Toju et al. BMC Plant Biology (2018) 18:292
https://doi.org/10.1186/s12870-018-1500-5

BMC Plant Biology

RESEARCH ARTICLE Open Access

Structural diversity across arbuscular

@ CrossMark

mycorrhizal, ectomycorrhizal, and endophytic

plant-fungus networks

Hirokazu Toju'*'®, Hirotoshi Sato®, Satoshi Yamamoto® and Akifumi S. Tanabe®

Abstract

northern localities.

ecosystems.

endophytic symbiosis

Background: Below-ground linkage between plant and fungal communities is one of the major drivers of terrestrial
ecosystem dynamics. However, we still have limited knowledge of how such plant-fungus associations vary in their
community-scale properties depending on fungal functional groups and geographic locations.

Methods: By compiling a high-throughput sequencing dataset of root-associated fungi in eight forests along the
Japanese Archipelago, we performed a comparative analysis of arbuscular mycorrhizal, ectomycorrhizal, and
saprotrophic/endophytic associations across a latitudinal gradient from cool-temperate to subtropical regions.

Results: In most of the plant-fungus networks analyzed, host-symbiont associations were significantly specialized but
lacked "nested” architecture, which has been commonly reported in plant-pollinator and plant-seed disperser
networks. In particular, the entire networks involving all functional groups of plants and fungi and partial networks
consisting of ectomycorrhizal plant and fungal species/taxa displayed “anti-nested” architecture (i.e, negative
nestedness scores) in many of the forests examined. Our data also suggested that geographic factors affected the
organization of plant-fungus network structure. For example, the southernmost subtropical site analyzed in this
study displayed lower network-level specificity of host-symbiont associations and higher (but still low) nestedness than

Conclusions: Our comparative analyses suggest that arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/
endophytic plant-fungus associations often lack nested network architecture, while those associations can vary, to
some extent, in their community-scale properties along a latitudinal gradient. Overall, this study provides a basis for
future studies that will examine how different types of plant—fungus associations collectively structure terrestrial

Keywords: Biodiversity, Community ecology, Competitive exclusion, Host specificity or preference, Latitudinal
gradients, Microbiomes, Plant-fungus interactions, Plant-soil feedback, Species coexistence, Mycorrhizal and

Background

Fungi in the below-ground biosphere are key drivers of
terrestrial ecosystem processes [1—4]. Mycorrhizal fungi
are considered to support land plants not only by provi-
sioning soil nitrogen and phosphorous [5, 6] but also by
increasing plants’ resistance to biotic/abiotic stress [7, 8].
Pathogenic fungi in the soil affect the survival/mortality

* Correspondence: toju.hirokazu.4c@kyoto-u.acjp

'Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
“Precursory Research for Embryonic Science and Technology (PRESTO), Japan
Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Full list of author information is available at the end of the article

K BMC

of young plants in a major way, possibly determining
spatial distributions of plant species within forest/grass-
land ecosystems [9, 10]. Moreover, recent mycological
studies have begun to examine the poorly explored
diversity of endophytic fungi, which can enhance the
nutritional conditions and pathogen resistance of mycor-
rhizal and non-mycorrhizal plant species [11-16]. Thus,
terrestrial biomes consist of multiple layers of below-
ground plant—fungus interactions [17]. Nonetheless, we
still have limited knowledge of the structure of such
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complex webs of interactions, leaving major processes in
below-ground ecosystems poorly explored.

In enhancing our understanding of community- or
ecosystem-level processes of below-ground plant—fungus
interactions, analyses on community-scale properties of
such host—symbiont associations provide essential insights.
For example, if a pathogenic fungal community consists
mainly of species with narrow host ranges, it as a whole is
expected to restrict the emergence of dominant plant spe-
cies through “negative plant—soil feedback”, contributing to
the maintenance of plant species diversity within an ecosys-
tem [18-20]. In contrast, with a high proportion of mycor-
rhizal fungi with narrow host ranges, their specific host
species, such as Pinaceae plants hosting Suillaceae ectomy-
corrhizal fungi [21], will dominate the plant community
through positive plant—soil feedback [20, 22]. Meanwhile,
endophytic and arbuscular mycorrhizal fungi with broad
host ranges [23—25] may diminish such negative and posi-
tive feedback by interlinking otherwise compartmentalized
ecological dynamics (but see [26]). Therefore, concomitant
analyses of community-scale properties of those multiple
plant—fungus associations are of particular importance in
understanding how plant—soil feedbacks organize terrestrial
ecological processes.

