx2 + 1Dyl2 are associated
with poor baking quality [28—31]. The effects of different
subunits on dough quality may be due to their molecular
weight and the number of cysteine residues. There are
more cysteines in the y-type subunits than x-type, making
y-type subunits more important for baking quality im-
provement because of their greater abilities to form inter-
and intra-chain disulphide bonds [32]. An extra cysteine
residue in the N-terminal domain of IDx5 enhances
dough elasticity, whereas two less cysteines in 1Bx20 re-
duces wheat dough strength [4, 33, 34].

Each glutenin subunit accounts for about 2% of the
total grain protein and the differences in gene expression
could result in quantitative effects on total HMW-GS
content, which in turn affects processing quality. For ex-
ample, increasing the 1Dx5 or 1Dyl0 subunits and the
naturally duplicated IBx7 gene (Bx7°F) led to better
dough strength [35, 36]. On the other hand, wheat lines
with individual HMW-GS deficiencies at the Glu-1 locus
were characterized and used to determine the contribu-
tions of single HMW-GS on gluten micro structure, glu-
tenin polymerization, dough mixing properties and
bread-making quality [37—40]. However, the effect of si-
lencing all the HMW -GS genes on wheat quality has not
been studied. In previous work, we have obtained an
HMW-GS null line, LH-11, which is of value for analyz-
ing the contributions of HMW-GS to wheat flour pro-
cessing quality. Therefore, in the current study we had
the following objectives: (a) to find out the mechanism
behind HMW -GS gene silencing in line LH-11 and (b) to
evaluate the effects of deletion of HMW-GS on dough
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structure, gliadin fragments, agronomic traits and end-use
quality of wheat.

Results

HMW-GS are silenced in transgenic line LH-11

The spring wheat variety, Bobwhite, was transformed
with the Glu-1E°x gene. We obtained ten positive trans-
genic lines expressing the Glu-1E”x gene and one trans-
genic line (LH-11) with all the HMW-GS silenced. None
of the HMW-GS were detected in LH-11, including the
5 HMW-GS (1Ax2* 1Bx7, 1By9, 1Dx5 and 1Dyl0) of
Bobwhite and the 1E°x of Thinopyrum bessarabicum as
well, by sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) (Fig. 1a). RT-PCR was car-
ried out to determine the expression level changes of
HMW-GS genes (Glu-1) between wild-type Bobwhite
and line LH-11. Total RNA was isolated from the seeds
of LH-11 and wild-type Bobwhite at 6, 9, 12, 15, 18 and
21 days after flowering (DAF), reverse-transcribed to
c¢DNA and amplified by PCR. The fS-tubulin gene had
the same PCR amplification level across all samples, in-
dicating the cDNA of all the samples were at equal con-
centrations (Fig. 2). There were five HMW-GS, namely
1Ax2*%, 1Bx7, 1By9, 1Dx5 and 1Dyl0, in Bobwhite that
were encoded by genes Glu-1Ax2* Glu-1Bx7, Glu-1By9,
Glu-1Dx5, and Glu-1DylI0, respectively. All five Glu-1
genes were completely blocked in the seeds of LH-11 ex-
cept weak signals of Glu-1Ax2* in seeds at 15 DAF and
Glu-1Bx7 in seeds at 18 DAF, whereas they were
strongly expressed in seeds of wild-type Bobwhite. How-
ever, Glu-1E"x was expressed normally in LH-11. The
expression of HMW-GS genes were obviously silenced
or drastically inhibited by the Glu-1E”x gene in trans-
genic line LH-11.

DNA methylation and small RNAs were involved in
silencing of HMW-GS

In order to find out what caused silencing of HMW-GS in
LH-11 seeds, we performed analyses for DNA methylation
and small RNAs. DNA methylations were detected in the
Glu-1Bx7, Glu-1DxS, Glu-1Dy10 and Glu-1E°x genes of
LH-11. The four genes showed different banding patterns
when digested with Hpall or Mspl (Fig. 3). DNA was cut
more thoroughly with Mspl and smaller fragments were
achieved with Mspl than with Hpall, demonstrating that
all four genes had significant DNA methylations. We then
selected the Glu-1DyI0 gene, which had the lowest RNA
expression level as an example to carry out small RNA
analysis. Two hybridization signals of small RNAs were
detected in LH-11, whereas no signals were detected in
Bobwhite (Fig. 4). The lengths of the two small RNAs
were 20-25nt; so, it seemed that the silencing of
HMW-GS in transgenic line LH-11 was caused by both
DNA methylation and small RNAs.
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Deletion of HMW-GS in LH-11 is inherited like a dominant
trait

