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Abstract

regulation of oil biosynthesis and seed development.

Background: Malania oleifera Chun et Lee (Olacaceae), an evergreen broad-leaved woody tree native to southwest
China, is an important oilseed tree. Its seed oil has a high level of nervonic acid (cis-tetracos-15-enoic acid, over
60%), which is essential for human health. M. oleifera seed oil is a promising source of nervonic acid, but little is
known about the physiological and molecular mechanisms underlying its biosynthesis.

Results: In this study, we recorded oil accumulation at four stages of seed development. Using a high-throughput
RNA-sequencing technique, we obtained 55,843 unigenes, of which 29,176 unigenes were functionally annotated.
By comparison, 22,833 unigenes had a two-fold or greater expression at the fast oil accumulation stage than at the
initial stage. Of these, 198 unigenes were identified as being functionally involved in diverse lipid metabolism
processes (including de novo fatty acid synthesis, carbon chain elongation and modification, and triacylglycerol
assembly). Key genes (encoding KCS, KCR, HCD and ECR), putatively responsible for nervonic acid biosynthesis, were
isolated and their expression profiles during seed development were confirmed by quantitative real-time PCR
analysis. Also, we isolated regulatory factors (such as WRI1, ABI3 and FUS3) that are putatively involved in the

Conclusion: Our results provide novel data on the physiological and molecular mechanisms of nervonic acid
biosynthesis and oil accumulation in M. oleifera seeds, and will also serve as a starting point for biotechnological
genetic engineering for the production of nervonic acid resources.
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Background

Exploration and utilization of non-timber biological re-
sources from woody trees has long been an important
area of forestry research. Oilseeds derived from woody
trees have great potential to meet the increasing demand
for vegetable oils for food or industrial usage. In particu-
lar, oilseed trees that produce unusual fatty acids (FAs)
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provide critical woody non-timber sources of unique
FAs. Malania oleifera Chun et Lee (2n=26) [1], a
monotypic species belonging to the family Olacaceae, is
an evergreen broad-leaved woody tree native to south-
west China [2], mainly distributed in limited regions of
Guangxi and Yunnan province [3, 4]. For many years,
the seeds of M. oleifera have been used for making ed-
ible oils and consumed by local people. Seed oil of M.
oleifera is  distinctive for its high level of
15c-tetracosenoic acid (C24:1A15), a kind of Very
Long-Chain Monounsaturated Fatty Acid (VLCMFA),
namely nervonic acids (over 60% of total fatty acids).
Nervonic acids were first discovered in the sphingo-
lipid of sea animals (such as sharks). They are chiefly
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found in nervous and brain tissues, comprising the white
matter of animal brains and myelinated nerve fibers [5, 6].
Altered nervonic acid levels in human blood or tissues
can cause a variety of diseases. They are implicated in a
number of neurological disorders and in some mental ill-
nesses, including schizophrenia, psychosis and attention
deficit disorder. Nervonic acid oils have become important
targets for pharmaceutical and nutraceutical applications
in the prevention and treatment of neurological disorders
and associated diseases, including multiple sclerosis, adre-
noleukodystrophy, Zeellweger syndrome and Alzhemier’s
disease [6—13]. Notably, there has been some evidence
that nervonic acid inhibits the human immunodeficiency
virus-1 (HIV-1) reverse transcriptase in a dose-dependent
manner [14]. Thus, nervonic acid is a strong candidate for
further evaluation as a bioactive lipid supplement for the
promotion of human health. However, the availability of
nervonic acid is currently limited because sea animal
sources are insufficient to meet the growing market de-
mand for nervonic acid.

There is an urgent need for a sustainable source of ner-
vonic acids derived from plant oils. Recently, several plant
seeds including Lunaria annua (honesty), Borago officina-
lis (borage), Cannabis sativa (hemp), Acer truncatum
(purple blow maple), Tropaeolum speciosum (flame
flower), Cardamine graeca (bittercress) and Malania olei-
fera (garlic-like fruit) were found to contain nervonic acid
within storage lipids in the form of triacylglycerol (TAG)
[15-18]. Although the nervonic acid content in Acer
truncatum and Lunaria annua seeds are low (5% and 20%
respectively) these two plants have been considered to be
potentially important resources for developing nervonic
acid products [16, 18]. The high market demand for
nervonic acid incentivizes the development of a refined,
nervonic acid-enriched plant oil. M. oleifera is a good can-
didate for the discovery and development of nervonic acid
resources because of its nervonic acid-enriched seed oils,
but the physiological and molecular mechanisms under-
lying the biosynthesis of nervonic acid-enriched oils in M.
oleifera seeds remain unknown.

