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Abstract

traits governing N homeostasis.

Background: Phosphate (Pi) and Nitrogen (N) are essential macronutrients required for plant growth and
development. In Arabidopsis thaliana (Arabidopsis), the transcription factor PHRT acts as a Pi central regulator. PHLT is a
homolog of PHRT and also plays a role in maintaining Pi homeostasis. In rice (Oryza sativa), OsPHR1-4 are the orthologs
of PHRT and have been implicated in regulating sensing and signaling cascades governing Pi homeostasis.

Results: Here the role of OsPHR3 was examined in regulating the homeostasis of N under different Pi regimes.
Deficiencies of different variants of N exerted attenuating effects on the relative expression levels of OsPHR3 in a tissue-
specific manner. For the functional characterization of OsPHR3, its Tos17 insertion homozygous mutants ie., osphr3—1,
osphr3-2, and osphr3-3 were compared with the wild-type for various morphophysiological and molecular traits
during vegetative (hydroponics with different regimes of N variants) and reproductive (pot soil) growth phases. During
vegetative growth phase, compared with the wild-type, OsPHR3 mutants showed significant variations in the
adventitious root development, influx rates of '°N-NO5~ and '>N-NH.,*, concentrations of total N, NO;~ and NH,4* in
different tissues, and the relative expression levels of OsNRT1.1a, OsNRT2.4, OsAMT1,1, OsNial and OsNia2. The effects of
the mutation in OsPHR3 was also explicit on the seed-set and grain yield during growth in a pot soil. Although Pi
deficiency affected total N and NO5™ concentration, the lateral root development and the relative expression levels of
some of the NO3~ and NH,* transporter genes, its availability did not exert any notable regulatory influences on the

Conclusions: OsPHR3 plays a pivotal role in regulating the homeostasis of N independent of Pi availability.
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Background

Rice (Oryza sativa L.) is the main dietary staple for more
than half of the 7.5 billion populations in the world, of
which ~90% is consumed in Asia alone (www.irri.org/
rice-today). United Nations raises world population fore-
cast to 9.8 billion people by 2050 due to escalated popu-
lation growth particularly in Africa and India
(www.un.org). According to FAO, world agriculture will
thus face the daunting task of using scarce natural re-
sources more efficiently and adapting to climate change
for producing ~70% more food for feeding additional
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2.3 billion people by 2050 (www.fao.org). Since rice pro-
vides 27% and 20% of dietary energy supply and dietary
protein intake, respectively in the developing world
(www.fao.org), its sustainable production is increasingly
becoming pivotal for global food security.

Nitrogen (N) is a key component of important macro-
molecules such as nucleic acids, proteins and chloro-
phyll and constitutes ~ 1.5-2% of plant dry matter [1]. N
is taken up by plants as nitrate (NO3~) and ammonium
(NH,") with the former being the predominant form in
most soils [2]. If N deficiency is rampant in rice growing
soils, it will affect the growth and development of tillers
and panicles and consequently the yield potential. Al-
though N-deficient soils are conventionally enriched
with N fertilizers, their excessive usage is uneconomical
for sustainable agriculture and also poses a serious
threat to the environment [3]. In this context,
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manipulation of a specific molecular entity through bio-
technological intervention is an economically viable and
eco-friendly paradigm for engineering rice with higher N
use efficiency [4]. Now, a repertoire of genes implicated in
regulating acquisition, transportation and utilization of N
in rice have been identified [2, 5]. Studies also found that
availability of phosphate (Pi), an essential nutrient
required for optimal growth and development of plants
[6-8] exerted variable influence on the expression of some
of the genes involved in the sensing and signaling cascades
governing homeostasis of N in rice [9, 10].

Reverse genetics approaches have helped to identify sev-
eral transcription factors (TFs) that extert regulatory influ-
ences on an array of functionally diverse genes involved in
the maintenance of N and Pi homeostasis [2, 11]. TFs
regulate the expression of the target genes by binding to
the cis-regulatory specific sequences in their promoters
[12]. The TF PHR1 (PHOSPHATE STARVATION RE-
SPONSE 1), a homolog of PSRI (PHOSPHATE STARVA-
TION RESPONSE 1) in Chlamydomonas reinhardtii [13]
was positionally cloned and characterized in Arabidopsis
thaliana [14]. PHR1 has a predicted coiled-coil domain
and binds as a dimer to an imperfect palindromic
PHRI1-specific binding sequence (P1BS; GNATATNC)
presenting in the promoters of Pi-starvation induced
genes [14]. PHR1 acts as a central regulatory TF, which
controls spatiotemporal transcriptional activation and re-
pression of several phosphate-starvation responsive (PSR)
genes implicated in signaling and different metabolic path-
ways during Pi deficiency [15-21]. In addition, PHRI1 also
interacts with AtFerl promoter enriched with P1BS dur-
ing Pi deficiency [22]. AtFerl encodes plastid-located fer-
ritin, a protein nanocage which can store up to 4,500
atoms of Fe** in its interior that are released in a con-
trolled fashion [23]. In Arabidopsis, PHR1 also plays a piv-
otal role in regulating sulfate flux from shoot to root
during Pi deprivation [24] and exerts influence on the
crosstalk between Pi and Zn [25]. These studies thus
highlighted a key role of PHRI1 in regulating the homeo-
stasis of Pi and other essential nutrients. Further, a search
for T-DNA mutations at PHRI-related genes in public da-
tabases led to the identification of PHRI-LIKE1 (PHLI,
At5g29000). Pi accumulation was significantly higher in
PHR1-overexpressing transgenic lines compared with phll
mutant, and it was significantly lower in the double mu-
tant phriphll compared with the latter, which suggested
partial functional redundancy between PHRI and PHLI
[16]. In Arabidopsis, PHL2 and PHL3 are the homologs of
PHLI and of these PHL2 play a pivotal role in regulating
transcriptional response to Pi deficiency and is function-
ally redundant with PHRI [21]. In rice, phylogenetic and
mutational analyses revealed functional redundancy across
PHRI orthologs (OsPHRI1-3) and together they formed a
network for regulating sensing and signaling cascades
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governing Pi homeostasis [26, 27]. Pi-starvation induced
OsPHR4 mediates Pi homeostasis and plays a pivotal role
in the regulation of downstream PSR genes [28]. Although
the expression of OsPHR3 is induced by Pi starvation, its
mutation does not exert any significant influence on the
Pi concentration and on the expression of downstream
PSR genes [27]. The study also revealed that OsPHR3 ex-
hibited lowest binding affinity towards P1BS but still plays
a role in growth of Pi-deprived Arabidopsis. However, it is
not known whether OsPHR3 plays a role in exerting a
regulatory influence on the morphophysiological and mo-
lecular traits governing N homeostasis in a manner
dependent or independent of Pi availability.

