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Abstract

the cork oak genome we developed a ChiP-Seq strategy.

suberin biosynthesis, transport and assembly.

transporters

Background: Gene activity is largely controlled by transcriptional regulation through the action of transcription factors
and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth,
and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across

Results: Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and
suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric
suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and

Conclusion: To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model
plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the
molecular mechanisms of cork formation and differentiation.
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Background

Regulation of gene activity at the transcriptional level is
the most common form of gene control. Regulation of
transcription generally occurs via changes in the amounts
and activities of transcription factors (TFs), which modu-
late the transcription of specific genes either activating or
repressing the rate of transcription [1]. TFs interact and
function in a combinatorial manner forming homo and
heterodimers, assembling on control elements of DNA
and recruiting cofactors [2, 3]. Cofactors in turn recruit
DNA and histone modifying enzymes modulating the
chromatin configuration state [1]. TFs also function in
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networks in which a protein may regulate the expression of
another to control directly or indirectly the expression of a
particular gene or group of genes in a temporal and spatial
fashion manner, allowing the unique expression of each
gene in different cell types and during development [1].

A distinct characteristic of TFs is that they present a spe-
cific DNA-binding domain, which confers them the ability
to bind to specific DNA regions and controlling target
genes. Chromatin immunoprecipitation (ChIP) followed by
high-throughput DNA sequencing (ChIP-Seq) is a method
widely used to identify the binding sites of a target protein
across a genome. In a ChIP assay, a TE, cofactor, or other
chromatin protein is enriched by immunoprecipitation
from cross-linked cells along with its associated DNA [4].
The resulted DNA is then sequenced and mapped against
the species genome in order to identify the binding sites of
protein of interest. This allows the subsequent identification
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of their gene targets, unravelling potential regulatory net-
works [4].

Plant TFs are characterized by a larger number of
genes and by the diversity of families. In Arabidopsis
there are around 2000 TFs genes belonging to approxi-
mately 30 different TF families [5]. Most plant TFs as
APETALA2/Ethylene Responsive element binding factor
(AP2/ERF), NAC, MADS box, basic helix-loop-helix
(bHLH), basic leucine zipper (bZIP) and myeloblastosis
(MYB) form large domain families playing important
roles in the control of plant growth and development
[1]. The MYB family constitute the most abundant
group of TFs in plants. In Arabidopsis, 198 MYB TFs
were identified, of which 126 belong to the R2R3-MYB
subfamily [6]. The evolution of R2R3-MYBs in plants
seems to be related with a specific expansion of the sub-
family giving rise to species-specific gene subgroups in
certain species [7]. This expansion is mainly attributed
to whole genome and segmental duplication as gene
sequence and phylogenetic tree analyses confirm [7].
They have been classified into 28 subgroups according
to the conserved amino acid sequence motifs present in
C-terminal MYB domain [3, 8].R2R3-MYB TFs are char-
acterized by their role in a variety of plant-specific
processes, such as cell shape and morphogenesis, cellular
proliferation and differentiation, hormone response,
abiotic and biotic stress, and regulation of primary and
secondary metabolism such as phenylpropanoid, lignin
and suberin metabolism [9, 10]. However analysis of the
promotor sequences in chinese pear demonstrated that
transcriptional regulation of the MYB genes is variable
among species [11].AtMYB41, for example, it is known
to be involved although indirectly in the regulation of
suberin biosynthesis, export, assembly and deposition in
plants under stress conditions [12], however it not
expressed in the poplar suberized tissue phellem [13]. It
was recently reported a relation between AtMYB107 and
AtMYB9 which synchronize the transcriptional induc-
tion of aliphatic and aromatic monomer biosynthesis as
well as suberin transport and polymerization in seed
outer integument layer [14]. Gou et al, [10] reported
AtMYBI107 as a positive regulator for seed coat suberin
synthesis, highlighting the important role of MYB TFs in
suberin synthesis regulation. In poplar at least 18 MYB
transcription factors were reported as up-regulated in
phellem with functions related with the suberin meta-
bolic pathways [13]. Among these, Arabidopsis homo-
logs of AtMYB107, AtMYB9 and AtMYB93 were found,
which have regulatory functions in the suberization
process [10, 14-16]. Also,homologs of AtMYB96,
AtMYB94, AtMYB106 and AtMYBI6 related with cuticle
metabolism [17-19], homologs of AtMYB3, AtMYB7,
AtMYB63 linked to phenylpropanoid metabolism [20,
21], an homolog of root AtMYB36 which is related with
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root casparian band formation [22], and AtMYB111 with
a regulatory function in the flavonoid metabolism were
identified [23].