To study the inheritance of line LH-11, we crossed LH-11
with five Chinese cultivars (Jinfeng5365, Gao8901, Luoz-
henl, Gao9411, and Kenong122), respectively. SDS-PAGE
was performed to analyze the HMW-GS in F; generation
progenies. No HMW-GS were detected in any of the F;
generation progenies. The F; was self-crossed to give rise
to an F, generation. Of these offspring, about 3/4 had no
HMW-GS while 1/4 had HMW-GS; the ratio of segrega-
tion was 3:1 (Additional file 1: Table S1). The results
showed that HMW-GS gene silencing was dominantly
controlled and stably inherited in progenies according to a
Mendelian pattern.

Silencing of HMW-GS directly affected the accumulation
of glutenin macropolymer (GMP) in LH-11 during seed
development

Seeds at different development stages of 5, 10, 15, 20,
25, 30 and 35 DAF were taken to carry out GMP ana-
lysis. The accumulation of GMP showed a regular in-
crease during seed development (Fig. 5). After slow
growth in the early stage of seed development (from 5 to
10 DAF), GMP content increased rapidly from 10 to 25
DAF, slightly decreased from 25 to 30 DAF, and reached
its highest value at the mature stage. The GMP content
of Bobwhite was similar to that of LH-11 during the
early development period (from 5 to 10 DAF), whereas
at the two rapid accumulation stages (10-25 DAF and
30-35 DAF), the accumulation rate of GMP in LH-11
was significantly lower than that in Bobwhite. Further-
more, the final content of GMP in LH-11 was much
lower than that in Bobwhite-about half.

Total gliadin content and proportion of w-gliadin were
increased in the LH-11 line

There was no difference in total protein content between
LH-11 and Bobwhite (Table 1). Reversed-phase ultra-per-
formance liquid chromatography (RP-UPLC) was
employed to determine the effects of the absence of
HMW-GS on LMW-GS and gliadin content. All the
HMW-GS were thoroughly silenced (Fig. 1b). The peak
area of LMW-GS in LH-11 (2714.4 + 46.2) was decreased
compared to Bobwhite (3127.6 + 51.3), whereas total glia-
din content significantly increased in LH-11 (Fig. 1c). De-
letion of HMW -GS also caused changes in the percentage
content of different gliadins fragments. The ratio of
w-gliadin increased from 20.5 to 25.8%, however, a/[}-glia-
din and y-gliadin declined from 54.3 to 50.7% and 25.2 to
23.5%, respectively (Table 2).

Plant height and seed number increased in LH-11
To investigate the effects of deletion of HMW-GS on
agronomic traits of LH-11, we measured the plant
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Fig. 1 Comparison of glutenin subunits and gliadins in wild-type and transgenic line LH-11 detected by SDS-PAGE and RP-UPLC. a SDS-PAGE
analysis of LH-11. WT, wild-type Bobwhite; 1-4, transgenic line LH-11 in T; generation; 5-8, transgenic line LH-11 in T, generation; (b) RP-UPLC
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Fig. 2 Expression analysis of HMW-GS genes (Glu-1) and Glu-1E% gene using RT-PCR. Almost all the HMW-GS genes were silenced in transgenic
line LH-11. a Glu-1By9 and Glu-1Dy10 genes. b Glu-1Ax2* gene. ¢ Glu-1Bx7 gene. d Glu-1Dx5 gene. e Glu-1By9, Glu-1By9, and Glu-1E genes. f B-tubulin.
M, marker; 1-6 cDNA from the seeds of transgenic line LH-11 at 6, 9, 12, 15, 18 and 21 days after flowering (DAF); 7-10 cDNA from the seeds of
wild-type Bobwhite at 9, 12, 15 and 18 DAF. The numbers on the left side of the figure indicate the sizes (kb) of the PCR bands. The
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Fig. 3 DNA methylation analysis of transgenic line LH-11. DNA
methylations were detected in Glu-1Bx7, Glu-1Dx5, Glu-1Dy10 and
Glu-1E% genes of LH-11. a Glu-1Bx7 gene. H, Hpall/Hindlll digestion;

