Yang et al. BMC Plant Biology (2018) 18:209
https://doi.org/10.1186/512870-018-1430-2

BMC Plant Biology

RESEARCH ARTICLE Open Access

The key genes and pathways related to

@ CrossMark

male sterility of eggplant revealed by
comparative transcriptome analysis

Yan Yang®?, Shengyou Bao®?, Xiaohui Zhou??, Jun Liu** and Yong Zhuang'**"

Abstract

with the RNA-seq technology.

Keywords: Eggplant, Male sterility, RNA-seq, DEGs

Background: Male sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported
in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To
understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed

Results: A total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were
obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-
reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact
effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules
might be responsible for MS, which was similar to hierarchical cluster analysis.

Conclusions: A number of genes and pathways associated with MS were found in this study. This study threw
light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.

Background
Male sterility (MS) exits widely in the flowering plants. It
can be used as a tool for breeders to create new hybrid var-
ieties. The hybrids present heterotic vigor, high uniformity,
adaption, tolerance and yield. Moreover, hybrids are pro-
tected against unauthorized multiplication [1]. Therefore,
MS is of interest due to its application in hybrid seed pro-
duction [2, 3]. The discovery and utilization of MS plants
can provide excellent germplasm resources for yields in-
crease, quality improvement and resistance enhancement,
which have a practical value in eggplant breeding. The study
of the molecular mechanism of MS provides a crucial guid-
ing significance for breeding programs.

The development of the anther is a complex process
involving numerous pathways. The molecular

* Correspondence: jaaszy@163.com

'College of Horticulture, Nanjing Agricultural University, Nanjing 210095,
China

“Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences,
Nanjing 210014, China

Full list of author information is available at the end of the article

K BMC

mechanisms of anther development and MS have been
reported in previous studies [4—7]. A large number of
genes are related to anther development, including genes
encoding several proteins in energy transduction [8—10],
lipid transport and metabolism [11, 12], carbohydrate
metabolism [13-15]. The ATPase subunit 6 (atp6) is an
important mitochondrial functional gene involved in en-
ergy supply. The 33-bp insert and 3-bp deletion of this
gene were characterized specific to cytoplasmic male
sterility based on the analysis of 104 kenaf varieties [16].
For lipid transfer, CaMF2, encoding a lipid transfer pro-
tein, was identified as a functional gene in pollen devel-
opment as virus-induced gene silencing of CaMF2
affected pollen development in Capsicum annuum L.
This indicated that lipid transfer was a key effector for
male fertility [17]. In Datta’s [18] study, significant differ-
ences in the level of carbohydrates, specifically, hexose
sugars and the carbohydrate genes expression were ob-
served between male fertile and sterile lines.
Transcription factors play a vital role in plant develop-
ment [19-21]. A large number of studies have shown
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them to be pivotal in anther or pollen development
[22, 23]. SPOROCYTELESS (SPL)/NOZZLE (NZZ), en-
coding a MADS box transcription factor, was required
for the development of anther. SPL gene is activated
by the floral homeotic gene AG in the archesporial
cell. The SPL protein recruited TPL/TPR using its
EAR motif to promote sporogenesis by suppressing
target genes of TCP transcription factors [24]. These
studies suggested that there exists a complex cascade
regulation during anther development [25]. A large
number of transcription factor families have been also
identified in tapetum and participate in the develop-
ment of anthers. For example, the mutant DYSFUNC-
TIONAL TAPETUMI1 (DYT1), a member of the
bHLH transcription factor family, affected the expression
levels of many tapetum-related genes and the mutant ex-
hibits an abnormal anther phenotype [26]. ABORTED
MICROSPORE (AMS) interacted with two other bHLH
proteins to regulate the expression of genes which were
related to tapetal cell developments [27, 28].

A number of genes involved in MS have been defined
and the network has been acknowledged as complicated
[29-31]. With the increasing popularity of eggplant all
over the world, the utilization of MS lines in eggplant
breeding is more and more important to produce hybrid
seeds. Although the molecular mechanism of MS has
been investigated in several crops and model plants, it
remains poorly understood in the eggplant. Researchers
have long known that genetic MS is caused by recessive
nuclear genes [3, 32]. MS was induced by suppressing
transcription factors and fertility could be reversed by
ethanol [33, 34]. Furthermore, the differences in the
DNA sequences flanking of five mitochondrial ATP and
COX genes were verified to cause cytoplasmic male ster-
ility (CMS) in eggplant and the report showed novel
open reading frames (orfs) were causal genes for each
type of CMS [35]. In this study, we have used the
broadly-used RNA-seq technology to undertake a
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comparative transcriptome analysis of the male sterile
line and its maintainer line to identify the MS-related
genes and pathways in the eggplant.