Two main pathways are involved in oil accumulation in
plant seeds: fatty acid (FA) de novo synthesis (including
FAs carbon chain elongation and desaturation) and TAG
assembly. FA biosynthesis mainly takes place within plas-
tids and is initiated by the irreversible carboxylation of
acetyl-CoA to form malonyl-CoA by acetyl-CoA carboxyl-
ase (ACCase). The malonyl group is transferred to ACP
(Acyl-carrier protein). Next, fatty acid synthase (FAS) cat-
alyzes the conversion of acetyl-CoA and malnoyl-ACP to
16:0 and 18:0 acyl-ACP. FAS is a protein complex consist-
ing of several individual enzymes, including a set of
[-ketoacyl-ACP synthases (KASs) that are enzymes for FA
biosynthesis [19, 20]. In addition, 18:0-ACP can be desatu-
rated to 18:1-ACP by stearoyl-ACP desaturase (SAD),
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which determines the level of unsaturated FAs (UFAs) in
the plant cell. After that, these fatty acyl-ACP chains are
converted into acyl-CoAs and transferred to endoplasmic
reticullum (ER) for further elongation, desaturation and
modification, which generates a variety of FAs like
very-long-chain fatty acids (VLCFAs) and polyunsaturated
FAs (PUFAs). Based on the initial carbon chain backbone
of C16:0, biosynthesis of nervonic acids (C24:1A15) is
considered to comprise the sequential addition of two car-
bons by four successive enzymatic reactions gathered by a
enzymatic complex [21-23]. The first step is catalysis by
membrane-bound 3-ketoacyl-CoA synthase (KCS or FA
elongase, FAE), which is a key gene for FA elongation in
ER [24-28]. The resulting 3-ketoacyl-CoA is then reduced
by a 3-ketoacyl-CoA reductase (KCR) generating a
3-hydroxy-acyl-CoA [29, 30]. The third step is dehydra-
tion by the reaction of 3-hydroxacyl-CoA dehydratase
(HCD, also known as PASTICCINO 2, or PAS2) to a
trans-2,3-enoyl-CoA [31], which is finally reduced by the
trans-2,3-enoyl-CoA  reductase (ECR) to vyield a
two-carbon elongated acyl-CoA [32]. Nervonic acid was
synthesized by these four enzymatic reactions after three
cycles, using mono-unsaturated fatty acids (MUFAs) 18:1
as the substrate. Finally, the TAG assembly consumes
acyl-CoAs using substrate glycerol 3-phosphate with four
consecutive enzymes that sequentially transfer acyl-CoAs
to sn-1, - 2, — 3 positions in glycerol 3-phosphate in the
ER, including Glycerol-3-phosphate acyltransferase
(GPAT), Lysophosphlipid acyltransferase =~ (LPAT),
Phosphatidic acid phosphatase (PAP) and Diacylglycerol
acyltransferase (DGAT) [33, 34].

In this study, we de novo assembled and characterized
the transcriptome of M. oleifera seeds at two develop-
mental stages. A number of unigenes involved in the
processes of FA biosynthesis (in particular, carbon chain
elongation) and TAG assembly were identified. To our
knowledge, this study is the first report on characterizing
the transcriptome data in woody oilseeds which produce
rich nervonic acid oils. These transcripts identified in M.
oleifera seeds provide valuable resources for discovering
novel genes responsible for the biosynthesis of nervonic
acid oils in plants.

Methods

Plant materials and determination of oil accumulation
Samples were collected from wild M. oleifera trees grow-
ing in Guangnan county (voucher No. 0814046, identi-
fied by Li-gong Lei and deposited at KUN), Yunnan,
China under natural climate conditions. The collection
of all samples completely complies with local and na-
tional legislation permission. We observed the develop-
ment process of M. oleifera seeds from female flowers
pollinated to mature seeds. Mature female flowers were
tagged when the stigma was fully expanded. The young
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leaves, tender stems and developing seeds at four stages
were collected. Three biological replicates were col-
lected for each tissue type. Samples were immediately
frozen in liquid nitrogen, and subsequently stored at —
80°Cfor subsequent RNA isolation. To investigate ner-
vonic acid content during seed development, total lipids
were extracted from seeds at each stage of develop-
ment, using the hexane/isopropanol (3:2, v/v) method.
Total lipids were dissolved in hexane and the neutral
lipids were separated by one-dimensional TLC, as de-
scribed in our previous study [35]. Fatty acid methyl es-
ters (FAMEs) were prepared from the fatty acids of
total lipids as previously described and were deter-
mined by Gas Chromatography-Mass Spectrometry
[36]. The seeds from the initial oil accumulation stage
(S1) and the fast oil accumulation stage (S2) were se-
lected for transcriptome sequencing (see Fig. 1a).
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Transcriptome sequencing for developing seeds

For two stages (the initial and fast oil accumulation stages)
of developing seeds, three independent samples collected
from different fruits were pooled equally to generate three
biological replicates. Total RNA was isolated using RNA-
prep pure Plant Kit (TTANGEN, DP432), following the
manufacturer’s protocols. For each sample, High-quality
RNA was enriched by Oligo (dT) beads. The enriched
mRNA was fragmented into short fragments and reverse
transcripted into cDNA with random primers. The cDNA
fragments were purified with QiaQuick PCR extraction
kit, end-repaired and ligated to Illumina sequencing
adapters. The ligation products were selected according to
their size by agarose gel electrophoresis, and initially amp-
lified by PCR. The PCR production was constructed into a
¢DNA library and sequenced on Illumina HiSeq4000™
system in BGI-Shenzhen.