M, Mspl/Hindlll digestion. ¢ Glu-1Dy10 gene. H, Hpall/Nael digestion;
M, Mspl/Nael digestion. d Glu-1E% gene. H, Hpall/EcoRl digestion; M,
Mspl/EcoRI digestion

M, Mspl/Hindlll digestion. b Glu-1Dx5 gene. H, Hpall/Hindlll digestion;

height, panicle number, and seed number among other
factors (Table 3). The plant height, spike length, seeds
per panicle and seeds per plant in LH-11 were signifi-
cantly greater than in wild-type Bobwhite. The height of
LH-11 increased by 7% and the seed numbers per plant
increased drastically from 160.5 in Bobwhite to 198.8 in
LH-11 (23.9% increase). The panicle and tiller numbers
per plant increased slightly, whereas the floret numbers
decreased slightly in LH-11, but the differences did not
reach a significant level (P < 0.05).

Bread-baking quality of LH-11 was significantly reduced
The differences in rheological and farinograph properties
of dough from LH-11 compared to Bobwhite were mea-
sured. Wet gluten content, sedimentation value, water
absorption, development time and stability time in
LH-11 decreased significantly (P<0.01) compared to
Bobwhite. The wet gluten content in LH-11 was reduced
so much (from 31.0 to 3.4%) that the development time
and stability time were very short: the development time
decreased from 6.0 to 0.4 min, and the stability time
from 7.0 to 0.6 min (Table 1). Bread cannot be made
successfully from the flour of LH-11.

Discussion
It has been accepted that the variation in HMW-GS
composition strongly affects wheat processing quality.
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Fig. 4 Small RNA analysis of LH-11. Two hybridization signals of
small RNA (about 20-25 nt in size) were detected in LH-11, whereas
no signal in wild-type Bobwhite. Arrows point to the fragments of
small RNA
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Lines exhibiting no expression of HMW-GS such as
LH-11 described here can provide wheat breeders with
new materials to study end-use functionality. In this
study, a transgenic line LH-11 with all the HMW-GS si-
lenced was obtained in addition to ten positive trans-
genic lines expressing the Glu-1E°x gene. In LH-11,
none of the HMW-GS including the five endogenous
HMW-GS of the donor plant, Bobwhite, and the 1Ex of
Th. Bessarabicum were detectable by SDS-PAGE (Fig.
1a). Our results showed that LH-11 was a stable line and
the trait of deletion of HMW-GS was inherited by the
progenies. LH-11 was crossed with five Chinese wheat
cultivars. All the F; seeds and % of the F, seeds had de-
letions of HMW -GS (Additional file 1: Table S1), show-
ing that it followed Mendel’s dominant gene inheritance
law.

In transgenic line LH-11, Glu-1E”x was transcribed
successfully into RNA, but it was not translated into
protein. All of the five homologous endogenous Glu-1I
genes (Glu-1Ax2* Glu-1Bx7, Glu-1By9, Glu-1Dx5 and
Glu-1DyI10) in Bobwhite were degraded at the RNA level
(Fig. 2), which meant that post-transcriptional gene si-
lencing (PTGS) was triggered in LH-11. PTGS is
thought to be a universal gene regulation system in bio-
logical processes including defense against viruses and
regulation of gene expression [41]. PTGS mostly occurs
when the exogenous gene is homologous to the en-
dogenous gene [42]. This phenomenon was first discov-
ered in 1990 and is also called ‘co-suppression’ because
the expression of both the introduced and the homolo-
gous endogenous genes were suppressed together [43, 44].
Because of co-suppression, silencing of endogenous
HMW-GS after transformation has been commonly de-
tected in wheat lines that contain HMW-GS transgenes
designed for over-expression [45-47]. We postulated that
PTGS was occurring in LH-11 either because of DNA
methylation or the presence of small, double-stranded (ds)
RNAs.