Here, in our study, we showed that OsPHR3 is respon-
sive to different forms of N irrespective of Pi regimes. The
silencing of OsPHR3 triggered wide-spectrum effects on
different traits during vegetative and reproductive growth
phases. Availability of Pi did not exert any notable effects
on OsPHR3-mediated regulatory influence on N homeo-
stasis under different N variants and the lateral root devel-
opment responses under different NO3™ treatments.

Results

OsPHR3 is responsive to different forms of N

TBLASTN  (http://www.ncbi.nlm.nih.gov/BLAST) was
employed for searching the homolog of Arabidopsis
AtPHLI (At5g29000) in rice, which resulted in the iden-
tification of OsPHLI on the chromosome 2. However,
this gene has been reported in 2015, which named as
OsPHR3 (LOC_0s02g04640) [27]. Thus we changed
OsPHLI to OsPHR3. OsPHR3 is a MYB coiled-coil
(MYB-CC) domain-containing TF (http://www.ebi.ac.uk/
interpro/). OsPHR3's  orthologs are AtPHRI and
AtPHLI-3 in Arabidopsis [14, 16, 21] and paralogs
are OsPHR1-4 in rice [26—28]. The amino acid sequence
identity of OsPHR3 ranged from 56.96% with OsPHR4
to 26.06% with OsPHR2 (Additional file 1). Multiple
amino acid sequence alignment of OsPHR3 with other
MYB-CC family members (AtPHR1, AtPHL1, OsPHRI,
2 and 4) revealed the conserved MYB helix-turn-helix
(MYB-HTH) and MYB-CC domains (Additional file 1).
The qRT-PCR was employed to determine the relative
expression levels of OsPHR3 in the shoot and root of the
wild-type rice seedlings grown hydroponically in a
medium supplemented with different forms and concen-
trations of N (H NH,"/L NH,*, H NO3; /L NO3™ and +
N/-N, +N and -N indicate 2.5 mM and 0.25 mM N, re-
spectively) (Fig. 1). The relative expression levels of
OsPHR3 were significantly reduced in the root under L
NH,", and both shoot and root under L. NO3;~ compared
with their corresponding H NH," and H NOj3~ (Fig. 1a).
Further, the relative expression levels of OsPHR3 were
significantly attenuated in -N shoot and root compared
with +N seedling (Fig. 1b). It was evident from the
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Fig. 1 Tissue-specific differential relative expression levels of OsPHR3 during growth under different regimes of N variants. Seeds of the wild-type
were grown hydroponically in IRRI solution for 2 weeks, starved for N for 3 d and then supplied for 24 h with nutrient solution containing high
NH," (H NH,", 5 mM), low NH," (L NH,", 0.25 mM), high NOs™ (H NOs~, 5 mM), low NO;™ (L NOs~, 0.25 mM), 25 mM N (1.25 mM NH,* and
1.25 mM NO;~) and 0.25 mM (0.125 mM NH, ™ and 0.125 mM NOs7). Root and shoot were harvested for the qRT-PCR analysis of the relative
expression levels of OsPHR3 in (a) high and low NH,* or NO;™ and (b) 2.5 mM N and 0.25 mM N conditions. Actin (OsRacT; LOC_Os03g50885)
was used as an internal control and the values for H NH,", H NOs~ and + N were normalized to 1. Values are means +SE (n = 3) and different
letters on the histograms indicate that the values differ significantly (P < 0.05, one-way ANOVA)

results that different forms and regimes of N exerted sig-
nificant influence on the relative expression levels of
OsPHR3 in a tissue-specific manner.