A B De novo Assembly Number of sequences
TAG Total clean reads 73,004,942 (S1); 82,735,668 (S2)
Total nucleotids (nt) 10,719,146,313 (S1); 12,129,091,926 (S2)
Total number of Unigenes 55,843
Unigene N50 1,599
average length of Unigenes 857
GC content (%) 42.59
Unigene Annotation Number of annotations
Annotated Unigenes 29,176
Unknown transcripts 26,667
BLASTx against NR 29,032
BLASTx against Swiss-Port 20,194
BLASTx against KOG 17,332
BLASTXx against KEGG 11,307
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Fig. 1 The seeds at two different developmental stages and analysis of transcriptome sequencing. a Thin layer chromatography analysis of
triacylglycerols from M. oleifera seeds at ST and S2 stage, scale bar=1.0 cm. b Summary of sequencing data, assembly and annotation.
c Distribution of sequence length of unigenes
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Transcriptome analysis

After sequencing, the raw reads were preprocessed to filter
out clipped adapter sequences, low-quality reads (Q value
<20 or containing ambiguous nucleotides) and contami-
nated sequences. The clean reads were subjected to de
novo assembly using the Trinity, a short reads assembling
program [37]. Based on the overlap of assembled contigs,
the fragments were merged or extended into much longer
transcripts to form a set of non-redundant unigenes. To
further obtain these unigenes’ function, we employed
BLASTX (e-value <0.00001) to search the public data-
bases with the following order: NCBI non-redundant (Nr),
Swiss-Prot, KEGG, and COG/KOG. Meanwhile, GO an-
notation of unigenes was performed by Blast2GO software
[38]. GO classification and enrichment analysis of uni-
genes was performed using WEGO software [39].

The expression level of unigenes was counted and nor-
malized by RPKM (Reads Per Kb per Million reads) [40].
The formula of RKPM is as follows: RPKM
= (1000000*C)/(N*L/1000), where C represents the num-
ber of reads uniquely mapping to Unigene; L represents
the length (base number) of the Unigene; and N repre-
sents the number of total reads uniquely mapped to all
Unigenes. Unigenes with significantly different expres-
sion were determined by FDR<0.001 (false discovery
rate that was used to rectify the p-value for multiple
testing) and fold-change >2 in two samples.

Validation of full-length cDNA and expression level

Based on the presence of 5" and 3" untranslated sequences,
the full-length cDNAs of unigenes potentially involved in
nervonic acid biosynthesis were isolated. Subsequently,
they were further confirmed by RT-PCR and sequencing.
The expression profiles of unigenes were carried out in dif-
ferent tissues. The young leaf, tender stems, and seeds
from two developmental stages were subjected to quantita-
tive real-time PCR (qRT-PCR). Total RNAs were isolated
(mentioned above) and reverse transcripted using Primer-
Scrip™ RT reagent Kit with gDNA Erases (Takara, China).
qRT-PCR was performed on the CFX96 machine (Bio-Rad,
USA) according to the following program: precycling steps
of 95 °C for 2 min then 40 cycles of 95 °C for 30 s, 56 °C
for 30 s, and 72 °C for 30 s. The UBE (ubiquitin-conjugat-
ing enzyme) gene, Unigene0016233 of M. oleifera, was
used as an internal reference to normalize the relative ex-
pression level of all genes. All primers used in this study
were listed in Table S1 (see Additional file 1).

Results

Transcriptome sequencing and de novo assembly

To investigate nervonic acid accumulation during seed
development in M. oleifera, we collected seeds at four
stages of development (named as S1-S4), as determined
by their seed size, and analyzed the fatty acid species for
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each sample. As seeds developed, the nervonic content
increased gradually, from 0.88% (S1) to 63.79% (S4) of
the total fatty acids (Additional file 2). Thin layer chro-
matography analysis showed that while fruits are young
(S1) there is an initial stage of oil accumulation. During
the expansion growth period (S2) there is a rapid oil ac-
cumulation (Fig. 1a). Therefore, we selected these two
stages (the initial and fast oil accumulation stages) of
seed development for transcriptome sequencing.