Since the application of network science to ecology
and mycology, researchers have evaluated the architec-
ture of networks that represent linkage between plant
and fungal communities [27]. Those studies have shown
that arbuscular mycorrhizal [28-30], ectomycorrhizal
[31], and ericaceous [32] plant—fungus networks exhibit
moderate or low levels of host—symbiont specificity,
while they are structured to avoid overlap of host plant
ranges within fungal communities. In addition, many of
those plant—fungus networks [17, 31, 33] are known to
lack “nested” architecture (i.e., structure of networks
wherein specialist species interact with subsets of part-
ners of generalist species [34]), which has been com-
monly reported in above-ground networks of plant—
pollinator and plant—seed-disperser interactions [34—36]
(but see [37]). However, in those previous studies, data
of different types of plant—fungus networks have been
collected from different geographic localities with differ-
ent sampling strategies, precluding the chance of simul-
taneously evaluating the effects of interaction type and
geographic factors. Although comparative studies of
published data provide invaluable insights [27], compiled
data often vary in the molecular markers used and they
may differ in appropriate null model assumptions in sta-
tistically examining network topological properties.

In this study, we compared community-scale proper-
ties of arbuscular-mycorrhizal, ectomycorrhizal, and
endophytic associations across eight forest sites spanning
from cool-temperate to subtropical regions in Japan.
Based on high-throughput sequencing data of
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root-associated fungi [38], we analyzed how multiple
plant species are associated with respective functional
groups of fungi in each of the eight forests. We then ex-
amined how network structure varied depending on cat-
egories of plant—fungus associations and geographic
locations. Overall, this study provides a first step for in-
tegrating insights into community-scale properties of
multiple types of below-ground plant—fungus associa-
tions and their ecosystem-level consequences.

Methods

Terminology

In analyzing metadata of community-scale properties of
plant—fungus associations, we need to use consistent ter-
minology that can be applied to a wide range of host—
symbiont associations. While plant—fungus network
properties have been compared within a single func-
tional group of fungi (e.g., arbuscular mycorrhizal or
ectomycorrhizal fungi) in most studies, we herein target
not only arbuscular mycorrhizal and ectomycorrhizal
fungi but also pathogenic and saprotrophic/endophytic
fungi. The dataset used in this study [38] included all
the fungi detected by high-throughput sequencing and
they could contain not only mutualistic/antagonistic
fungi but also commensalistic fungi merely adhering to
plant roots [39]. In this sense, our data represented sym-
biotic relationships in the broad sense, ie., intimate
physical connections between organisms [17, 40].

Sampling

We used the dataset of a previous study [38], in which we
collected root samples at eight forest sites (four
cool-temperate, one warm-temperate, and three subtrop-
ical forests) across the entire range of the Japanese
Archipelago (45.042-24.407 °N; Fig. 1a; Additional file 1:
Data S1) in order to infer metacommunity processes of
plant—fungus associations. In each forest, 2-cm segment
of terminal roots were collected from 3-cm below the soil
surface at 1-m horizontal intervals: 383 terminal root sam-
ples were collected in each of the eight forests. Those
roots were collected indiscriminately regarding root
morphology or apparent mycorrhizal type so that the sam-
ples as a whole represented the relative frequency of
plant—fungal associations in the horizon in each forest
[41]. Therefore, while the sample sets consisted mainly of
woody plants, they also included herbaceous plants
(Additional file 2: Data S2). Each root sample was
preserved in 70% ethanol and stored at — 25 °C until DNA
extraction. Research permits were issued by the organiza-
tions listed in Acknowledgements.

Molecular and bioinformatic analyses
The molecular and bioinformatic analyses were per-
formed as detailed below and in the data source study
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[38]. Each root sample was placed in 70% ethanol with
1-mm zirconium balls in a 1.5 mL tube. The 1.5 mL tubes
were then shaken at 15 Hz for 2 min with a TissueLyser II
(Qiagen) [23]. The washed roots were subsequently pul-
verized by shaking with 4-mm zirconium balls at 25 Hz
for 3 min. DNA extraction was then performed with a
cetyltrimethylammonium bromide method [42].