Silencing of OsPHR3 affects vegetative growth under
different regimes and forms of N and reproductive
growth at grain-filling stage

Three homozygous OsPHR3 mutants in the Nipponbare
background (osphr3-1, osphr3-2 and osphr3-3) were ob-
tained from the rice Tosl7 insertion mutant database
(https://tos.nias.affrc.go.jp) (Additional file 2). There was a
Tos17 insertion in the first (osphr3-2 and osphr3-3) and
the last (osphr3—1) exon of OsPHR3 (Additional file 2).
Semi-quantitative RT-PCR analysis revealed the absence
of OsPHR3 transcript in these mutants (Additional file 2).
These knock-out mutants were then compared with the
wild-type for the effects of different N forms and regimes
on the vegetative traits (biomass and an average length of
the adventitious roots) when grown hydroponically, and
also on the reproductive traits (per cent seed-set and grain
yield/plant) during growth in a pot soil up to grain-filling
stage (Fig. 2). There were no apparent effects on the

growth response of the mutant (osphr3—1, osphr3-2 and
osphr3-3) seedlings compared with the wild-type under
both +N and -N conditions (+N and -N indicate 2.5 mM
and 0.25 mM N, respectively) (Fig. 2a). Although shoot
biomass of the mutants (osphr3—1, osphr3-2 and osphr3—
3) was comparable with the wild-type irrespective of N re-
gimes, their root biomass was significantly lower than the
wild-type under both +N (~27-30%) and -N (~ 27-33%)
conditions (Fig. 2b). Root system architecture and the pri-
mary root length of the mutants (osphr3—Iand osphr3-2)
were comparable with the wild-type under both H NO;~
and L NOj;~ conditions (Fig. 2c). However, an average
length of the adventitious roots of the mutants (osphr3—
Iand osphr3-2) revealed significant reductions under H
NO;3;™ (~52-62%), L NO;~ (~51-52%) (Fig. 2d) and L
NH," (~23%) (Additional file 3) conditions compared
with the wild-type. To further determine the role of
OsPHR3, if any, during the reproductive growth phase, the
wild-type and the mutants (osphr3—1, osphr3-2 and
osphr3-3) were grown in a pot soil up to the grain-filling
stage (Fig. 2e-g). The growth of the panicle was retarded
in the mutants compared with the wild-type (Fig. 2e),
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Fig. 2 Mutation in OsPHR3 affects vegetative and reproductive traits under different N and NOs™ regimes. Seeds of the WT and OsPHR3 mutants
(osphr3-1, osphr3-2 and osphr3-3) were grown hydroponically in IRRI solution for 2 weeks. Seedlings were then transferred to (a, b) 25 mM N
and 0.25 mM N and (¢, d) H NO; and L NO5™ media for 7 d. e, f WT and the mutants were also grown in a pot soil for 17 weeks (grain-filling
stage). Phenotypes of the (a) seedlings, (c) root system architecture and (e) panicles were observed. Data are presented for (b) biomass, (d)
average length of adventitious roots, (f )per cent seed-set and (g) grain yield/plant. Values in (b, d and e) are means £SE (n=5) and different
letters on the histograms indicate that the values differ significantly (P < 0.05, one-way ANOVA)

which was congruent with significant reductions in the
per cent seed-set (~23-35%) (Fig. 2f), and grain yield/
plant (~35-49%) (Fig. 2g). The results suggested a broad
spectrum positive regulatory influence of OsPHR3 during
both vegetative and reproductive growth phases of rice.

Silencing of OsPHR3 affects N homeostasis

The wild-type and the mutants (osphr3—1 and 3-2) were
grown hydroponically under +N and -N condition for 7 d
to determine the effects of the mutation in OsPHR3 on

the concentrations of total N, NO;~ and NH," in the
shoot and root of the seedlings (+N and -N indicate
2.5 mM and 0.25 mM N, respectively) (Fig. 3). There were
no significant differences in the concentrations of NO3™ in
-N shoot, NH,* in +N and -N shoot and + N root of the
wild-type and the mutants (Fig. 3a-c). However, the at-
tenuating effects of the mutation in OsPHR3 were evident
on the concentrations of total N in +N shoot (~9-11%)
and -N shoot (~11-13%), +N root (~30-38%) and -N
root (~27-30%), NO;3™ in +N shoot (~26-30%), +N root
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Fig. 3 Mutation in OsPHR3 affects total N, NOs~ and NH,"
concentrations under different N regimes. Seeds of the WT and
mutants (osphr3-1 and 3-2) were grown hydroponically in IRRI solution
for 2 weeks, deprived of N for 3 d and then transferred to 2.5 mM N
and 0.25 mM N media for 7 d. Shoot and root were harvested. Data are
presented for the concentration of (@) total N, (b) NOs~ and () NH,".
Values are means +SE (n = 5) and different letters on the histograms

indicate that the values differ significantly (P < 0.05, one-way ANOVA)

(~19-23%) and -N root (~23-37%) and NH," in -N root
(~ 60—64%) (Fig. 3a-c). Further, the wild-type and the mu-
tants (osphr3—1 and 3-2) were grown in a pot soil up to
the maturity (grain harvest stage) to determine the effects
of the mutation in OsPHR3 on the concentration of total
N in different tissues at the reproductive stage
(Additional file 4). Total N concentration was comparable
in the 3rd leaf blade, culm, leaf sheath, panicle,
significantly lower in the 6th leaf blade (~17-22%), and
significantly higher in the 1st leaf blade (~17-21%) and
seed (~12-16%). Isotope assays were then employed for
comparing the influx of NO3~ and NH," for 10 min and
their subsequent translocation to the shoot after 24 h be-
tween the wild-type and the mutants (osphr3—1 and 3-2)
grown hydroponically under different N regimes (Fig. 4).
Compared with the wild-type, the mutants showed signifi-
cantly lower influx rate of 5NO;™ (~ 12-17%) in +N root,
’NO;™ (~49-50%) and NH,* (~25-27%) in -N root,
while the corresponding values remained comparable of
I5NH," in the +N root (Fig. 4a, c). Although the ratio
(translocation) of >NO;™ in -N plant and "*NH," in +N
and -N plant in the wild-type and the mutants were com-
parable, the ratio of ’NO;~ in +N plant was significantly
lower (~25-29%) in the mutants compared with the
wild-type (Fig. 4b, d). In addition, the concentration of
NO;~ was assayed in the second young leaf blade (YLB)
and fourth old leaf blade (OLB) at a five-leaf stage of the
wild-type and mutants (osphr3—1 and osphr3-2) grown
hydroponically under H NO;~ and L NO;~ condition for
7d (Fig. 5a). Compared with the wild-type, NO3~ concen-
trations in the mutants were ~ 59-85% and ~ 37% higher
in YLB under H NO3™ and L NOj3", respectively. On the
contrary, an opposite trend was observed in OLB,
where the values were ~45-71% and ~ 16-33% lower
under H NO3;™ and L NOj", respectively. Finally, redis-
tribution of NO3;~ from the older to younger leaf was
assayed in the wild-type and the mutants (osphr3-1
and osphr3-2) by exposing the N-starved oldest leaves
to ">’N-NO;~ for 5 h (Fig. 5b). The mutants showed sig-
nificantly higher (~84-125%) redistribution ratio of
">NO;~ compared with the wild-type. The results thus
suggested the regulatory influence of OsPHR3 in the
maintenance of homeostasis of diverse forms of N
under different N regimes in a tissue-specific manner.
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Silencing of OsPHR3 differentially affects the expression
of NO;™ and NH," transporter and NO;~ reductase genes
under different N regimes