Two c¢DNA libraries were constructed from two stages
of developing seeds (Fig. 1a) and yielded a total of 22.8
gigabases (Gb) nucleotides by Illumina high-throughput
sequencing. After strict reads filtering, we obtained about
73 and 82 million 150-bp paired-end reads from S1 and
S2, respectively. The Trinity package was employed to as-
semble all high-quality reads to generate a reference tran-
scriptome. As a result, we obtained 55,843 non-redundant
unigenes with an average sequence length of 857 bp and
an N50 of 1,599 bp (Fig. 1b). The average GC content of
M. oleifera unigenes was 42.59%. The size distribution
showed that 15,304 unigenes (27.41%) were longer than
1 kb (Fig. 1c).

Functional annotation of non-redundant unigenes of
Malania oleifera

To uncover the potential function of unigenes in M. olei-
fera, they were compared against the public databases (as
mentioned in the materials and methods section) for anno-
tation by using TBLASTX search with an E-value thresh-
old of 107 °. Of 55,843 unigenes, 29,032 (51.99%), 20,194
(36.16%), 17,332 (31.04%) and 11,307 (20.05%) had signifi-
cant hits in NR, Swissprot, KOG and KEGG, respectively
(Figs. 1b and 2a). There were 8,877 unigenes which had
significant hits in all of the four databases (Fig. 2a). In total,
29,176 (52.25%) unigenes were annotated and 26,667
(47.75%) remain unknown. As shown in Additional file 3,
about 42.0% of unigenes showed very strong homology by
BLASTXx (E-value < le™'%), 37.4% of those had an E-value
between le”*° and le” *° and the remaining 20.6% showed
homology (1e”?° < E-value <le™°) using the NCBI nr data-
base. A similar E-value distribution of the mapped uni-
genes was found in Swissprot, KOG and KEGG
(Additional file 3). Based on NR annotations, BLAST
search analysis further revealed that 7,051 (39.6%) had the
most similar sequences to proteins from Vitis vinifera,
followed by Theobroma cacao, 2,519 (14.1%), Nelumbo
nucifera, 1,696 (9.5%), Setaria italica, 1,351(7.6%), Jatropha
curcas, 1,126 (6.3%). The 10 top-hit species containing
homologous sequences are shown in Fig. 2b.

Functional classification of Malania oleifera unigenes

Gene Ontology (GO) term system was employed to clas-
sify the functions of predicted unigenes. There were
20,423 unigenes that could be annotated to one or more
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terms under three GO categories including cellular
component, biological process, and molecular function
(Fig. 2c). In the molecular function division, binding
(45.39%) and catalytic activity (44.48%) represented the
dominant GO terms. In the cellular component div-
ision, GO terms related to cell parts (23.84%) and cell
(23.84%) were in joint first place, followed by organelle
(19.03%). For the biological processes, the terms related
to metabolic processes (24.11%) and cellular processes
11,815 (22.8%) were dominant, followed by
single-organism processes 8,352 (16.12%), signaling 957
(1.85%), reproduction 914 (1.76%) and reproductive

processes 903 (1.74%). Besides, all unigenes were also
subjected to search against the Clusters of Orthologous
Groups database (COG). Overall, 17,332 unigenes were
clustered into 25 function classes (Fig. 2d). Among
these classes, the general function (R, 6,932 hits) repre-
sented the largest group (23.34%), followed by post-
translational ~modification, protein turnover and
chaperones (O, 3,395 hits, 11.43%), signal transduction
mechanisms (T, 2802 hits, 9.43%). In addition, a small
fraction of unigenes were classified into energy produc-
tion and conversion (C, 1129 hits, 3.80%), lipid trans-
port and metabolism (I, 928 hits, 3.12%) and secondary
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metabolites biosynthesis, transport and catabolism
(Q, 709 hits, 2.39%) (Fig. 2d).

To explore the main pathways in M. oleifera seeds, all
unigenes were also used to search against the KEGG
classification system. We found that these unigenes were
classified into 130 KEGG pathways (Additional file 4).
Among five main categories, the largest group was path-
ways related to metabolism (6,217 hits, 60%), followed
by genetic information processing (2,787 hits, 27%), cel-
lular processes (538 hits, 5%), environmental informa-
tion processing (458 hits, 5%), and organismal system
(286 hits, 3%). Among these 130 pathways, the maps
with the highest unigene representation (467) were ribo-
some pathway (ko03010), followed by carbon metabol-
ism (408), biosynthesis of amino acids (353) and protein
processing in endoplasmic reticulum (321).