There are two main mechanisms for how DNA methyla-
tion inhibits gene expression. First, modification of cyto-
sine bases can directly prevent transcription factors from
binding to DNA recognition sequences [48, 49]. Second,
DNA methylation results in chromatin modification and
remodeling through the action of methyl-cytosine binding
proteins (MBPs) and histone deacetylases [50, 51]. Here we
showed that there were different degrees of DNA methyla-
tion in four genes Glu-1Bx7, Glu-1Dx5, Glu-1DyI10 and
Glu-1E’%, indicating that DNA methylation may cause
gene silencing in LH-11 (Fig. 3). Double-stranded RNA is
another trigger of PTGS. Plants can recognize dsRNAs
from transgenes or viruses and cut them into short RNAs
(21-26 nt) such as small interfering RNAs (siRNAs) and
microRNAs (miRNAs) with an enzyme called Dicer [52—
55]. The miRNAs and siRNAs are incorporated into the
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Fig. 5 Accumulations of GMP during seed development in wild-type Bobwhite and transgenic line LH-11. a year 2008; b year 2009. WT, wild-type
Bobwhite. Statistical significance was determined by a Student's t-test at P < 0.01
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RNA-induced silencing complex (RISC) resulting in tran-
script cleavage [56, 57]. Researchers have detected signifi-
cant accumulations of siRNAs in various PTGS systems in
plants [58], so endogenous small RNAs may also play key
roles in regulating gene expression and causing PTGS [59].
We isolated total RNA from T, generation seeds of LH-11
and separated the small RNAs. Northern blots using
Glu-1Dy10 RNA as probe gave two hybridization signals of
small RNAs in LH-11, whereas no signal was detected in
wild-type Bobwhite (Fig. 4). Thus, small RNAs may be an-
other way that HMW-GS are silenced in LH-11.

Although they represent only 10% of wheat storage
proteins, HMW-GS have been recognized as crucial fac-
tors in determining the viscoelastic properties of wheat
dough [60]. The physical properties of dough stem from
interactions between HMW-GS and other grain storage
proteins via both inter- and intra-chain disulphide bonds
forming glutenin macropolymers (GMP) which contrib-
ute to the elasticity and strength of dough [4]. It has
been reported that the x- and y-type HMW-GS are
linked via head-to-tail disulphide bonds to form a back-
bone of the polymer. The LMW-GS constitute branch
points of the y-type subunits at four positions [61]. Be-
cause the cysteine residues of HMW-GS affect poly-
meric behavior [9, 62], the composition and quantity of
HMW-GS significantly affect the particle size and
amount of GMP in flour [63]. Loss of HMW-GS from
the polymer is always consistent with the time of dough
breakdown. [1]. In this study, we analyzed the dynamic
change of GMP at different seed development stages of
the wild-type Bobwhite and transgenic line LH-11. The
accumulation rate of GMP in LH-11 was significantly
lower than that in Bobwhite at 10-25 and 30-35 DAF,

Table 1 Rheological analysis of dough from transgenic line LH-11

which resulted in the final content of GMP in LH-11 be-
ing only half of that in Bobwhite (Fig. 5). Because
HMW-GS is necessary for the formation of the dough
protein network, the absence of HMW-GS resulted in
the formation of ‘sheets’ in dough rather than a
three-dimensional structure [64]. The decrease in GMP
content may be one of the reasons for the decline in
wheat flour quality of LH-11.

In addition to the HMW-GS, gliadins also play import-
ant roles in determining end-use wheat quality. Gliadins
account for about 50% of seed storage proteins and gen-
erally contribute to the extensibility and viscosity of
wheat dough [65]. The gliadins are divided into three
types: o/f-, y- and w-gliadins [66]. Unlike glutenins
which form polymers by both inter- and intra-chain di-
sulphide bonds, gliadins are monomeric proteins that
contain only intra-chain bonds (Shewry and Halford,
2003). Differences in the disulphide bonding properties
of glutenins and gliadins affect how they establish the
GMP and gluten structures. Our results showed that si-
lencing of HMW-GS increased the total gliadin content
in LH-11 (Table 2). It is generally agreed that total glia-
din content has a significant negative correlation with
dough properties such as development time and stability
time [67]. In the present study, we checked gliadin levels
in LH-11 by RP-UPLC and found that increase in total
gliadin content may be another reason of bread-baking
quality breakdown besides the absence of HMW-GS in
LH-11. Deletion of HMW-GS also caused changes in the
percentage content of different gliadins fractions. The ra-
tio of w-gliadin increased, whereas o/f- and y-gliadins de-
clined in LH-11 (Table 2). Different types of gliadins have
different effects on wheat quality depending on their

Material TP% WG% SV (ml) WA% DT (min) ST (min) BV (ml) BS
Bobwhite 154 +£02 310 + 1.6* 288 + 0.8* 61.8 +1.7% 6.0 + 0.3* 70+ 0.3* 7700 + 23.2* 740 £ 2.2
LH-11 150+ 03 34+02 68 +02 550+ 14 04 +0.1 06+ 0.1