The internal transcribed spacer 1 (ITS1) region of
root-associated fungi was amplified with the primers
ITS1F_KYO1 and ITS2_KYO2, which target not only
Ascomycota and Basidiomycota fungi but also diverse
non-Dikarya (e.g., Glomeromycota) taxa [43]. We used
the forward primer ITSIF_KYOL1 fused with 3—6-mer Ns
for improved Illumina sequencing quality [44] and the for-
ward Illumina sequencing primer (5'- TCG TCG GCA
GCG TCA GAT GTG TAT AAG AGA CAG- [3—-6-mer
Ns] — [ITS1F_KYOI1] -3’) and the reverse primer ITS2_-
KYO?2 fused with 3—6-mer Ns and the reverse sequencing
primer (5'- GTC TCG TGG GCT CGG AGA TGT GTA
TAA GAG ACA G [3-6-mer Ns] - [ITS2_KYO2] -3').
The DNA polymerase system of KOD FX Neo (Toyobo)
was used with a temperature profile of 94 °C for 2 min,
followed by 35 cycles at 98 °C for 10 s, 50 °C for
30 s, 68 °C for 50 s, and a final extension at 68 °C for
5 min. The ramp rate was set to 1 °C/sec to prevent the
generation of chimeric sequences [45]. Illumina sequen-
cing adaptors were then added to each sample in the sub-
sequent PCR using the forward primers consisting of the
P5 Illumina adaptor, 8-mer tags for sample identification
[46], and a partial sequence of the sequencing primer (5°-
AAT GAT ACG GCG ACC ACC GAG ATC TAC AC -

[8-mer index] - TCG TCG GCA GCG TC -3’) and the re-
verse primers consisting of the P7 adaptor, 8-mer tags,
and a partial sequence of the sequencing primer (5'- CAA
GCA GAA GAC GGC ATA CGA GAT - [8-mer index] -
GTC TCG TGG GCT CGG -3). In the reaction, KOD
FX Neo was used with a temperature profile of 94 °C for
2 min, followed by 8 cycles at 98 °C for 10 s, 55 °C for
30 s, 68 °C for 50 s, and a final extension at 68 °C for
5 min. The PCR amplicons of 384 samples in each forest
(including one PCR negative control) were pooled with
equal volume after a purification/equalization process
with AMPureXP Kit (Beckman Coulter).

For the identification of plants, another set of PCR was
performed targeting chloroplast rbcL region with rbcL_F3
and rbcl,_R4 primers [41]. The fusion primer design, DNA
polymerase system, temperature profiles, and purification
processes used in the rbcL analysis were the same as those
of the fungal ITS analysis. The ITS and rbcL libraries were
processed in two Illumina MiSeq runs, in each of which
samples of four forest sites were combined (run center:
KYOTO-HE) (2 x 250 cycles; 15% PhiX spike-in).

In total, 17,724,456 and 17,228,848 reads were ob-
tained for the first and second MiSeq runs. The raw se-
quencing data were converted into FASTQ files using
the program bcl2fastq 1.8.4 provided by Illumina. The
FASTAQ files were then demultiplexed using the program
Claident v0.2.2016.07.05 [47, 48]. To avoid possible er-
rors resulting from low-quality index sequences, the se-
quencing reads whose 8-mer index positions included
nucleotides with low (< 30) quality scores were discarded
in this process. As reverse sequences output by Illumina