Results

The phenotype of eggplant anthers

In this study, a MS line and its maintainer line were
chosen to perform a comparative transcriptional analysis.
The flower buds were extracted from this two lines at
three different developmental stages. As shown in Fig. 1a,
the appearance of buds between the MS and the main-
tainer lines showed no significant difference. However, the
anthers of MS line were greenish, flat and loose arranged
while the anthers of the maintainer tended to be yellow,
full and more cohesive (Fig. 1b). Significantly, the stigma
of the maintainer line almost was enveloped by anthers
while the stigma of the MS line was not (Fig. 1b).

Identification of differentially expressed genes

To characterize DEGs in the MS line, we first preformed
RNA-seq on six samples with three repeats using the Illu-
mina Seq platform. As a result, a total of 414 million clean
reads were obtained from the samples. The reads were as-
sembled into contigs and 11,7695 unigenes. This was
much more than the predicted genes in the draft genome
in which eggplant has 85,446 genes [36]. The major rea-
sons for this were as follows: Firstly, one gene can be tran-
scribed into two transcripts. If the two transcripts differ
significantly, the assembly software will identify them as
two genes. Secondly, de novo assembly cannot be com-
pleted with the repeated sequence. As a result, one gene
will be identified as multiple genes. Using the FPKM
method (Fragments PerKilo base of transcript per Million
mapped reads) to calculate the expression level of the uni-
genes and DESeq2 to filter these unigenes, 7,025 (4,108
up-regulated, 2917 down-regulated), 9,017 (4542
up-regulated, 4,475 down-regulated) and 13,001 (5,727
up-regulated, 7,274 down-regulated) DEGs were found in
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Fig. 1 The morphological characteristics of flower buds in different stages. a The morphology of flower buds. b The morphology of anthers
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the MS line at three stages, respectively (Fig. 2a). In total,
19,652 DEGs were obtained and of these, 1,716 (964 com-
monly up-regulated and 426 commonly down-regulated)
genes were shared among three stages (Fig. 2b, ¢, d,
Additional file 1: Table S1).

Hierarchical clustering analysis

Based on the similarity of gene expression, hierarch-
ical clustering was performed on the 1,716 DEGs
among those samples (Fig. 3). Hierarchical clustering
of the genes expression profiles of the MS line and
maintainer line with different stages showed that the
expression pattern was different among these samples.
The DEGs were categorized into nine gene clusters
(Fig. 3, Additional file 2: Table S2). Cluster 1, cluster
4 and cluster 5 showed a relatively high transcript
level in the maintainer line. These three clusters mainly
included genes encoding proteins related to energy pro-
duction and conversion (TRINITY_DN21187_c0_g1, TRI-
NITY_DN21187_c0_g2 and TRINITY_DN82756_c2_g5),
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amino acid transport and metabolism (TRINI-
TY_DN21153_c0_gl, TRINITY_DN166456_c0_gl, TRI-
NITY_DN169613_c0_gl and TRINITY_DN38463_c0_gl)
and carbohydrate transport and metabolism (TRINI-
TY DN56811_c0_g2, TRINITY_DN63174_c0_gl3 TRI-
NITY_DN85580_c0_gl and TRINITY_DN67079_c0_g2).
The expression of the above genes was inhibited in the
MS line. The result indicated that these genes may be re-
lated to MS. However, some genes in cluster 3, cluster 7
and cluster 9 expressed at a lower level in the maintainer
line compared with the MS line. For example, genes
mainly in posttranslational modification, protein turnover
and encoding chaperones (TRINITY_DN34505_c0_gl,
TRINITY_DN63937_c0_g2 and TRINITY_DN5769_cO
_g3) and transcription factors (TRINITY_DN85424_c0
_gl, TRINITY_DN82628 c0_gl and TRINITY DN84
016_c2_g4) were highly expressed in the MS line. In
addition, signal transduction genes including the protein
kinases (TRINITY_DN22944 c0_gl, TRINITY_DN7777
3_cl_g2 and TRINITY_DN134628 c0_gl) were also
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Fig. 2 The number of DEGs between the maintainer line and MS line at meiophase, late uninucleate and binucleate stages. a The total number of up-
regulated and down-regulated DEGs. b Venn diagram of all DEGs. ¢ Venn diagram of up-regulated genes. d Venn diagram of down-regulated genes
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Fig. 3 Clustering analysis of 1,716 DEGs between the maintainer line
and the MS line. a Hierarchical clustering of the 1,716 DEGs. b
Expression patterns of the 1,716 DEGs in the nine clusters. M-1, M-2
and M-3 represent the maintainer line at meiophase, late uninucleate
and binucleate stage, respectively. MS-1, MS-2 and MS-3 represent the
MS line at meiophase, late uninucleate and binucleate