Identification of transcription factors in M. oleifera seed
There is increasing evidence that transcription factors
(TFs) play critical roles in regulating the plant growth
and development. Here, we identified 978 unigenes en-
coding the transcription factors belonging to 57 families.
Among these TF families, there were 28 families includ-
ing more than ten members. Of these, the top 6 families
are AP2/ERF (77 unigenes), bHLH (63 unigens), bZIP
(56 unigenes), MYB (52 unigenes), WRKY (49 unigenes)
and GRAS (47 unigenes) which are the largest known
TF families in plants (Fig. 3). Identification of these TFs
here provides additional understanding of the potential
molecular mechanisms of seed development and storage
oil accumulation in M. oleifera.

Differentially expressed genes at the two developmental
stages

To identify significant differentially expressed genes in the
two stages (the initial and fast oil accumulation stages),

Page 6 of 13

the expression levels of all unigenes were normalized to
the RPKM value (the reads per kb per million read). Over-
all, the expression level of unigenes at stage S1 was com-
parable to that at stage S2 (Fig. 4a). Unigenes with a fold
change >2 and a false discovery rate (FDR) < 0.05 were
identified as differential expression genes (DEGs). As a re-
sult, we identified 22,833 DEGs, including 9,509 signifi-
cant up-regulated genes and 13,324 significant
down-regulated genes at stage S2 versus stage S1 (Fig. 4b).

To further understand the biological functions of these
DEGs, they were subjected to enrichment analysis of GO
terms. In the biological process category, a large number
of up-regulation, as well as down-regulation DEGs were
enriched in the cellular process, single-organism process
and metabolic process. In the cellular component cat-
egory, most unigenes were classified into cell, cell part and
organelle. For the molecular function category; binding
and catalytic activity represented the main GO categories
(Additional file 5). KEGG analysis showed that 22 path-
ways were significantly enriched (Fig. 4c). The most repre-
sented pathway was carbon metabolism (87, 9.27%),
followed by plant hormone signal transduction (76,
8.09%). There were many pathways closely related to seed
oil biosynthesis, such as fatty acid metabolism (43, 4.58%),
fatty acid biosynthesis (24, 2.56%), unsaturated fatty acid
synthesis (24, 2.56%), and glycerolipid metabolism (20,
2.13%), which provide clues for the identification of novel
genes involved in TAG synthesis.

Additionally, we found that 312 unigenes encoding
TFs were differentially expressed during seed develop-
ment of M. oleifera (Additional file 6). The expression
level of 153 TFs were significantly up-regulated, while
there were 159 TFs exhibiting obvious down-regulation
at stage S2, as compared with stage S1. Interestingly,
several TFs critical for seed development and oil accu-
mulation in Arabidopsis were identified which were highly
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Fig. 3 The number distribution of different transcription factor family indentified in Malania oleifera
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Carbon metabolism 87 (9.27%) 408 (6.5%) 0.0002  0.0031 ko01200
Peroxisome 35 (3.73%) 134 (2.13%) 0.0005  0.0055 ko04146
Sulfur metabolism 16 (1.7%) 45 (0.72%) 0.0005  0.0055 ko00920
Tryptophan metabolism 15 (1.6%) 43 (0.68%) 0.0009  0.0083 ko00380
Diterpenoid biosynthesis 10 (1.06%) 23 (0.37%) 0.0010  0.0083 ko00904
Terpenoid backbone biosynthesis 22 (2.34%) 75 (1.19%) 0.0010  0.0084 ko00900
alpha-Linolenic acid metabolism 19 (2.02%) 62 (0.99%) 0.0013  0.0096  ko00592
Zeatin biosynthesis 7 (0.75%) 14 (0.22%) 0.0021  0.0142 ko00908
Fatty acid degradation 22 (2.34%) 79 (1.26%) 0.0022 0.0142  ko00071
Caffeine metabolism 4 (0.43%) 5(0.08%) 0.0022 0.0142 k000232
Glycerolipid metabolism 20 (2.13%) 72 (1.15%) 0.0035 0.0215 ko00561
Biotin metabolism 8(0.85%) 20 (0.32%) 0.0057  0.0335 ko00780
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Fig. 4 Analysis of differentially expressed unigenes at the two different development stages. a Expression level of unigene between the initial
stage (S1) and the fast oil accumulation stage (S2). b The differentially expressed unigenes at S2 stage relative to S1 stage. The red, black and
green dot represent un-regulated, no changed and down-regulated unigenes. ¢ KEGG enrichment analysis of differentially expressed unigenes
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expressed at the fast oil accumulation stage (S2), including
WRII (Unigene0031370), ABI3 (Unigene0002005), FUS3
(Unigene0003221), ABI5 (Unigene0025890), and AGL62
(Unigene0034852).