Toju et al. BMC Plant Biology (2018) 18:292

sequencers have lower quality values than forward se-
quences [49], we used only forward sequences after re-
moving low-quality 3'-ends using Claident (sequencing
data deposit: DDB] DRA accession: DRA006339) [38].
Noisy reads were subsequently discarded and the reads
that passed the filtering process were clustered using
VSEARCH [50] as implemented in Claident. The thresh-
old sequencing similarities in the clustering were set to
97% for fungal ITS and 98% for rbcL, respectively. While
sequence similarity values have been set to 97% in most
ITS analyses of Ascomycota and Basidiomycota fungi
[51] (see also [52]), a recent study showed that Glomero-
mycota fungi generally had much higher intraspecific
ITS-sequence variation than Dikarya fungi [53]. There-
fore, we performed an additional clustering analysis with
a 94% cutoff similarity for defining Glomeromycota
OTUs. Note that changing cut-off similarities (81-97%)
did not qualitatively change statistical properties of a
plant—fungus network in a previous study [17]. The
taxonomic assignment of the OTUs (Additional files 3
and 4: Data S3—4) was conducted based on the combin-
ation of the query-centric auto-k-nearest neighbor
(QCauto) method [47] and the lowest common ancestor
(LCA) algorithm [54] as implemented in Claident. Note
that taxonomic identification results based on the
QCauto-LCA approach were comparable to, or some-
times more accurate than, those with the alternative ap-
proach combining the UCLUST algorithm [55] with the
UNITE database [56] [see [32, 57] for detailed compari-
son of the QCautoLCA and UCLUST-UNITE ap-
proaches]. The functional group of each fungal OTU
was inferred using the program FUNGuild 1.0 [58]. For
44.1% (3560/8080) of fungal OTUs, functional group in-
formation was inferred (Additional file 1: Data S1).

The obtained information of rbcL OTUs was used to
identify each root sample, although species-level taxo-
nomic information was unavailable for some plant taxa
in each forest due to the relatively low variability of the
chloroplast region [59]. Thus, we also used the informa-
tion of the ITS sequencing libraries, which included not
only fungal but also host plant sequencing reads: there
were plant taxa that could not be identified to species
even with ITS information. Based on the rbcL and ITS
information of plant sequences, possibly contaminated
samples were removed from the dataset.

For each of the eight forests, we then obtained a sam-
ple (row) x fungal OTU (column) data matrix, in which
a cell entry depicted the number of sequencing reads of
an OTU in a sample. The cell entries whose read counts
represented less than 0.1% of the total read count of
each sample were subsequently excluded because those
rare entries could derive from contaminations from soil
or PCR/sequencing errors [60]. The filtered matrices
were then rarefied to 1000 reads per sample using the
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“rrarefy” function of the vegan 2.4-3 package [61] of R
3.4.1 [62]. As the number of samples with 1000 or more
reads varied among the eight forests examined (240-288
samples), it was equalized by randomly sampling 240
samples without duplication in each forest (“sample-level
matrices”; Additional file 2: Data S2).

Based on the sample-level matrix of each forest, we ob-
tained an additional matrix, in which a cell indicated the
number of samples representing associations between a
plant species/taxa (row) and a fungal OTU (column) (“spe-
cies-level matrices”; Additional file 5: Data S5). In addition
to the matrix indicating associations between all fungal
OTUs and their host plants (ALL), a series of partial net-
work matrices representing respective fungal functional
groups were obtained by selecting arbuscular mycorrhizal
(AM), ectomycorrhizal (ECM), potentially pathogenic
(PATHO), and saprotrophic/endophytic (SAPENDO) fun-
gal OTUs in each forest (Additional file 6: Data S6). Due to
the limited availability of information of fungal ecology,
functional groups of many fungal OTUs could not be esti-
mated and there were only 9-25 fungal OTUs inferred to
be plant pathogens in respective forests (Additional files 1
and 5: Data S1 and S5). For arbuscular mycorrhizal symbi-
osis, we prepared additional matrices from which
non-arbuscular mycorrhizal plants [63] were excluded
(AM.ex partial networks). Likewise, for ectomycorrhizal
symbiosis, we obtained additional matrices from which
non-ectomycorrhizal plants were excluded (EcM.ex partial
networks): a list of ectomycorrhizal plants [63] was referred
to in classifying ectomycorrhizal and non-ectomycorrhizal
plants. Although some plant species are known to interact
with both arbuscular mycorrhizal and ectomycorrhizal
fungi [64], matrices consisting exclusively of arbuscular
mycorrhizal plants and fungi (AM.ex) and those consisting
exclusively of ectomycorrhizal plants and fungi (EcM.ex)
(Additional file 6) likely represented what generally
regarded as arbuscular mycorrhizal or ectomycorrhizal
symbioses.