stage, respectively

up-regulated in the MS line. The rest of DEGs were clus-
tered into cluster 2, cluster 6 and cluster 8 based on their
expression patterns.

GO enrichment analysis of these six clusters which may
be relevant to MS was performed subsequently. The GO
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terms related to energy production and conversion, carbo-
hydrate transport and metabolism and amino acid trans-
port and metabolism were highly enriched in cluster
1,cluster 4 and cluster5, such as GO:0016174 (NAD(P)H
oxidase activity), GO:0048040 (UDP-glucuronate decarb-
oxylase activity), GO:0035999 (tetrahydrofolate intercon-
version), GO:0034219 (carbohydrate transmembrane
transport), GO:0051119 (sugar transmembrane trans-
porter activity), GO:0004794 (L-threonine ammonia-lyase
activity) and GO:0009097(isoleucine biosynthetic process)
etc. (Additional file 3: Figure S1, Additional file 4: Figure
S2 and Additional file 5: Figure S3). It is of interest that
the transcription factor (GO:0003700) and regulation of
transcription (GO:0006355) were the most enriched terms
of cluster 3, cluster 7 and cluster 9 in which the transcript
level of genes in MS line was higher. In addition, the GO
terms associated with inorganic ion transport and metabol-
ism included GO:0046916 (cellular transition metal ion
homeostasis), GO:0046914 (transition metal ion binding)
and GO:0030001 (metal ion transport) (Additional file 6:
Figure S4, Additional file 7: Figure S5 and Additional file 8:
Figure S6).

Gene ontology and pathway analysis of DEGs

GO enrichment analysis was used to promote the global
analysis of DEGs. The DEGs were classified into three cat-
egories of ontologies including “biological process” (BP),
“molecular function” (MF) and “cellular component” (CC).
Among the BPs, these DEGs in three stages were mainly in-
volved in oxidation-reduction process (GO:0055114), regu-
lation of transcription and DNA-templated (GO:0006355),
cellular transition metal ion homeostasis (GO:0046916),
lipid metabolic process (GO:0006629) and carbohydrate
metabolic process (GO:0005975) (Fig. 4). The MFs con-
tained 498, 639 and 780 GO terms in G1, G2 and G3, re-
spectively. Among these terms, GO:0003700 (sequence
-specific DNA binding transcription factor activity),
GO:0043565 (sequence-specific DNA  binding) and
GO:0005509 (calcium ion binding) were highly enriched in
all the stages (Fig. 4). Furthermore, the highly enriched
terms included in CC among three stages were
GO:0016021  (integral component of membrane),
GO:0005618 (cell wall) and GO:0005887 (integral compo-
nent of plasma membrane) (Fig. 4). The 1,716 shared DEGs
enriched in regulation of transcription, sequence-specific
DNA binding transcription factor activity and integral com-
ponent of membrane (Fig. 5). These results indicated that
the anther development in the MS line may be related to
different genes.

Pathway enrichment analysis was usually employed to
identify the major biochemical and signal transduction
pathways in which the DEGs were involved. Accordingly,
we explored the biological functions of these DEGs by
pathway enrichment analysis. A total of 107, 115 and
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120 DEGs were significantly annotated in the three
stages by KEGG pathway, respectively, while 76 pathway
categories were enriched in the 1,716 shared DEGs
(Additional file 9: Table S3). As shown in Fig. 6, plant
hormone signal transduction (ko04075), carbon metab-
olism (ko01200) and starch and sucrose metabolism
(ko00500) were the three most significantly entries.
Interestingly, some components overlapped in different
pathways. These results showed that multiple pathways
may contribute to anther development within a compli-
cated pathway network.