The unigenes involved into the pathway of triacylglycerol
accumulation in M. oleifera seeds

Based on KEGG pathway classification and annotation, we
identified 198 unigenes involved in fatty acids (FAs) me-
tabolism processes, including FAs de novo biosynthesis in
plastid (51 unigenes), elongation (35 uingenes), modifica-
tion (40 unigenes) and triacylglycerol (TAG) assembly (72
unigenes) in endoplasmic reticulum (see Additional file 7).
The expression levels of these unigenes at stages S1 and
S2 were summarized Additional file 7. Among these were
66 unigenes with up-regulated expression and 20 unigenes
with down-regulated expression at stage S2 as compared
with stage S1 (Additional file 7).

For fatty acids de novo biosynthesis in plastid, the
critical steps and key enzymes were shown in Fig. 5a.
Specifically, there were 13 unigenes encoding
acetyl-CoA carboxylase (ACCase) subunits (including
five biotin carboxylase, three biotin carboxyl carrier pro-
teins, two accA, one accB and two accC), six unigenes
encoding fatty acid condensing enzymes (FAS: one for
KASIIL, two for KASI and three for KASII, respectively),
and five unigenes for stearoyl-ACP desaturase (SAD)
(Fig. 5a). In this pathway, there were 15 unigenes show-
ing high expression levels for at least one stage of seed
development in M. oleifera, including six ACCase, one
KASIII, one KASI, two KASII and five SAD. Three ACCase
genes (Unigene0029070,  Unigene0021463,  Uni-
gene0025592), one KASIII (Unigene0028681) and one
KASII (Unigene0014222) significantly up-regulated their
transcript level at the fast oil accumulation stage. It should
be noted that all five SAD genes markedly enhanced their
transcript level at stage S2 relative to S1 (the initial stage
of oil accumulation) (Fig. 5b and Additional file 7).

Our main objective was to identify key genes involved in
the biosynthesis of long-chain FAs, especially nervonic
acids in endoplasmic reticulum. Here, we fully identified
24 unigenes potentially involved in FAs elongation, includ-
ing 13 unigenes encoding KCS, two encoding KCR, five
encoding HCD and five encoding ECR (Fig. 5a). Further,
the full-length cDNA transcript sequences were confirmed
by RT-PCR and sequencing for 12 unigenes, including six
KCS genes (Unigene0005341, Unigene0014503, Uni-
gene0015624, Unigene0025108, Unigene0025737 and Uni-
gene0037518), three HCD genes (Unigene0025829,
Unigene0028372, Unigene0041596), one KCR genes
(Unigene0021016) and two ECR genes (Unigene0034229,
Unigene0028222). The full-length ¢DNA transcript se-
quences of the 12 unigenes were shown in the Table S1
(see Additional file 1). Of 13 KCS unigenes, three unigenes
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(Unigene0009507, Unigene0025108 and Unigene0025737)
had a reduced expression level and three unigenes (Uni-
gene0014503, Unigene0015624 and Unigene0037518)
up-regulated their expression level during seed develop-
ment in M. oleifera. The KCS unigene (Unigene0037518)
increased its transcript level at least 48-fold (from 18.1 in
S1 to 874.2 in S2) at the fast oil accumulation stage. Of
two KCR genes, one (Unigene0021016) reduced its expres-
sion level, and another (Unigene0034719) significantly in-
creased its expression level (about 3.7-fold) at stage S2.
For HCD unigenes, Unigene0025830 was expressed at a
low level, though its expression increased at stage S2. Two
unigenes (Unigene0025829 and Unigene0041596) exhib-
ited high expression level during seed development and
was significantly elevated (about 6.9-fold and 2.7-fold,
respectively) at stage S2. Only one unigene (Uni-
gene0028222), encoding a ECR enzyme, exhibited a high
expression level and about 6-fold transcript increase at the
fast oil accumulation stage (Fig. 5b and Additional file 7).
Nervonic acids (24:1-CoA) were synthesized via a se-
quence of four reactions; catalyzing by KCS, KCR, HCD
and ECR after three cycles, using the 18:1-CoA as primary
substrate (see Fig. 5a). We also found that six unigenes can
encode an omega-6 fatty acid desaturase (FAD2) which
catalyzes 18C:1 to form 18C:2, and two unigenes encode
an omega-3 fatty acid desaturase (FAD3) which further
catalyzes 18C:2 to generate 18C:3 (Additional file 7). Four
unigenes encoding chloroplast oleate desaturase (FADG6)
were identified in M. oleifera seeds (Additional file 7).
These FAs (including de novo synthesized, modified or
elongated FAs) were subsequently assembled into
glycerol-3-phosphate (G-3-P) to form TAG in the ERs
which was finally stored in the oil of plant seeds. In this
pathway, we found that there were four unigenes encod-
ing GPAT, eight encoding LPAT, three encoding PAP
and four unigenes encoding DGAT (including two
DGAT1 and two DGAT?2); these enzymes perform a
critical function in the formation of TAG in the ERs
(Fig. 5a). Among 19 unigenes in this pathway, 11 uni-
genes exhibited a high transcript level in M. oleifera
seed, and four unigenes substantially up-regulated their
expression level including two GPAT genes (Uni-
gene0023532 and Unigene0036813), and two DGAT2
(Unigene0036969 and Unigene0036970) at stage S2 as
compared with stage S1 (Fig. 5b and Additional file 7).