Data analysis

Based on the sample-level matrices, relationships be-
tween the number of samples and that of observed fun-
gal OTUs was analyzed for each forest using the
“specaccum” function of the vegan package. The
community-scale plant—fungus associations represented
by the species-level matrices (“ALL” network matrices;
Additional file 5: Data S5) were visualized using the pro-
gram GePhi 0.9.1 [65] with “ForceAtlas2” layout algo-
rithm [66]. We then analyzed the statistical properties of
the ALL networks and partial networks (Additional file
6: Data S6) in terms of the metric of network-level inter-
action specificity (H,) [67], which has been frequently
used to measure the degree of interaction specificity in
host—symbiont networks [68, 69]. The plant—fungus
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associations were evaluated also by the weighted NODF
metric [70] of network nestedness [34], which measures
the degree to which specialists (species with narrow
partner ranges) interact with partners of generalists
(species with broad partner ranges) in the same guild or
trophic level. We further examined how host plant
ranges were differentiated within the fungal community
of each forest based on checkerboard scores [71]: a high/
low score of the checkerboard index indicates host dif-
ferentiation/overlap within a guild or trophic level [69].
Although modularity is another important index fre-
quently used in ecological network studies [35], its com-
putation was too time-consuming to be applied to
randomization analyses (see below) of our present data
consisting of more than 1000 fungal OTUs and their
host plants. Note that we previously found that
below-ground plant—fungal associations generally
showed statistically significant but low network modular-
ity [17, 32, 69].

As estimates of network indices could vary depending
on species compositions of examined communities, we
standardized the indices as

relative index value = [I,pserves—mean(],

tonized))/SD Urandomiced),

where I pserveqa Was the index estimate of the observed
data matrix, and mean(/,ndomized) aNd SD(Liandomized)
were the mean and standardized deviation of the index
values of randomized matrices [69]. Randomized matri-
ces were obtained by shuffling host-plant labels in the
sample-level matrices and subsequently converting the
randomized sample-level matrices into randomized
species-level matrices. Although we used two additional
methods [“r2dtable” [72] and “vaznull” [73] methods] of
matrix randomization in our previous studies of plant—
fungus networks [17, 69], they were too time-consuming
to be used in the present large dataset: note that the
three randomization methods compared in those previ-
ous studies yielded qualitatively similar results [17, 69].
The number of randomizations was set to 1000 for H,’/
nestedness analyses and 100 for checkerboard-score ana-
lyses, which required substantial computing time.

Based on the network indices, we examined how the
community-scale properties of the plant—fungus associa-
tions varied among local forests and network categories
(ALL, AM, AM.ex, EcM, EcM.ex, SAPENDO, and PA-
THO). For interaction specificity (relative H,), nestedness
(relative weighted NODF nestedness), and checkerboard
index (relative checkerboard values) each, an ANOVA
model was constructed by incorporating locality (forest
sites), network category, number of plant species/taxa,
number of fungal OTUs, and network connectance (the
proportion of non-zero entries in community matrices) as
explanatory variables. The variation in the plant—fungus
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network properties was visualized based on a principal
component analysis based on a correlation matrix: the
variables included were H,’ interaction specificity, NODF
nestedness, checkerboard index, number of plant species/
taxa, number of fungal OTUs, proportion of fungal OTUs
to plant species/taxa, and connectance.

Results

Total fungal OTU richness was higher in warm-temperate
and subtropical forests than in cool-temperate forests
(Figs. 1b and 2). The OTU richness of arbuscular mycor-
rhizal fungi was higher in the three subtropical forests,
while that of ectomycorrhizal fungi decreased in the sub-
tropical forests (Fig. 3a). The ratio of the total number of
fungal OTUs to the number of plant species/taxa varied,
to some extent, among forests, although there was seem-
ingly no systematic variation between cool-temperate and
the other (warm temperate and subtropical) localities
(Fig. 3b). Connectance varied among forests as well, while
it was consistently higher in EcM.ex partial networks than
in other networks/partial networks (Fig. 3c). We also
found that AM and AM.ex partial networks showed
higher connectance than ALL, EcM, and SAPENDO
networks/partial networks in seven of the eight forests ex-
amined (Fig. 3c). The connectance of PATHO partial net-
works varied considerably among forests presumably due
to low OTU richness and the resultant uncertainty in
index estimation.