* Statistical significance was determined by a Student’s t-test at P < 0.01

TP total protein content, WG wet gluten content, SV sedimentation value, WA water absorption, DT development time, ST stability time, BV bread volume, BS

bread score
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Table 2 Relative content of glutenins and gliadins by RP-UPLC

HMW-GS% LMW-GS% Glutenins® w-gliadin% a/B-gliadin% y-gliadin% Gliadins®
Bobwhite 488 £1.2%* 51.2+09% 6112.3 + 1283** 20.5 + 0.7% 543 +1.3* 252 +0.5% 17,7750 + 689.3**
LH-11 0 100 27146 + 46.2 258 £ 1.1 507 £ 14 235+ 06 30,017.1 £ 9422

? The peak area (1000 uV/S) of total glutenins and gliadins*Statistical significance was determined by a Student’s t-test at P < 0.05** Statistical significance was

determined by a Student’s t-test at P < 0.01

properties. The w-gliadins lack cysteine and cannot form
disulphide bonds. The a/p-gliadins contain six cysteine
residues and y-gliadins contain eight cysteine residues
[66]. Furthermore, w-gliadins have a p-turn structure,
while a/p- and y-gliadins have a high proportion of
a-helical and B-sheet structures [9]. The w-gliadins are
sulphur-poor, while, a/p- and y-gliadins are sulphur-rich
protein. Some studies indicated that o/fB-gliadins and
y-gliadins were positively associated with loaf volume and
development time, respectively [67, 68]. The increase in
the proportion of w-gliadins and decrease in both o/f-
and y-gliadins in LH-11 also reduced dough quality. The
total protein content was not significantly affected in
LH-11 comparing to Bobwhite (Table 1). The reduction of
glutenins was compensated for by increasing gliadin con-
tent in the grain, suggesting that wheat has a good system
for balancing gluten proteins [69]. The wet gluten content
and sedimentation value in LH-11 were much lower than
that of the wild-type (Table 1). Development time and sta-
bility time are closely linked to dough strength. Results re-
ported in the present study showed that the average
development time and stability time in LH-11 were re-
markably lower than in Bobwhite (Table 1). The flour of
LH-11 is unsuitable for bread-making, but has great po-
tential for making biscuits because of its low dough
strength.

Conclusions

In the transgenic wheat line LH-11, all the HMW-GS
were silenced and this genetic modification was stably
passed on to progenies by crossing LH-11 with other
wheat cultivars. We found DNA methylations and small
RNA signals in HMW-GS genes of LH-11, indicating
that DNA methylation and double-stranded RNA may
be the reasons for post-transcriptional gene silencing in
LH-11. The silencing of HMW-GS in LH-11 signifi-
cantly altered its dough properties. The accumulation
rate of GMP at the rapid accumulation stages (10-25
DAF and 30-35 DAF) and final content of GMP in
LH-11 were much lower than in wild-type Bobwhite.
The content of LMW-GS decreased whereas total

Table 3 Agronomic traits of LH-11 and Bobwhite

gliadin content significantly increased in LH-11 com-
pared to the wild-type. Deletion of HMW-GS also
caused changes in the percentage content of different
gliadins fragments. The ratio of w-gliadin increased from
20.5 to 25.8%, however, o/p-gliadin and y-gliadin de-
clined from 54.3 to 50.7% and 25.2 to 23.5%, respect-
ively. The wet gluten content and sedimentation value of
LH-11 were remarkably lower than that of Bobwhite.
The development time decreased from 6.0 to 0.4 min
and the stability time from 7.0 to 0.6 min. Therefore,
flour from LH-1lwheat has good potential for
biscuit-making because of its low dough strength.

Methods

Plant materials

In a previous study, we cloned the Glu-1E”x gene (Gen-
Bank accession AY525782) encoding HMW-GS of Th.
Bessarabicum and introduced it into the common wheat
cultivar, Bobwhite, using a biolistic transformation
method. Besides ten transgenic events characterized by
expression of the Glu-1E"x gene, we also, fortunately ob-
tained a transgenic line, LH-11, with all HMW-GS si-
lenced. LH-11 is in the Ty generation now and the trait
of deletion of all HMW-GS is still stably inherited. To
study the genetic inheritance of LH-11, we crossed it
with five Chinese wheat cultivars (Jinfeng5365, Gao8901,
Luozhenl, Gao9411, and Kenongl22), respectively. The
F; was self-crossed to give rise to F, generation. The
field trials in the present study were carried out in ran-
domized complete blocks with three replicates at Shijiaz-
huang, Hebei province, China.