Identification of differentially expressed transcription factors
A large number of studies about MS have shown that a
high percentage of sterility-associated genes in Arabidopsis

encode transcription factors (TFs) [37, 38]. In previous
analysis, we have found some DEGs belonged to genes en-
coding TFs. To better understand the molecular mechan-
ism of MS, we analyzed the differentially expressed TFs in
this study. 898 TFs (498 commonly up-regulated and 216
commonly down-regulated) shared in three stages were
totally identified from the DEGs (Additional file 1: Table
S1). These TFs could be classified into 63 families, among
which the main ones were AP2/ERF family (7.13%), C2H2
family (6.46%), MYB family (6.12%), NAC family (5.79%),
WRKY family (5.01%), C3H family (4.2%), bHLH family
(4.00%) and the MADS family (3.34%) (Fig. 7). Interest-
ingly, although some unigenes were annotated to the same
kind of transcription factor, such as the predicted NAC-
encoded genes TRINITY_DN70641_c0_gl (up-regulated)



Yang et al. BMC Plant Biology (2018) 18:209

Page 6 of 13

Sequence-specific DNA binding ... -
Sequence-specific DNA binding -
Chitin binding -
Transition metal ion binding -
Methylenetetrahydrofolate reductase ... = 4
UDP-glucuronate decarboxylase activity - 5
Regulation of transcription, DNA-templated -
Cellular transition metal ion ... -
Oxidation-reduction process -
Lipid metabolic process - 20
Killing of cells of other organism - 7
Carbohydrate transmembrane transport - 8
Metal ion transport -
Methionine metabolic process - 4
Integral component of membrane -
Integral component of plasma membrane -
Extracellular region -
Cell wall -
Anchored component of plasma membrane - 10
Actin filament - 4

0.0 2.5

Fig. 5 Analysis of GO enrichment for 1,716 common DEGs

The most enriched GO terms

-log10(qvalue)

71
36

109

Biological process
Cellular component
Molecular function

409
24

5.0 15

and TRINITY_DN73046_c0_gl (down-regulated), their
expression patterns were different between the MS and
maintainer line (Additional file 1: Table S1). These results
suggested that it is an extremely intricate and complex
transcriptional network for anther development.

Correlation network analysis with WGCNA

WGCNA is an alternative tool to analyze the target
genes at a network-level [39, 40]. To obtain the genes
correlated with MS, weighted correlation network was
constructed with the differentially expressed genes. In
this study, 17 modules were identified from the
RNA-seq data (Fig. 8a). The module eigengenes for 17
modules were correlated with different samples. Analysis
of the module-trait relationship showed that the module
‘lightcyan’ (r=0.75, p=4e-04) and ‘midnightblue’ (r=
0.97, p = 7e-12) were highly correlated with MS (Fig. 8b).
The module ‘lightcyan’ included 539 genes mainly con-
taining genes related to carbohydrate, amino acid and
lipid metabolism (Additional file 10: Table S4), while
1,174 genes mainly including genes encoding transcrip-
tion factors or correlated to signal transduction were
identified in the module ‘midnightblue’ (Additional file 11:
Table S5). For example, a protein NRT1/ PTR (TRINI-
TY_DN57038_c1_gl) in the module ‘lightcyan’ and a
Myb-related protein (TRINITY_DN82628 c0_gl) in the
module ‘midnightblue’ were differentially expressed.

These results were almost consistent with earlier hier-
archical clustering analysis.

To further understand the mechanism of MS, the GO
enrichment and KEGG pathway of unigenes in the two
modules were analyzed. The unigenes in “lightcyan” mod-
ule were mainly enriched in assembly of proteasome core
complex (GO:0080129), photorespiration (GO:0009853),
mitochondrial respiratory chain complex I (GO:0005747)
and NADH dehydrogenase (ubiquinone) activity
(GO:0008137) (Additional file 12: Figure S7), while the
highly enriched terms of the “midnightblue” module
were associated with regulation of transcription and
DNA-templated (GO:0006355), integral component of
membrane (GO:0016021) and sequence-specific DNA
binding transcription factor activity (GO:0003700)
(Additional file 13: Figure S8). As shown in Fig. S7,
the top 20 enriched terms of “lightcyan” module were
related to respiratory and energy production. The
most significantly entries in KEGG analysis of the
“lightcyan” and “midnightblue” module were oxidative
phosphorylation (ko00190) and plant hormone signal-
ing system, respectively (Additional file 14: Figure S9,
Additional file 15: Figure S10).