Cork oak (Quercus suber L.) is an evergreen broadleaved
tree species native to the Mediterranean basin. It is a valu-
able economic resource due to the sustainable exploitation
of its thick bark, the cork [24, 25]. Cork or phellem is a
tissue derived from the meristematic activity of the phello-
gen characterized by a layered deposition of suberized
death cells [26]. The high content in suberin provides cork
with unique insulator and elastic properties that translates
into a large variety of industry applications. Despite the
importance of cork, the knowledge on the molecular
mechanisms on cork formation and development, are still
poorly understood.

Almeida and co-workers (2013) [27] have characterized
a R2R3-MYB gene previously identified as related with
cork formation and differentiation [28], which was named
QsMYBI. Authors showed that QsMYB1 is mainly active
in organs and tissues with secondary growth resulting
from the activity of phellogen [27]. Moreover, QsMYBI
transcripts are more abundant in cork, a highly suberized
tissue, than in wood, a lignified but non-suberized tissue.
The authors have also found several cis-acting regulatory
elements related to phenylpropanoid pathway in the
QsMYBI1 promotor region [29]. QsMYB1 expression was
also shown to be modulated in response to heat and
drought stress, which points to a function in the regula-
tory network of cork oak response to abiotic stress [29].
These findings led the authors to hypothesize that
QsMYB1 may be regulating one or more metabolic path-
ways involved in cork formation, namely the biosynthesis
of lignin and suberin which constitute the major biopoly-
mers present in cork.

The present work aims to validate these results, by de-
veloping a ChIP-Seq strategy to identify the QsMYB1
target genes. Results showed that QsMYB1 acts directly
on genes of the lignin and suberin metabolic pathways,
confirming the specific role of QsMYB1 in regulating
cork formation and development, a specific biological
process with great relevance in cork oak.

Results

QsMYB1::3xFLAG somatic embryo selection for ChIP-Seq
Stable modified cork oak somatic embryo cell lines over-
expressing QsMYBl:triple FLAG fused (QsMYB1::3x-
FLAG) protein were produced using Cel line, previously
generated (unpublished observation). Cel line, stable
and with a high rate of secondary embryogenesis, was
previously characterized for kanamycin resistance, allow-
ing the determination of the somatic embryo natural
resistance to grow under the presence of the antibiotic.
Concentrations over 25 mg/ml of kanamycin showed to
inhibit embryo proliferation setting kanamycin at this
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concentration as selective agent of putative transfor-
mants. After 30 days subcultures during 24 months,
MYB1:3xFLAG transcripts were detected in several
transformed embryo clusters by quantitative real time
PCR (RT-qPCR). When comparing with the expression
of QsMYBI in non-transformed embryos, MYBI1:3x-
FLAG transcripts presented a 4—12 fold change in the
level of expression (Fig. 1a). Furthermore, the specificity
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of the anti-FLAG antibody was validated by western blot
(Fig. 1b) and the MYB1:3xFLAG protein was detected
in the nucleus by fluorescence microscopy (Fig. 1c), con-
firming the nuclear location of the protein. Due to the
lack of known target DNA of QsMYB1 and consequent
impossibility to control the enrichment quality of
ChIPed DNA, we selected embryo clusters with fold
change expression of QsMYBI:3xFLAG higher than 6
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Fig. 1 MYB1:3xFLAG transcripts and protein detection. a — Western Blot of MYB1:3xFLAG proteins in tECL. Total proteins from non-transformed
ECL (ntECL) were used as negative control. b — MYB1:3xFLAG transcripts levels from six transformed embryogenic cell lines (tECL) clusters (52.1-52.6)
quantified by RT-gPCR and normalised against non-transformed embryogenic cell lines (ntECL)(81). Mean and standard errors of three independent
experiments are shown. ¢ — MYB1:3xFLAG protein nuclear detection by fluorescence microscopy in tECL. Nucleus magnification is shown for tECL and
ntECL. Bars =5 um
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(Fig. 1a) in order to have enough protein suitable to per-
form the ChIP-Seq assay.