Validation of gene expression using quantitative real-time
PCR

In order to experimentally validate the expression level
of the unigenes involved into biosynthesis of VLCFAs, in
particular nervonic acids, 12 unigenes including six KCS,
three HCD, one KCR and two ECR, were chosen. Quan-
titative Real-Time PCR (qRT-PCR) was performed on
four samples from tender stems, young leaves, and seeds
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at stages S1 and S2 of development. Overall, the result of
qRT-PCR analysis was largely consistent with the tran-
scriptome sequencing data (11 out of the 12 unigenes
were detected in the seeds of M. oleifera, the exception
was Unigene0015624 which had extremely low expression
levels in seeds as shown in Fig. 6). For example, four
unigenes  (Unigene0037518, Unigene0025829, Uni-
gene0034719 and Unigene0028222) were expressed at
substantially higher levels at stage S2 relative to stage S1
in the transcriptome sequencing data, which was also con-
firmed by the qRT-PCR analysis (Fig. 6). The KCS gene
(Unigene0037518) appeared to be specifically expressed in
seeds at the fast oil accumulation stage.

Discussion

The pathway of fatty acid biosynthesis (including FAs
carbon chain elongation and desaturation) is thought to
have been conserved in plants. However, the physio-
logical and molecular mechanisms underlying the bio-
synthesis of unusual FAs, such as nervonic acids in M.
oleifera and conjugated fatty acids in Vernicia fordii,
largely remains uncertain. Based on a search for ortholo-
gous genes responsible for nervonic acid biosynthesis,
we found putative genes that had previously been identi-
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[15] and had their functions analyzed in yeast or Bras-
sica oilseeds. Most potential key genes involved in ner-
vonic acid biosynthesis in the FA biosynthesis pathway
have yet to be investigated. This study is an important
investigation of candidate genes involved in nervonic
acid biosynthesis at the transcriptomic level in plant
seeds, providing valuable data to improve our under-
standing of the potential physiological and molecular
mechanisms for biosynthesis and accumulation of rich
nervonic acid oils in developing M. oleifera seeds.

Here, based on high-throughput transcriptome se-
quencing data we de novo assembled the transcripts in
developing seeds of M. oleifera, resulting in 55,843 uni-
genes, that were comparable to transcriptome data from
other woody oil-seed plants such as Vernicia fordii [41],
Jatropha curcas [42], and Camellia oleifera [43].
Approximately 52.25% of unigenes were annotated and
classified into various GO terms or KEGG pathways.
The protein homology searches revealed that the
transcripts from M. oleifera seeds had the highest simi-
larity to transcripts from V. vinifera, suggesting that M.
oleifera is phylogenetically closest to V. vinifera. That
some transcript sequences (47.75%) had no hits in the
public databases might be due to having a shorter se-

fied from Cardamine graeca (18] and Lunaria annua  quence length, incomplete protein domain or
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species-specific sequences in M. oleifera. Alternatively,
these non-annotated transcripts could be non-coding
RNAs such as the precursor of small RNAs or long
non-coding RNAs.

One of main objectives of this study was to identify po-
tential unigenes involved in nervonic acid biosynthesis or
oil accumulation in developing M. oleifera seeds. Nervonic
acid was synthesized in ER by using oleic acid (18C:1°%) as
the substrate, then catalyzed by FAE complex composed
of KCS, KCR, HCD and ECR [14, 17, 20]. The oleic acid
content (18C:1) was high (over 32%) and relatively stable
during seed development (from stages S1 to S3) until seed
maturity (stage S4) as shown in Additional file 2. This
quantity of oleic acid appears to be sufficient to act as a
substrate for nervonic acid biosynthesis. Throughout seed
development there were high levels of expression of all
five SAD genes that are responsible for producing 18C:1
from the substrate 18C:0 (see Fig. 5b). This may account
for the relatively high content of 18C:1 that was main-
tained at the transcription level in developing seeds of M.
oleifera. At the fast oil accumulation stage (S2), the pro-
portion of nervonic acid increased rapidly (from 0.88 to
29.39%), suggesting that FAs elongation began during oil
accumulation at stage S2. There has been increasing evi-
dence that KCS is the rate-limiting enzyme in fatty acid
elongation and that its expression level is an importance
determinant of the final VLCFAs content [27, 28, 44, 45].
The heterologous expression of KCS cloned from
Cardamine graeca or Lunaria annua can produce or in-
crease nervonic acid content in transgenic cruciferous
plants [15, 18]. In current study, we identified 13 putative
KCS genes in M. oleifera seeds, but have yet to determine
the functions of these genes. In particular, the KCS uni-
gene (Unigene0037518) exhibited strongly seed-specific
expression with an at least 48-fold increase at the tran-
script level at the fast oil accumulation stage, which
strongly indicates that this gene could drive nervonic acid
biosynthesis in M. oleifera seeds. Further functional
characterization of Unigene0037518 and its substrate spe-
cificity assay are required to determine whether it is
species-specific; encoding the rate-limiting enzyme for
catalyzing nervonic acids in M. oleifera seeds.