Analysis of expression levels of HMW-GS genes in LH-11

Total RNA was isolated (three biological replicates) from
the seeds of positive transgenic lines and wild-type Bob-
white at 6, 9, 12, 15, 18 and 21days after flowering
(DAF) using the Trizol method (www.tiangen.com). All
samples were DNase-treated before reverse transcrip-
tion. The first-strand cDNA was synthesized by MMLV
reverse  transcriptase  (http://www.promega.com.cn)
using oligo(dT) as a primer. Reverse transcriptional

Material Plant height Panicles per plant Tiller number Spike length Floret number Seeds per panicle Seeds per plant
LH-11 7479 + 1.5* 33+ 04 51+02 105 + 04* 819+75 599 + 4.1* 198.8 + 4.9%
Bobwhite 694 + 1.2 30+03 49+08 99+ 0.1 836+ 22 536+ 14 160.5 £ 7.7

* Statistical significance was determined by a Student’s t-test at P < 0.05
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products were adjusted to an equal concentration ac-
cording to the PCR signal generated from the internal
standard house-keeping gene, B-tubulin, and used as
templates for RT-PCR. The primers used in RT-PCR are
listed in Table 4. RT-PCR was performed in total vol-
umes of 20 yl, including 2 pl of 10x LaTaq buffer, 0.5 pl
of ANTP (2.5 mM of each dNTP), 1ul of each primer
(5uM), 1U of La DNA polymerase and 80 ng of tem-
plate ¢cDNA. PCR conditions were: initial denaturation
at 94 °C for 3 min, followed by 40 cycles at 94 °C for 30,
58°C for 30s and 72 °C for 3 min, and a final extension
for 5min at 72°C. RT-PCR products were separated in
1% agarose gels, and the bands were visualized with eth-
idium bromide.

DNA methylation analysis

DNA methylation analyses in this study relied on diges-
tion with methylation-sensitive restriction enzymes
followed by gel electrophoresis and hybridization on
southern blots. Restriction enzymes Mspl and Hpall
have the same recognition site CCGG. Hapll is a
methylation-sensitive restriction enzyme which is inhib-
ited by 5™°C in the sequence context CpG, whereas its
isoschizomer Mspl is not inhibited by CpG methylation.
The patterns of cutting by these two enzymes can pro-
vide a read-out of DNA methylation. In T, generation,
we chose four genes Glu-1Bx7, Glu-1Dx5, Glu-1DyI0
and Glu-1E’x for DNA methylation examination. By
analyzing gene sequences of these four genes, we se-
lected different restriction enzymes to do double digests
of different genes; Hindlll + Hpall/Mspl were employed
to digest Glu-1Bx7 and Glu-1Dx5, Nael + Hpall/Mspl
were used to digest Glu-1DyI0 and EcoRl + Hpall/Mspl
were used to cut Glu-1E’x, respectively. Genomic DNA
(200-500 ng) was cleaved with corresponding restriction
enzymes such as HindlIl + Hpall or HindIIl + Mspl in
two separate reactions. Then, the digestion products
were separated by electrophoresis on 0.8% agarose gel

Table 4 Primer sets used in this study

Primer set  Sequence 5-3' Amplified target
Ax F: AGATGACTAAGCGGTTGGTTC  The genes of x-type

R CTGGCTGGCCAACAATGCGT WG5S on Glu-AT locus
Bx F: ATGGCTAAGCGCCTGGTCCT  The genes of x-type

R TGCCTGGTCGACAATGCGTGC | WG on Glu-BT locus
Dx F: ATGGCTAAGCGGTTAGTCCT ~ The genes of x-type

R CTGGCTGGCCGACAATGCGT | MW-GS on GluDT locus
Y-type F: ATGGCTAAGCGGTTGGTCCT ~ The genes of y-type

R: GGCTAGCCGACAATGCGTCG HMW-GS
Tublin F: GGCTAGCCGACAATGCGTCG  B-tubulin gene of wheat

R: GGCTAGCCGACAATGCGTCG
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and hybridized using [a-**P] dCTP-labelled gene frag-
ment as probes (Additional file 2: Table S2).