Validation of differentially expressed genes
To verify the RNA-seq data, qRT-PCR was conducted
on nine selected genes. According to the RNA-seq data,
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the selected genes were differentially expressed. As
shown in the Fig. 9, the transcript level of the genes
mentioned earlier was lower in the MS line, compared
with the maintainer line. For example, amino acid-related
methylenetetrahydrofolate reductase (TRINITY_DN21
153_c0_gl), fatty acid hydroxylase (TRINITY_DN50862_c
1 _gl), malate dehydrogenase (TRINITY DN21187 c0
_gl) and glucose-6-phosphate 1-dehydrogenase (TRINI-
TY_DN67079_c0_g2) were suppressed in the MS line,

while a gene related to posttranslation modification and
chaperones (TRINITY_DN34505_c0_g1) and a NAC tran-
scription factor (TRINITY_DN85424_c0_gl) were re-
duced in the maintainer line (Fig. 9). Most of these genes
were mentioned earlier. Likewise, two unrelated genes
(TRINITY_DN167798_c0_gl and TRINITY_DN150324
_c0_gl) were expressed at a lower and higher level in the
MS line, respectively (Fig. 9), which was consistent with
the transcriptome profile. Moreover, NRT1/ PTR (nitrate
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transporter/ peptide transporter) family was suppressed in
the MS line, such as TRINITY_DN57038_c1_gl in the
module ‘midnightblue’ (Fig. 8). The consistency between
RNA-seq data and qRT-PCR data manifested that the
RNA-seq is highly reliable.

Discussion

The genes involved in respiratory and energy production
are related to MS

The DEGs related to energy production and conversion
were clustered and expressed higher in the maintainer line
(Additional file 12: Figure S7). GO terms analysis showed
that a large number of DEGs enriched in “oxidative-reduc-
tion” of BP and “oxidoreductase activity, oxidizing metal
ions” of MF (Fig. 4). As a result, these drastically
down-regulated genes functioned in energy production
and conversion included NADH-related dehydrogenase
(TRINITY_DNB82756_c2_g5), ADP/ATP carrier protein
(TRINITY_DN101445_c0_gl) and oxidoreductase (TRI-
NITY_DN71824_c0_g2). These proteins are components
in the mitochondrial respiratory chain. It suggests that
mitochondrial respiratory related enzymes play a vital role
in the eggplant MS line. The result is consistent with a
previous study [41], in which the CMS related genes was
explored in MS line of welsh onion. As we know, MS of
many plants were associated with mitochondria, especially
the CMS. Several researches have reported that the genes
encoding mitochondrial respiratory chain enzymes and
enzyme complexes were important to CMS lines in other
plants [42, 43]. Therefore, our results are consistence with

previous studies indicating the reduction in mitochondrial
respiratory results in MS in eggplant.

The genes involved in carbohydrate metabolic pathways
are related to MS

The carbohydrate metabolism pathway is one of the
basic metabolic pathway during plant development. It
supplies energy and carbohydrates for plants growth
and development [44]. Glycosyltransferase (TRINI-
TY_DN105743_c0_gl) and glycosyl hydrolases (TRI-
NITY_DN56811_c0_g2) belonging to two types of
enzymes in the carbohydrate metabolism pathway
were down-regulated in the MS line in our study.
The genes encoding the two enzyme families have
been reported to be associated with cell-wall synthesis
and degradation [45-47]. SPG2, a GT43 glycosyltans-
ferase and UPEX1, a GT31 glycosyltransferase were
involved in the formation of pollen wall primexine
[48, 49]. These results suggest that glycosyltransferase
and glycosyl hydrolases play a specific role in pollen
development. In this study, we found the most
enriched terms were carbon, starch and sucrose me-
tabolism in KEGG analysis and the genes related to
carbohydrate transport were clustered together in
hierarchical clustering analysis, which were consistent
with the conclusions from other studies. Interestingly,
few of microspores were observed in our MS line.
Therefore, we speculate that the decrease in carbohy-
drate metabolism influences pollen formation, leading
to MS in eggplant.
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The genes involved in amino acid transport and
metabolic pathway are related to MS