Also, several unigenes encoding KCR, HCD and ECR
enzymes, which are part of fatty acid carbon-chain
elongation in the pathway of FA biosynthesis, were iden-
tified. They probably contribute to the accumulation of
nervonic acid oils in M. oleifera seeds. Thus, these tar-
geted genes could be important sources for genetic and
metabolic engineering for obtaining nervonic acid pro-
duction by heterologous transgenic technique.

The rich nervonic acids incorporated in TAG mole-
cules are usually dependent not only on the efficient
synthesis of nervonic acids, but on the efficient assembly
system for the selective or specific incorporation of
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nervonic acids into TAG. Generally, the DGAT genes are
thought to play a critical role in catalyzing the final step
of triacylglycerol (TAG) biosynthesis in developing ole-
aginous seeds [46]. Different types of DGATs, such as
DGATI and DGAT?2, usually exhibit structural and func-
tional divergence [47], thus DGAT1I has been thought to
be responsible for regulating or controlling oil content,
whereas DGAT2 was thought to be responsible for se-
lectively or specifically incorporating specific fatty acids
into TAG in plants [35, 46, 48]. Here, two homologous
DGAT?2 genes identified in M. oleifera exhibited a high
level of expression in developing seeds; strongly implying
that these two genes could play a critical role in select-
ively or specifically incorporating nervonic acids into
TAG in M. oleifera seeds. If so, these two DGAT2s could
be combined with the targeted nervonic acid biosyn-
thesis genes identified in this study by genetic engineer-
ing to enhance the nervonic acids content in TAGs. In
sum, we identified several candidate genes involved in
the nervonic acids biosynthesis and TAG assembly, but
the molecular basis of high-efficient biosynthesis of ner-
vonic acids in M. oleifera seeds remains to be elucidated.
Such study is required to determine whether these can-
didate genes are unique to M. oleifera, as well as, deduce
whether nervonic acids biosynthesis in M. oleifera seeds
is closely correlated to the strong seed-specific expres-
sion of these identified genes or to the sequence vari-
ation when compared with homologous genes from
other species, which may alter the enzyme activity or
substrate specificity.

We identified a large number of TFs, which were highly
expressed at the fast oil accumulation stage of developing
seeds. Most of these TFs are functionally uncharacterized
or unknown. However, we detected some transcriptional
regulators such as WRI1, ABI3 and FUS3, which are
expressed in a seed-specific manner and documented to
be functionally involved in regulation of lipid biosynthesis
in seed development of Arabidopsis and other plants [49].
For example, loss-of-function in mutant of AtWRII
substantially reduced the seed oil content compared to the
wild-type in Arabidopsis [50]. Overexpression of WRII
significantly enhanced the seed oil content in trans-
genic plants [51]. Increasing evidence has showed that
WRI1 is a master regulator in controlling the gene ex-
pression of lipid genes in the pathway of fatty acid bio-
synthesis [52, 53]. Studies have also revealed that both
ABI3 and FUS3 are involved in direct or indirect regu-
lation of the fatty acid biosynthesis and TAG accumula-
tion in other plants [54, 55]. Interestingly, the VLCFAs
content in the abi3 and fus3 mutant seeds was signifi-
cantly decreased, which is associated with reduced ac-
tivity of FAE1 (a key fatty acid carbon-chain elongase
that regulates production of VLCFAs) [56]. Probably,
the identified WRI1, ABI3 and FUS3 are involved in the



Yang et al. BMC Plant Biology (2018) 18:247

regulation of the biosynthesis processes of rich nervo-
nic acids oils in M. oleifera seeds.

Conclusion

The current study comprehensively reported transcrip-
tome data from nervonic acid oil producing M. oleifera
seeds, and identified genes that are potentially critical for
driving the processes of nervonic acid biosynthesis and
TAG assembly. These results contribute to our under-
standing of the potential physiological and molecular
mechanisms of biosynthesis and accumulation of rich ner-
vonic acid oils in developing M. oleifera seeds. The study
has also produced targeted gene resources that can be
used for genetic and metabolic engineering for future bio-
technological approaches to nervonic acid production.
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