Small RNA detection

Small RNA extraction was performed using the method
reported by Peng et al. [70] with minor modifications.
Total RNA was isolated from immature T, generation
seeds of line LH-11 using TRNzol reagent (http://
www.tiangen.com/en/). Samples frozen in liquid nitro-
gen were ground to a fine powder with a mortar and
pestle. About 100 mg of powder was transferred into a 2
ml centrifuge tube containing 1 ml of TRNzol. After be-
ing thoroughly mixed by vortexing, the mixture was kept
at room temperature for 10 min. Then, 0.2 ml of chloro-
form was added, the tubes were vortexed vigorously and
the mixture was centrifuged at 12,000 rpm for 10 min at
4°C. The upper aqueous phase was transferred to a new
centrifuge tube and an equal volume of precipitation
buffer (20% w/v PEG 8000, 1 M NaCl) was added. The
tubes were incubated at 65 °C for 15 min, kept at room
temperature for 10 min, and chilled on ice immediately
for 40 min to precipitate the high molecular weight
RNAs. Following centrifugation at 12,000 rpm for 10
min at 4 °C, the supernatant was collected as the fraction
enriched in small RNAs. Small RNAs were precipitated
with 1/10 volume of 3 M sodium acetate (pH 5.2) and
2.5 volume of precooled absolute ethanol at -20 °C over-
night. The pellet was collected by centrifugation at
12,000 rpm for 20 min and rinsed twice with 80% etha-
nol. Small RNA detection was performed on gene
Glu-1Dy10 which was inhibited more thoroughly. North-
ern blot analysis was carried out according to a standard
protocol using [a-32P]dCTP-labelled Glu-1Dy10 RNA as
a probe.

Reversed-phase ultraperformance liquid chromatography
(RP-UPLC) analysis

HMW-GS, LMW-GS, and gliadins were extracted from
LH-11 (Ts generation) and wild-type Bobwhite with
three biological replicates using published methods [71—
73]. The quantitative analyses of glutenins and gliadins
were made on an Acquity UPLC (Waters Corp.) with a
Waters 300SB C18 column (50 x 2.1 mm i.d., 1.7 pm).
The separation of glutenins was based on the program
reported by Yu et al. [71]. The four eluants were: A, ul-
trapure water containing 0.06% (v/v) trifluoroacetic acid
(TFA); B, acetonitrile (ACN) containing 0.06% TFA; C,
ultrapure water; and D, methanol. The column was first
balanced by increasing the concentration of B from 21
to 47% in 15 min. The ratios of A to B for weak washing
and strong washing needles were 79:21 and 53:47%, re-
spectively. The sample was washed with A from 95 to
5% and B from 5 to 95% in 5min. Final washing was
done with solution C from 90 to 10% and D from 10 to
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90% three times within 30 min. The separation condi-
tions of gliadins were taken from the method reported
by Han et al. [74]. Two elution buffers were used: solu-
tion A was 0.06% TFA in ultrapure water and solution B
was 0.06% TFA in ACN. The gradient program was set
as solution B from 21 to 46%. The differentiations of
glutenin and gliadin fractions were based on their elu-
tion characteristics. The relative content of each frag-
ment was calculated according to its peak area.

Glutenin macropolymer, agronomic traits, and end-use
quality analysis

Transgenic line LH-11 and wild-type Bobwhite were
planted and grown in a completely randomized block
design at Shijiazhuang, Hebei province. In the years
2007 through 2008 (T3 generation) and 2008 through
2009 (T, generation), seeds at different development
stages (5, 10, 15, 20, 25, 30 and 35 days after flowering
(DAF)) were taken to carry out glutenin macropolymer
(GMP) analysis according to the method described by
Don et al. [75]. Observations on growth and yield-con-
tributing traits (T3 generation) such as plant height,
number of spikes, number of seeds per plant, etc., were
recorded for ten individuals. Dough rheological and fari-
nograph properties of T5 generation seeds were used to
evaluate the end-use quality. Data were statistically ana-
lyzed to find differences between transgenic and wild-
type plants using Student’s ¢-test. All the tests were per-
formed on three replicates.

Additional files

Additional file 1: Table S1. Segregation of HMW-GS deletion trait in F;
and F, generation offsprings of LH-11. (DOCX 16 kb)

Additional file 2: Table S2. The probe regions for different genes used
for DNA methylation analysis. (DOCX 14 kb)
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