Previously, it has been reported that glutamine in plant
amino acid metabolism plays a central role during pollen
development. The pollen population did not mature
with glutamine starvation [50—52]. Fang [53] found that
the expression of glutamine synthetase in the amino acid
synthesis pathway decreased in pepper CMS. In accord
with previous studies, one of the dramatically down-regu-
lated genes in the MS line encoded glutamine

synthetase (GS) (TRINITY_DN8287_c0_gl) in the
study, indicating that the MS may result from the
lack of glutamine synthetase. Another enzyme in-
volved in amino acid metabolism in this study was
NRT1/ PTR (nitrate transporter/ peptide transporter)
family (TRINITY_DN134037_c0_g2, TRINITY_DN668
82_c0_g2 and TRINITY_DN57038_cl_gl). Similarly,
the abundance of NRT/PTR proteins was observed to
decrease in Weichert’s [54] study. Researchers discov-
ered that AtPTR5 mediated peptide transport into
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pollen through mutation and overexpression [55].
Hence, we infer that the MS in eggplant may be gen-
erated from a suppressed expression of NRT/PTR or
other proteins that reduce transportation of peptides
to affect pollen development.

Transcription factors regulated the MS related genes

A large number of studies have established that TFs
regulate their targets by binding to the cis-elements in
the promoters through an interaction with protein part-
ners during plant growth and development and response
to environmental stimuli. In the MS line, the expression
of some TFs was also altered. 898 differentially expressed
TFs could be classified into 63 families including AP2/
ERF, MYB, NAC, WRKY, bHLH and MADS (Fig. 7).
Transcriptional regulation has been demonstrated to be
important for male fertility. A bHLH transcription factor,
DYT1 can activate the expression of two TFs- MYB35
and MSI, which influences the tapetum function and
pollen development [56]. With further investigation, it
was found that DYT1 directly regulates the expression of
TDFI1 (DEFECTIVE in TAPETAL DEVELOPMENT and
FUNCTION]I, a putative R2R3 MYB transcription factor)
[57], which in turn promotes the expression of AMS that
is a regulator of pollen wall formation [58]. AMS acts
upstream of MS188 that affects the expression of MSI
[58]. These results show that these transcription factors
form a genetic pathway in pollen development. Our
study has found more TFs than previous studies,

suggesting that it is a more complicated transcriptional
regulation network operative in pollen development in
eggplant. Some TFs belonging to the same family were
up-regulated and other were down-regulated, which
complies with a recent study of bud dormancy in grape-
vine [59] (Additional file 1: Table S1). The result demon-
strated that the members from a same TF family may
play different roles in pollen development, which may
constitute a more complex transcriptional regulatory
network.

Conclusions

In this study, a comparative transcriptome analysis
was conducted between the male sterile line EP26A
and its maintainer line EP26. In total, 19,652 DEGs
were obtained. 1,716 genes were shared among three
stages of pollen development. Hierarchical clustering,
GO, KEGG analysis of the DEGs showed that these
DEGs were mainly involved in oxidation-reduction,
carbohydrate and amino acid metabolism and tran-
scription regulations, which indicated that the genes
and pathways may be related to MS. WGCNA re-
vealed two modules significantly associated with MS.
Therefore, our study elucidated the key genes and
pathways related to MS of eggplant, which provided
a theoretical basis and foundation for further
research on fertility and anther development in

eggplant.
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Methods

Plant materials

In this study, a male sterile line EP26A and its main-
tainer line EP26 were employed. The maintainer line
was an advanced-generation inbred line. The male sterile
line was obtained from the continuously backcross of
male sterile plant in progenies F2 of interspecific hybrid
(Solanum aethiopicum x Solanum melongena) [60]. To
eliminate the background, flower buds at meiophase
(G1), lateuninucleate stage (G2) and binucleate stage
(G3) were collected respectively. The anthers were ex-
tracted from flower buds, frozen immediately in liquid
nitrogen and stored at — 80 °C. Every sample had three
biological replicates that were sequenced independently.