The relative interaction specificity significantly varied
among forests and network categories in an ANOVA
model (Table 1; Fig. 3d). The relative nestedness of the
ALL matrices of plant—fungus associations was lower
than zero in most forests but not in the southern most
subtropical forest (Fig. 3e; Additional file 7: Data S7).
Overall, plant—fungus associations in ALL networks
were more specialized (Fig. 3d) and less nested (Fig. 3e)
than those of partial networks. In addition, fungal OTUs
in ALL networks displayed stronger differentiation of
host ranges than those in partial networks (Fig. 3f).

After taking into account plant and fungal diversity in
an ANOVA model, neither locality nor network cat-
egory explained the variation in relative nestedness
(Table 1). The relative checkerboard scores varied
among localities (Fig. 3f), although the effects of local-
ity were non-significant in an ANOVA model (Table 1).
The ANOVA model showed that the variation in rela-
tive checkerboard scores was explained, to some extent,
by network category: the effects of network categories
were non-significant after a Bonferroni correction
(Table 1).

In the principal component analysis of network indi-
ces, ALL, PATHO and other networks/partial networks
were separated by the first principal component, which
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Fig. 2 Below-ground plant-fungus networks. The “ALL" network involving all the root-associated fungal OTUs detected and their host plant
species/taxa is shown for each forest. The OTUs/species in the networks are arranged with the “ForceAtlas2” layout algorithm [66]. Size of circles
represents betweenness centrality scores compared within plant/fungal community
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represented high fungal OTU richness, fungus/plant ra-
tios, relative interaction specificity, and relative checker-
board scores as well as low relative nestedness
(Additional file 8: Figure Sla). In addition, EcM.ex par-
tial networks were separated from other networks/partial
networks by the second principal component, which
represented high numbers of plant species/taxa and low
connectance (Additional file 8: Figure Sla). The third
principal component (Additional file 8: Figure S1b),
which were negatively correlated with fungal OTU rich-
ness, fungus/plant ratios, and relative nestedness, added
little to the results of grouping based on the first and
second principal components.

Discussion

The data compiled in this study [38], which included
17-55 plant species/taxa and more than 1000 fungal
OTUs in each of the eight forests, provided a novel
opportunity to evaluate how different types of below-
ground plant—fungus associations varied in their
community-scale characteristics along a latitudinal gra-
dient. We then found that network structural properties
differed among different types of plant—fungus associa-
tions (Fig. 3), while geographic factors contributed to the
variation found in network structure (Table 1).
Specifically, ectomycorrhizal partial networks defined in
terms of both plant and fungal functional groups
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checkerboard score). For relative interaction specificity, relative nestedness, and relative checkerboard score (d-f), scores higher/lower than 2 roughly
indicate that observed network index values are higher/lower than expected by chance (see Additional file 7: Data S7 for detailed results of the

(EcM.ex) had higher connectance than other networks/
partial networks (Additional file 8: Figure S1). We also
found that networks consisting of all functional groups
of fungi and their host plants had higher network-level
interaction specificity, more differentiated host ranges
between fungi, and lower network nestedness than the
partial networks of arbuscular mycorrhizal, ectomycor-
rhizal, and saprotrophic/endophytic associations (Fig. 3;
Additional file 8: Figure S1). As in previous studies, our
data included many fungal OTUs unassigned to func-
tional groups due to the paucity of the information on
fungal functions and guilds in databases [58]. However,

by extending findings in previous plant—fungus network
studies [30, 31, 69], in which sampling strategies, inter-
action type, or geographic factors were not controlled
systematically, this study offers a basis for discussing
how different types of below-ground plant—fungus asso-
ciations collectively build plant—soil feedbacks in terres-
trial ecosystems.