Since the mutation in OsPHR3 exerted significant influ-
ences on the concentrations of total N, NO3~ and NH,"
(Fig. 3), the influx rate and translocation of NO3;~ and
NH," (Fig. 4) and the concentration and remobilization
of NO3™ from OLB to YLB (Fig. 5), it raised a pertinent
question about its likely influence on the relative expres-
sion of the genes implicated in sensing and signaling
cascades governing N homeostasis. Several genes have
been identified that play pivotal roles in N assimilation
and use efficiency [2]. Among these genes, those encod-
ing for transporters for NO3z~ (OsNRTS5) [29-33] and
NH," (OsAMTs) [34—36] have been functionally charac-
terized. NO3™ reductase genes (OsNial and OsNia2) play
a role in converting NO3~ to NH," in roots, which
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related to N metabolism [2]. The expression pattern of
the NO3™ reductase genes are well known to be low dur-
ing nitrate deficiency and high in nitrate-sufficiency [37].
Therefore, qRT-PCR was employed to determine the ef-
fects of the mutation in OsPHR3 on the relative expres-
sion levels of NOj3;  (OsNRT1.la, OsNRT2.3a and
OsNRT2.4) and NH," (OsAMTI1.1, OsAMTI.2, and
OsAMT1.3) transporter and NOjz~ reductase (OsNial
and OsNia2) genes in the roots of the wild-type and the
mutants (osphr3—1 and osphr3-2) grown hydroponically
under +N and -N conditions (Fig. 6). The relative ex-
pression levels of these genes were comparable in the
wild-type and the mutants under +N (OsNRT2.4 and
OsAMTI.1), -N (OsAMT1.3) or both under +N and -N
conditions (OsNRT2.3a and OsAMT1I1.2) (+N and -N in-
dicate 2.5 mM and 0.25 mM N, respectively). On the
contrary, the relative expression levels of OsNRTI.la
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Fig. 6 Mutation in OsPHR3 affects the expression of NO;~ and NH," transporter and nitrate reductase genes. Seeds of the WT and mutants
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0.25 mM N media for 1 d. Roots were harvested and gRT-PCR was employed for determining the relative expression levels of genes encoding
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Actin was used as an internal control and + N WT values were normalized to 1. Values are means +SE (n = 3) and different letters on the
histograms indicate that the values differ significantly (P < 0.05, one-way ANOVA)
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and OsNial under +N and -N condition, and those of
OsNRT2.4, OsAMTI1.1 and OsNia2 under -N condition
were significantly attenuated in the mutants compared
with the wild-type. The relative expression level of
OsAMT1.3 under +N condition was significantly aug-
mented compared with the wild-type. The results sug-
gested differential regulatory influences of OsPHR3 on the
relative expression levels of NO3;~ and NH," transporter
and NOj™ reductase genes under different N regimes.

OsPHR3 affects lateral root development under different
NOs™ regimes independent of pi availability

Several studies have shown the prevalence of a cross-talk
between sensing and signaling cascades governing homeo-
stasis of Pi and NO3™ in Arabidopsis [38—40] and rice
[41]. To know whether the relative expression of OsPHR3
response to different NO3;™ regimes depending on Pi avail-
ability, the relative expression levels of OsPHR3 under H/
L NO;3; +P and H/L NOj3~ -P conditions were detected
(Fig. 7a). It was found that the relative expression levels of
OsPHR3 were reduced significantly in L NO3;™ shoot and
L NO;™ root compared with H NO3™ seedling under both
+P and -P conditions (Fig. 7a). The wild-type and the mu-
tants (osphr3—Iand osphr3-2) were grown hydroponically
under various NO3~ and NH," regimes for 10d (Fig. 7 and
Additional file 5). To observe if there were any detectable
changes in the lateral root initiation, their seminal roots
(2-4 cm from the tip) were stained with methylthionine
chloride (Fig. 7b, ¢ and Additional file 5). The number of
lateral root primordia was comparable between the
wild-type and the mutants when grown under different
NH," regimes (Additional file 5), while it was significantly
higher in the mutants both under H NO3;~ (~ 30-70%)
and L NO3™ (~86-137%) compared with the wild-type
(Fig. 7b, c). To further investigate, whether Pi availability
exerts any influence on the developmental responses of
the lateral roots under different NO3;~ regimes, the
wild-type, and mutants (osphr3-1 and osphr3-2) were
grown hydroponically under +P/H NO;~, -P/H NO;3~, +P/
L NO3™ and -P/L NO;™ conditions (Fig. 7d-f). Minor dif-
ferences were observed in the lateral root phenotype of
the wild-type and the mutants under all the 4 conditions
tested (Fig. 7d). The average length of lateral roots of the
mutants were significantly higher (~60-69% in +P/H
NO;~, ~26-31% in +P/L NO3~, ~42-47% in +P/H NO3~
and ~21-25% in -P/L NOj3") in the mutants compared
with their corresponding wild-type (Fig. 7e). Although the
density of lateral roots of the wild-type and the mutants
were comparable under +P/H NO;™ and + P/H NOj", the
values were significantly higher in the mutants compared
with the wild-type under both +P/L NOj3~ (~40-47%)
and -P/L NO3~ (~25-33%) (Fig. 7f). These results re-
vealed that OsPHR3 exerts regulatory influences on the
developmental responses of the lateral roots under
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different NO;3;~ regimes independent of Pi availability.
However, there were no significant differences in the
average length of the lateral roots of the wild-type and the
mutants grown under different NH," regimes (Additional
file 5).