RNA extraction, library preparation, sequencing and
transcriptome assembly

Total RNA of each sample was extracted using TRIZOL
kit according the manufacture’s protocol. RNA qualifica-
tion was monitored on 1% agarose gels. The integrity and
purity of total RNA were checked using Qubit® RNA
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies,
CA, USA) and the NanoPhotometer® spectrophotometer
(IMPLEN, CA, USA), respectively. Sequencing libraries
were generated using NEBNext” Ultra”RNA Library Prep
Kit for Illumina® (NEB, USA) following manufacturer’s
recommendations and index codes were added to attri-
bute sequences to each sample. The Agilent Bioanalyzer
2100 system was applied to assess the library quality. The
library preparations were sequenced on an Illumina plat-
form and paired-end reads were generated, following the
clustering of the index-coded sample performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumina). Clean reads were obtained by re-
moving reads containing adapter, reads containing ploy-N
and low quality reads from raw data. Due to the relatively
poor assembly of eggplant genome, the self-assembly was
used in this study [61]. Transcriptome assembly was ac-
complished using Trinity v2.2.0 [62]. The IDs of unigenes
were automatically generated by the software subse-
quently. The read counts of unigenes were calculated by
the software RSEM v1.2.19.

Gene functional annotation

The function of all the unigenes were annotated based on
the protein databases, including NCBI non-redundant data-
base, Swiss-Prot, Cluster of Orthologous Groups (COG)
and KEGG database. DESeq2 was used to filter DEGs with
a fold change>2 and a threshold of false discovery rates
(FDR < 0.01). GO enrichment analysis of the DEGs was im-
plemented by the GO seq R packages based Wallenius
non-centreal hyper-genometric distribution. For pathway
enrichment analysis, KOBAS 2.0 (https://www.biostars.org/
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p/200126/) was employed and a threshold of FDR <0.05
was defined. For identification of the transcription factor
(TF), iTAK software was used to predict the TFs and
PInTFDB and PlantTFDB were used as the reference TF
database. Putative TFs in eggplant were identified using
BLASTx.

Weighted correlation network analysis of male sterile-
related genes

All the differentially expressed genes were used to build
a correlation network using the WGCNA R package
[63]. The adjacency matrix was generated by calculating
the Pearson’s correlations among all genes. The power
was chosen based on the scale-free topology criterion
[63]. The topological overlap measure (TOM) was calcu-
lated using the adjacency matrix. The dissimilarity TOM
was used to construct the dendrogram. The modules
were detected as branches of the dendrogram using the
dynamic tree-cut [64] and a cut-off height of 0.25 was
used to merge the branches to final modules. The mod-
ules were colored. The module eigengene (ME) value
was calculated and used to estimate the association of
modules with MS.

Validation of gene expression

To validate the RNA-Seq data, the transcript levels of se-
lected up- or down-regulated genes were confirmed by
quantitative reverse transcription-polymerase chain reac-
tion (QRT-PCR). Specific primers were designed in the web-
site (http://primer3.ut.ee/) (Additional file 16: Table S6).
RNA was reverse transcribed using the ReverTran Ace’
qPCR RT kit (Toyobo). qRT-PCR was performed on an
LightCycler 480 II (Roche, Switzerland) using the SYBR®
Green qPCR Master Mixes (Takara, Japan). The PCR con-
ditions consisted of denaturation at 95 °C for 30s, followed
by 40 cycles of denaturation at 95 °C for 5 s, anneal-
ing and extension at 60 °C for 30 s. Melt curve ana-
lysis was performed to determine the specificity of
reactions. The relative expression levels were calcu-
lated according to the AACt method. The eggplant
Actin gene (Sme2.5_01462.1_g00018.1) was used as
the internal control.

Additional files

Additional file 1: Table S1. The differentially expressed genes between
the MS line and its maintainer line. (XLSX 4983 kb)

Additional file 2: Table S2. The expression patterns of 1,716 shared
DEGs. (XLSX 461 kb)

Additional file 3: Figure S1. Analysis of GO enrichment for genes in
clusterl. (PPTX 67 kb)

Additional file 4: Figure S2. Analysis of GO enrichment for genes in
cluster4. (PPTX 66 kb)
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