Among the network indices examined in this study,
nestedness showed an idiosyncratic tendency in light of
other types of interaction networks examined in com-
munity ecology [34-36]. We found that below-ground
plant—fungus networks often displayed “anti-nested”
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Table 1 Potential factors contributing to variation in plant-fungus network structure. For each response variable representing network
structure, an ANOVA model including the number of plant species/taxa, that of fungal OTUs, network connectance, sampling locality,

and the category of plant-fungus networks was constructed

Response variable Explanatory variable df F P
Relative interaction specificity No. plant species/taxa 1 6.8 0.0126
No. fungal OTUs 1 1209 < 0.0001
Connectance 1 55 0.0238
Locality 7 46 0.0008
Category 6 50 0.0007
Relative nestedness No. plant species/taxa 1 7.7 0.0083
No. fungal OTUs 1 370 < 0.0001
Connectance 1 0.5 04829
Locality 7 13 0.2957
Category 6 1.5 0.2042
Relative checkerboard score No. plant species/taxa 1 1.3 0.2594
No. fungal OTUs 1 68.8 < 0.0001
Connectance 1 4.1 0.0506
Locality 7 20 0.0818
Category 6 3.1 0014

P values significant after a Bonferroni correction are shown in bold for each ANOVA model (a = 0.05)

architecture, in which scores representing nested net-
work structure were lower than those expected by
chance (i.e., negative values of relative nestedness; Fig.
3e), as suggested also in previous studies [17, 31, 69]. In
particular, the entire networks involving all plants and
fungi and ectomycorrhizal partial networks defined in
terms of both plant and fungal functional groups
(EcM.ex) had strong anti-nested architecture in many of
the forests examined (Fig. 3e). Although factors organiz-
ing anti-nested network architecture remain to be inves-
tigated, competition for host plants among fungal
species has been inferred to decrease nestedness of
plant—fungus associations [69]. In addition, a previous
comparative study suggested that plant—fungus network
nestedness decreased with increasing annual mean
temperature on a global scale [27].

The prevalence of anti-nested or non-nested network
structures in below-ground plant—fungus associations is
in sharp contrast to observations on other types of plant—
partner networks, which commonly show statistically sig-
nificant nested architecture [34]. Specifically, plant—pollin-
ator and plant—seed disperser interactions are generally
characterized by nested network architecture in which
overlap of partner ranges within the same guild are ex-
pected to mitigate competition between plant species
[34-36]. In this sense, the anti-nested structure found in
plant—fungus networks highlights potential diversity of
network architecture and mechanisms by which species
coexistence is promoted in plant—partner networks [36,
37, 74]. Given that below-ground fungi constitute one of
the most species-rich components of the terrestrial

biosphere [3], understanding community-scale properties
of below-ground plant—fungus associations is a major step
for disentangling relationship among network structure,
species coexistence, and community stability.

To overcome the inconsistency between theory and
observations, we may need to take into account basic
biology of below-ground plant—fungus associations. We
here highlight two backgrounds that need more atten-
tion for deepening discussion on ecological networks
and species coexistence. First, in contrast to plant—pol-
linator or plant—seed disperser networks, which are often
assumed to consist only of mutualistic interactions,
below-ground plant—fungus networks can involve not
only mutualistic but also antagonistic and commensalistic
interactions. Even within a network consisting exclusively
of arbuscular mycorrhizal or ectomycorrhizal plant and
fungal species (e.g., AM.ex or EcM.ex partial networks in
this study), plant—fungus interactions can have not only
positive (mutualistic) but also net negative/neutral effects
[75=77]. This diversity of interaction type can lead to high
stability of below-ground fungal and host plant communi-
ties. Specifically, while communities consisting exclusively
of mutualistic interactions are inherently unstable [78],
involvement of a small fraction of antagonistic interac-
tions in those communities can dramatically enhance spe-
cies coexistence [79]. Second, because fungi can disperse
long distances as spores [80, 81] (but see [82]), their local
species richness (alpha diversity) may be greatly impacted
by metacommunity processes [75]. Interestingly, a recent
theoretical study on food webs predicted that strong coup-
ling of local communities within a metacommunity could
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result in positive relationship between species richness
and community stability [83]. Such theoretical evaluation
of metacommunity dynamics has been extended to sys-
tems involving mutualistic interactions [84], providing
platforms for considering how dispersal abilities of con-
stituent species determine local species richness/coexist-
ence of different types of plant—partner networks.