Silencing of OsPHR3 affects N homeostasis independent
of pi availability

Earlier studies have shown the prevalence of a cross-talk
between the homeostasis of N and Pi in rice [9, 10]. The
Pi and total P concentration under different N conditions
were not affected by the mutation of OsPHR3 in both
shoot and root (Additional file 6). T o determine the
effects of Pi availability on the total N and NO3;~ concen-
tration, the wild-type and the mutants (osphr3—Iand
osphr3-2) were grown hydroponically under different Pi
regimes for 2 weeks. Shoot and root were harvested and
assayed for total N (Fig. 8a) and NO;3~ (Fig. 8b) concentra-
tions. Consistent with the earlier studies [9, 10], Pi defi-
ciency triggered significant reductions in the total N and
NO;3~ concentration in the shoot and root of wild-type,
osphr3—1 and osphr3-2 (Fig. 8a, b). Further, the mutation
of OsPHR3 reduced the total N and NO3~ concentration
under both +P and —P conditions (Fig. 8a, b). The results
suggested that the mutation in OsPHR3 does not affect
the regulatory mechanism governing accumulation of N
under different Pi regimes. Further, the relative expression
levels of the NO;~ (OsNRT1.1la, OsNRT2.3a and
OsNRT2.4) and NH," (OsAMTI1.1, OsAMTI1.2, and
OsAMT1.3) transporter genes were assayed in the roots of
the wild-type and the mutants (osphr3—1 and osphr3-2)
grown hydroponically under +P and -P conditions for 3d
(Fig. 8c). Pi deprivation exerted variable influences on the
relative expression levels of these genes in roots of the
wild-type ranging from no significant effects on
OsNRT2.3a and OsNRT2.4, induction of OsNRT1.1a and
suppression of OsAMT1.1, OsAMT1I.2, and OsAMTL1.3. It
is noteworthy that the variable effects of Pi deprivation on
the relative expression levels of these genes in the mutants
were comparable with the wild-type (Fig. 8c). The results
suggested that the mutation in OsPHR3 affects the mo-
lecular traits governing N homeostasis independent of Pi
availability.

Discussion

In higher plants, deficiencies of Pi and/or N trigger an
array of adaptive morphophysiological responses and in-
duction or suppression of several genes belonging to dif-
ferent functional categories [2, 6—8]. These genes are
transcriptionally regulated by a host of TFs [2, 11].
Among the TFs, the functional characterization of PHR1
in Arabidopsis [14-16, 21] and its ortholog OsPHR2 in
rice [26] provided a framework of a central regulatory
system governing transcriptional responses to Pi
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deficiency in taxonomically diverse plant species.
OsPHR3 plays an important role in improving the toler-
ance towards Pi deficiency [27]. PHRI-related PHLI in
Arabidopsis [16] and the paralogs of OsPHR2 ie,
OsPHRI1, 3 and 4 in rice [27, 28] play functionally redun-
dant roles in the maintenance of Pi homeostasis. Several
studies have also shown the prevalence of a cross-talk
between sensing and signaling cascades governing
homeostasis of Pi and N in Arabidopsis [38—40, 42], rice
[9] and maize [43]. Therefore, in this study, we investi-
gated the likely role of OsPHR3 in regulating the homeo-
stasis of different forms of N under different Pi regimes.

Among different available N sources, NO;~ and NH,*
are often present in natural and cropland soils at much
higher concentrations compared with other sources
[44]. Therefore, effects of different forms and concen-
trations of N on the relative expression levels of
OsPHR3 in root and shoot was determined by employ-
ing qRT-PCR (Fig. 1). L NH," (in root), L NO3™ and -N
(in shoot and root) triggered attenuation in the relative
expression levels of OsPHR3. OsPHR3 was significantly
induced during Pi deficiency [27, 28]. Interestingly, the
relative expression level of OsPHR3 under L NH," was
comparable with H NH," in the shoot (Fig. 1a). This
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could be due to the fact that a large amount of NH,"
assimilates locally in the root [2].