The dataset compiled in this study included plant—
fungus combinations that could not be classified into
well-recognized categories of mycorrhizal symbioses [8].
For example, ectomycorrhizal fungi were detected not
only from plant species in “ectomycorrhizal” families
(e.g., Fagaceae, Pinaceae, and Betulaceae) but also from
other plant species (Fig. 2; Additional file 6: Data S6). In
addition, the data included network links between arbus-
cular mycorrhizal fungi and ectomycorrhizal plant
species (Additional file 6: Data S6) as reported previously
[64]. When such plant—fungus associations that do not fall
into classic categories of mycorrhizal symbioses [63] were
excluded from the dataset, network properties changed to
some extent (Fig. 3; Additional file 8: Figure S1). Specific-
ally, ectomycorrhizal partial networks displayed lower
connectance and nestedenss when non-ectomycorrhizal
plant species/taxa were excluded from the data matrices
(compare EcM with EcM.ex), while arbuscular mycor-
rhizal networks remained unchanged after removing
ectomycorrhizal and non-mycorrhizal plant species/taxa
(compare AM with AM.ex) (Fig. 3; Additional file 8:
Figure S1). Meanwhile, although associations between
ectomycorrhizal fungi and arbuscular mycorrhizal plants
(or arbuscular mycorrhizal fungi and ectomycorrhizal
plants) [63] seldom attract attention and they are often re-
moved from high-throughput sequencing datasets before
statistical analyses, some of those unusual associations
may represent important ecological interactions. An ecto-
mycorrhizal fungus in the truffle genus (Tuber melanos-
porum), for instance, is known to cause severe necrosis in
root cortices of non-ectomycorrhizal herbaceous plants
[85]. Thus, for the standardization of plant—fungus net-
work analyses inferred with high-throughput sequen-
cing, it is important to emphasize the possibility that
network links can represent not only mutualistic but
also neutral and antagonistic interactions [17]. Given
also that even well-known combinations of plant and
fungi can result in antagonistic interactions depending
on soil environmental conditions and host plant nutri-
tion [76, 86], potential diversity of ecological interac-
tions within a network and its community-scale
consequences [79] deserve intensive research.

Our community-scale comparative analysis targeting a
latitudinal range from cool-temperate to subtropical re-
gions has some implications for geographic diversity pat-
terns of plant-associated fungi, although careful
interpretation is required given the small number of study
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sites. The number of detected ectomycorrhizal fungal
OTUs was lower in subtropical than in temperate forests
(Fig. 3a), presumably reflecting geographic variation in the
relative abundance of Fagaceae, Pinaceae, and Betulaceae
plants in plant communities as discussed in previous stud-
ies [87-90] (see also [91]). In contrast, the number of
arbuscular mycorrhizal fungal OTUs increased towards
south in our data, while a previous meta-analysis detected
no latitudinal diversity gradient regarding the fungal func-
tional group [92] (see also [93]). The total number of fun-
gal OTUs was also higher in subtropical forests, peaked in
the southernmost site. Interestingly, unlike other study
sites, the entire plant—fungus associations of the southern-
most sampling site was characterized by low levels of
network-scale interaction specificity and host plant differ-
entiation as well as by the absence of anti-nested network
architecture. Although some pioneering studies have
investigated host preferences of tropical fungi [94—96],
it remains a challenge to examine whether plant—fun-
gus network structures differ substantially between
forests in subtropical/tropical regions and those in tem-
perate regions.

Conclusions

Based on the large datasets of root-associated fungi, we
herein showed how plant—fungus network architecture var-
ied across the Japanese Archipelago. For further under-
standing the diversity of below-ground pant—fungus
associations, more comparative studies of community-scale
characteristics are required especially in the tropics. More-
over, further data of networks consisting of pathogenic
fungi and their host plants are awaited to discuss
community-scale properties of negative plant—soil feed-
backs [97]. Given that the number of pathogenic fungi in-
cluded in our present analysis was too few to evaluate
statistical features of their networks, selective sampling of
pathogen-infected plant individuals may be necessary. Im-
proving reference databases of fungal functions by conduct-
ing a series of inoculation experiments is also an important
challenge towards better understanding of the roles of fun-
gal communities. In addition, to gain comprehensive under-
standing of plant—soil feedbacks in terrestrial communities,
we need to reveal the structures of networks involving not
only fungi but also bacteria and archaea [98]. More macroe-
cological studies of plant—microbe interactions [82, 99,
100], along with experimental studies testing functions of
poorly characterized microorganisms [11, 13, 14], will re-
organize our knowledge of terrestrial ecosystem processes.
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