Tyl-copia retrotransposon Tosl7 is a potent tool for
rice functional genomics [45]. Characterization of Tos17
insertion mutant osphr3 revealed the role of OsPHR3 in
exerting a regulatory influence on Pi homeostasis in rice
[27]. In this study, we used Tos17 insertion homozygous
knock-out mutants osphr3—1, osphr3-2 and osphr3-3
(Additional file 2) for deciphering the effects of the mu-
tation in OsPHR3 on various morphophysiological and
molecular responses of rice during growth under

different forms and concentrations of N. In rice,
post-embryonically developed adventitious and lateral
roots constitute a bulk of the root system at maturity,
while embryonically developed primary and seminal
roots play important roles at the seedling stage [46, 47].
Adventitious roots facilitate nutrients and water uptake
and gas exchange during flooding [48]. The root biomass
(+N and -N) and the average length of the adventitious
roots under H NO3;~, L NO3~ and L NH," conditions
were significantly lower in these mutants compared with
the wild-type (Fig. 2a-d; Additional file 3). NO3;™ also
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acts as a signal and plays a dual role of stimulatory and
inhibitory effects under mild and severe N deficiency, re-
spectively on the total length of the lateral roots [49, 50].
Here, the number of lateral root primordia (Fig. 7b, c)
and density of lateral roots (irrespective of Pi regimes)
(Fig. 7f) were significantly reduced in the wild-type
under L NO3™ compared with H NO3™. On the contrary,
irrespective of Pi availability, average length of lateral
roots was significantly higher in the wild-type under L
NO3;™ compared with H NO3™ (Fig. 7e). Analysis of the
mutants (osphr3—1 and osphr3-2) revealed negative
regulatory influences of OsPHR3 on the developmental
of the number of lateral root primordia (H NO3™ and L
NO3") (Fig. 7b, c), and irrespective of Pi status, on an
average length of lateral roots (H NO3™ and L NOj3")
and density of lateral roots (L NO;3™) (Fig. 7d-f). Auxin
plays a pivotal role in the development of lateral roots
[51-53] (De Smet et al.,, 2007, Laskowski et al., 2008,
Mai et al., 2014). NRT1.1 has been shown to transport,
in addition to NOj~, basipetal auxin and regulate devel-
opment of the lateral root in response to the availability
of external L NOj3™ in Arabidopsis [54, 55]. The attenu-
ated relative expression levels of OsNRT1.1a in +N and
-N roots of the mutants (osphr3—1 and osphr3—1) com-
pared with the wild-type (Fig. 6) suggested retarded
auxin transport, which could have possibly triggered the
elongation of the lateral roots in the mutants (Fig. 7e).
However, the mutation in OsPHR3 did not exhibit any
influence on the lateral root development when grown
under different NH," regimes (Additional file 5). This
could be due to a more pronounced influence of NO3~
than NH," on the developmental responses of the lateral
roots [56, 57]. The result suggested that OsPHR3 could
positively influence the acquisition of N by exerting
regulatory influences on the developmental responses of
ontogenetically distinct different root traits. The adverse
effects of the mutation in OsPHR3 were also evident at
the grain-filling stage on the panicle development, per
cent seed-set and grain yield (Fig. 2e-g). The results were
in agreement with an earlier study, which reported
higher grain yield in OsPHR3 overexpression lines com-
pared with the wild-type [27].

Significant reductions in the concentrations of total N
(+N and -N shoot and root), NO;~ (+N shoot, +N and -N
root) and NH," (-N root) in osph3-1 and osphr3—2 mu-
tants compared with the wild-type suggested positive
regulatory influence of OsPHR3 on different forms and
concentrations of N in a tissue-specific manner (Fig. 3a-c).
It was interesting to note that the concentrations of total
N and NH," in the shoot were comparable in the mutants
and the wild-type, while all forms of N showed attenu-
ation in -N roots (Fig. 3a-c). It is not surprising because
roots are involved in sensing and acquisition of N from
the soil in the form of NO;~ and NH," [49]. The
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differential effects of the mutation in OsPHR3 were also
evident in the concentration of total N in different tissues
at the reproductive stage ranging from significant reduc-
tion in 6th leaf blade, increases in 1st leaf blade and seed
and remained unaffected in other tissues (3rd leaf blade,
culm, leaf sheath and panicle) compared with the
wild-type (Additional file 4). NO3;™ and NH," are predom-
inant inorganic forms of N in aerated soils and anaerobic
environments, respectively and their mixture is often
beneficial to plants for augmenting their N content and
consequently growth and development [58]. Although
NH," is often preferred over NO3™ as the N source due
to the lower energy requirement by the former for as-
similation by roots [59], acquisition of NH," and its
subsequent translocation is significantly enhanced by
NO;™ availability but the former strongly suppresses in-
flux of the latter [46, 60]. Therefore, interactions be-
tween NO;~ and NH," are critical for optimal
utilization of N by the plants. Mutation in OsPHR3 re-
sulted in the attenuated influx rates of both ’N-NO5~
and ®N-NH,* under -N condition (Fig. 4a, c). The low
level of N induced the development of primary root
[61]. However, the mutation of OsPHR3 significantly re-
duced the primary root development and root biomass
(Fig. 2). This could be one of the reasons for the lower
N uptake rate in the mutants compared with the
wild-type. The ratio (translocation) of 5NO;™ in +N
root was also significantly reduced in the mutants com-
pared with the wild-type (Fig. 4b). The results provided
some explanation towards observed reductions in the
concentrations of total N, NO;~ and NH," in -N roots
of the mutants compared with the wild-type (Fig. 3a-c).
On the contrary, OsPHR3 negatively regulated
mobilization of NO;3~ from OLB to YLB under different
NOj;™ regimes (Fig. 5a) and redistribution of 5NO;~
(Fig. 5b). The data thus provided evidence towards the
key role of OsPHR3 in regulating the homeostasis of N,
NO;~ and NH," under different N regimes in a
tissue-specific manner.

This raised a question whether genes encoding for
transporters for NO3;~ (OsNRTs) [29-33, 62, 63] and
NH," (OsAMTs) [34-36] are transcriptionally regulated
by OsPHR3. OsNRT1.1a encodes a low-affinity NO3~
transporter and plays a role in the accumulation of N
[63]. Whereas, OsNRT2.4 is largely expressed in the base
of the lateral root primordia, leaves, hull and in the vas-
cular tissue of the anther and its expression is relatively
much higher in the roots supplied with NO3;~ compared
with NH," solution [29]. It played a role in NO3™ regu-
lated root growth and NOj~ distribution [62]. Trans-
genic rice overexpressing high-affinity NH," transporter
OsAMTI;1 has higher NH," permeability and exhibits
better growth and higher yield under optimal and sub-
optimal NH,* conditions [35]. OsAMT1.3 also encodes a
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high-affinity NH," transporter, which is expressed pre-
dominantly in -N roots [36]. Here, the mutation in
OsPHR3 caused significant reductions in the relative ex-
pression levels of OsNRT1.1a (+N and -N conditions),
OsNRT2.4 and OsAMTI.1 (-N condition) and but aug-
mentation in the relative expression levels of OsAMT1.3
(+N condition) (Fig. 6). These results suggested that the
decrease of N uptake and accumulation may be due to
the down-regulation of the ammonium and nitrate
transporter genes in the OsPHR3 mutants. Furthermore,
NO;~ is converted to NH," by NO3~ reductase (NR)
and nitrite reductase (NiR), and the NH,* derived from
NO;™ and/or directly acquired by the root is further as-
similated into amino acids in the shoot [2]. In our study,
the NO3™ reductase genes (OsNial and OsNia2) were
reduced in +N root (OsNial) and —N root (OsNial and
OsNia?2) in the mutants (Fig. 6). It maybe a reason which
cause the strong reduction of NH," concentration in
root of mutants under —N condition (Fig. 3c). These re-
sults of relative expression levels preliminarily explain
the reduction of total N, NO3;~ and NH," concentration,
influx rate and translocation ratio in the mutants (Figs. 3
and 4). This study thus suggested a pivotal role of
OsPHR3 in regulating the expression of a subset of genes,
which are involved in the maintenance of the homeostasis
of NO;~, NH," and N. All the N treatments were carried
out as described [31, 64] with slight modifications. The
2-week old wild-type and the mutants (grown hydroponic-
ally in IRRI solution) to N starvation for 3 d was to ensure
the consumption of N before subjecting them to different
treatments. This is a conventional practice that has been
followed in our earlier studies as well [31, 64]. Among the
NRT genes in rice, the expression of OsNRT2.4 was signifi-
cantly induced by both low N and P [65]. The cis-element
analysis by PLACE (https://sogo.dna.affrc.go.jp/cgibin/
sogo.cgi?lang=en&pj=640&action=page&page=newplace)
showed that there were several Pi related cis-elments on
the promoter of OsNRT2.4, such as W-box. However,
there was no P1BS, which is the PHR1-specific binding se-
quence [14]. It suggested that OsPHR3 may regulate the
NRT genes in an indirect manner. The more detailed
mechanism need further verification.

Earlier studies have also shown the prevalence of an an-
tagonistic cross-talk between signaling pathways of N and
Pi in rice [9] and Arabidopsis [39, 40, 42]. For instance,
GARP TF HRSI suppresses primary root growth during
Pi deficiency only when NOj3™ is present [40], and lower
NO;~ and higher Pi concentrations promote flowering
[39]. This led us to investigate whether the availability of
Pi would exert any influence on the regulation of OsPHR3
in various responses to different NO;~ or N regimes.
NO;~ deficiency triggered attenuation in the relative ex-
pression of OsPHR3 in shoot and root under both +P and
-P conditions (Fig. 7a). This provided evidence towards
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NO;~ deficiency-mediated suppression of OsPHR3 in the
root independent of Pi availability. In terms of the devel-
opment of lateral roots, it was observed that the responses
of elongation and density of lateral roots in mutants to dif-
ferent NO3™ regimes were independent on Pi availability
(Fig. 7d-f). Although Pi deficiency triggered a significant
reduction in the concentration of total N and NO;™ in the
shoot and root of the wild-type, the mutation in OsPHR3
did not alter the trend (Fig. 8a, b). These results provided
empirical evidences toward the regulatory influence of
OsPHR3 on the responses to NO;3;~ treatments and the
concentration of total N and NO3™ independent of Pi sta-
tus. Although the effects of Pi deficiency on the relative
expression levels of these genes were differential ranging
from no influence (OsNRT2.3a and OsNRT2.4), inhibitory
(OsAMTL;1, OsAMTI;2 and OsAMT1I;3) and stimulatory
(OsNRT1.1a) in the wild-type, the mutants (osphr3—1 and
osphr3-2) revealed a similar trend (Fig. 8b). However, the
Pi and total P concentration were not affected by the mu-
tation of OsPHR3 under both +N and —N conditions
(Additional file 6). The results were in agreement with an
earlier study (Guo et al. 2015). This could possibly be due
to the redundant role of OsPHR3 with other PHR1 family
members (PHRI1/2/4) in regulating Pi homeostasis under
different N regimes [27, 28]. The results provided evidence
towards the regulatory influence of OsPHR3 on these
genes under different N regimes irrespective of Pi regimes.

Conclusion

This study presented that OsPHR3 is responsive to dif-
ferent forms of N irrespective of Pi regimes. The silen-
cing of this gene triggered wide-spectrum effects on
phenotypes during vegetative and reproductive growth
phases. The analysis of total N, NO3™ and NH," concen-
trations, influx rates, translocation and distribution ratio
of ®N, and relative expression levels of N transport and
metabolism related genes suggested that silencing of
OsPHR3 regulated N homeostasis in tissue-specific man-
ner. Further an insight into the likely roles of OsPHR3 in
regulating the lateral root development under different
NOj™ regimes and N homeostasis independent on Pi
availability were gained. These results from the study ex-
plain that availability of Pi did not exert any notable ef-
fects on OsPHR3-mediated regulatory influence on N
homeostasis under different N variants and the lateral
root development under different NO3~ treatments. It
provide a basis for further detailed characterization of
the cross-talk between N and P.

Methods

Plant materials and growth conditions

Wild-type rice (Oryza sativa L. ssp. japonica cv. Nip-
ponbare) was used in the present study. The mutants
osphr3—1 (RTIM NE3007), osphr3-2 (RTIM NE3709)
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and osphr3-3 (RTIM NE3735) in Nipponbare back-
ground were obtained from the rice Tos17 insertion mu-
tant database (https://tos.nias.affrc.go.jp). Homozygous
mutants were identified by using a set of primers
(P1-P5) in two-round semi-quantitative RT-PCR and
lack of OsPHR3 transcripts validated their fidelity
(Additional files 2 and 7). Seeds of the wild-type and the
mutants were grown hydroponically in IRRI solution
comprising NH4;NOj3 (1.25 mM), CaCl, (1 mM), MgSO,
(1 mM), Na,SiO3 (0.5 mM), K,SO, (0.35 mM), KH,PO,
(0.3 mM), EDTA-Fe (20 uM), H3BO3 (20 uM), MnCl,
(9 uM), ZnSOy (0.77 pM), (NHy)sMo0,0,4 (0.39 uM) and
CuSO, (0.32 uM) with pH adjusted to 5.5. Seedlings
were then transferred to nutrient solution containing differ-
ent form and concentration of N: +N (2.5 mM), -N
(0 mM), high NH," (H NH,", 5 mM), low NH," (L NH,",
0.25 mM), high NO;™ (H NO3™, 5 mM) and low NO3;™ (L
NOs7, 0.25 mM). These hydroponic media were maintained
either under +P (Pi, 200 uM) or -P (Pi, 0 pM) condition. To
inhibit nitrification, hydroponic medium containing differ-
ent concentration of NH," was supplemented with 7 uM of
dicyandiamide (C,H4N,). Plants were grown under con-
trolled conditions (16 h light, 30 °C /8 h dark, 22 °C cycle
and ~ 70% relative humidity).

gRT-PCR analysis

Total RNA (~ 1 pg) was extracted from the plant tissue
by using Trizol reagent (Invitrogen) and treated with
RNase-free DNase (Thermoscientific). First-strand
c¢DNA was synthesized using an oligo (dT) 18 primer
and reverse transcribed using Superscript II™ Reverse
Transcriptase (Invitrogen). OsActin (accession number
AB047313) was used as an internal control and
qRT-PCR analysis was performed by using SYBR Premix
Ex Taq™ II (TaKaRa) in StepOnePlus™ Real-Time PCR
System (Applied Biosystems). Relative expression levels
of genes were computed by 244 method of relative
quantification [66]. The gene-specific primers used are
listed in Additional file 8.

Quantification of total N, NO;~ and NH,*

Different tissues were harvested and washed with CaSO,
(0.1 mM) for 1 min. Concentration of total N was deter-
mined by Kjeldahl method as described [67], while those
of NO3;~ and NH," by using a continuous-flow
auto-analyzer (AutoAnalyzer 3).

Assay for the influx and distribution of NO;~ and NH,*

Seedlings (3-d-old) of the wild-type and the mutants
(osphr3—1and osphr3-2) were grown hydroponically in
the IRRI nutrient solution for 2 weeks and then deprived
of N for 3 d. Plants were rinsed in CaSO,4 (0.1 mM) for
1 min and then transferred to the IRRI nutrient solution
containing either 0.25 mM or 2.5 mM 15NO;™ (atom %
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"N: ®NO;~, 60%) and 025 mM or 2.5 mM '°NH,"
(atom % °N: °NH,*, 60%) for 10 min and 24 h for their
influx and distribution (shoot/root), respectively. In
addition, to determine the redistribution of NO3;~ from
N-starved old to the young leaf, wild-type and the mu-
tants were grown to the five-leaf stage. NO3~ concentra-
tion of the second leaf (old) and fourth leaf (young) of
the wild-type and the mutants were analyzed. Then, the
oldest leaf blade of each plant was wiped gently with a
sponge and incubated in solution containing 5 mM Ca
(1°NO3), for 5 h. After the treatment, the youngest leaf
blade (first) from the top was sampled after 24 h for de-
termining "°N distribution. Plants were finally rinsed in
CaSO, (0.1 mM) for 1 min. Root and shoot were sepa-
rated and frozen in liquid nitrogen. Tissues were ground
to a fine powder, dried to a constant weight at 70 °C and
~10 mg dried tissue was analyzed using Isotope-ratio
mass spectrometer (Thermo Fisher Scientific).

Statistical analysis

Data were analyzed by ANOVA using SPSS 20 program
(www.spss.com). Duncan’s multiple range test at P < 0.05
was carried out for all the experiments to determine the
significance between the control and treatments.
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