QsMYB1 target genes identified by ChIP-Seq

In order to identify the DNA targets of QsMYB1, ChIP-Seq
was performed by immunoprecipitating QsMYB1 protein
and the cross-linked DNA after chromatin fragmentation
of ~ 300 bp (Additional file 1: A and B). DNA was purified
and further sequenced with the Illumina HiSeq 4000 sys-
tem producing ~ 70-90 million reads per sample of which
~ 123 million reads uniquely mapped to the cork oak draft
genome (Table 1). One ChIP (anti-FLAG) and one mock
(IgG) library were sequenced with one technical duplicate
each. After reads, filtering peaks were called with the
MACS?2 and selected for downstream analysis according to
the ENCODE ChIP-Seq guidelines (detailed description of
data analysis in Methods section). A total of 18,165 putative
binding sites were identified. It was firstly analysed whether
the peaks in the ChIP experiment were distributed by genic
regions. Based on these analyses, MYBI1 binding sites are
located in genic regions of 14,290 genes: 13.4% in promotor
regions, 8.1% in 5" untranslated regions (UTR), 19.2% in in-
tron regions, 25.5% in exon regions, 6.5% in 3’ UTR and
6.0% in the terminator regions (Fig. 2a). Intergenic regions
represent 18.4% of the total binding sites and 2.9% of the
binding sites were not annotated (unknown) (Fig. 2a). The
Peak-calling analysis identified several target genes reflect-
ing the binding of QsMYB1 to specific DNA loci. Between
these genes, QsMYB1 targets other TFs, genes encoding
for enzymes related with the lipid metabolism and trans-
port, as well as enzymes from the phenylpropanoid path-
way. Amongst these genes, several are related with various
aspects of cork formation, as suberin and lignin biosyn-
thesis or transport and deposition of suberin monomeric
units. In order to explore the regulatory functions of
QsMYBI in cork formation and differentiation we focused
the analysis in these genes, however QsMYB1 potentially
targets a vaster number of genes.

Binding motif analysis reveals QsMYB1 cis-regulatory
elements

To explore the MYB1 biding motifs environment, 1-kb
flanking sequences around all peaks summit were ana-
lysed by the motif discovery tool MEME-ChIP using the
DAP motifs [30] and PBM motifs [31] databases (Fig. 2b).

Table 1 Sequencing throughput and mapping results obtained
for ChIP and mock samples

Sample Raw reads Pre-processed UMR reads % UMR
ChiP_L1 75,987,297 72,855,787 28,558,358 37.58%
ChIP_L5 66,520,992 63,594,856 24,887,132 3741%
Mock_L1 93,072,373 89,005,882 37,335,088 40.11%
Mock_L5 80,189,676 76,512,503 32,053,662 39.97%
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Motifs CWHCAA (E-value = 3.5e-50), CYTCBTC (E-value
= 8.8¢-38) and BKTGG (E-value = 2.9e-30) were the most
statistically relevant. The BKTGG motif is presented in
12,308 peaks (67.9%), while the CWHCAA and the
CYTCBTC motifs were identified in 7926 (43.7%) and 2016
(11,1%) peak sequences, respectively. When the occurrence
of motifs by binding locations is individually analysed, it is
observed that some genic regions present more than one
identity motif. Nevertheless, each binding feature has a
similarity with the 3 global motifs identified (Fig. 2a).

QsMYB1 directly targets other transcriptional elements
To detect genes regulated by QsMYB1 gene, the QsMYB1
DNA-targets putatively encoding for TFs, transcription reg-
ulators and chromatin regulators the genes associated with
each peak were analysed with the PlantTFcat tool [32]. Re-
sults showed that 414 regulatory genes are targeted by
QsMYB1: TF (42%), transcription regulators (50.5%) and
chromatin regulators (7.5%) comprising different types of
regulators families (Fig. 3). From these families the most
representative putatively encodes for CCHC zinc finger
proteins (CCHC) (192), C2H2-type zinc fingers TFs
(C2H2) (43), WD40-like TFs (19), BED-type zinc finger
proteins (BED-type(Zn)) (13), AP2/ERF TFs (10) and
bHLH TFs (10) (Additional file 2).

Enzyme encoding genes targeted by QsMYB1

To identify the targets of QsMYBI1 directly related with
secondary growth and cork formation, all QsMYB1 puta-
tive target genes were submitted to the KEGG database
giving focus to the ones that present a fold enrichment
higher or equal to 3 (Additional file 3). With this ap-
proach, 16 genes encoding three distinct enzymes essential
to the phenylpropanoid pathway (Fig. 4) were identified,
namely 4-coumarate: CoA ligase (4CL - 6.2.1.12), cinna-
myl alcohol dehydrogenase (CAD - 1.1.1.195) and class III
plant peroxidase (PPO - 1.11.1.7). Also related with the
phenylpropanoid metabolism, the results show that
QsMYB1 putatively targets three distinct genes encoding
for B-galoctosidase (B-GAL - 3.2.1.21).

Diverse QsMYB1 target genes encoding for key
enzymes on the metabolism of lipids were identified,
namely enzymes related with fatty acid biosynthesis
(Fig. 5) as acetyl-CoA carboxylase (ACC - 6.4.1.2),
long-chain-fatty-acid-CoA ligase (LACS — 6.2.1.3) and
members of fatty acid synthase complex: enoyl-[acyl-car-
rier-protein] reductase (NADH) (FABI - 1.3.1.9) and
acyl-[acyl-carrier-protein] desaturase (ACP - 1.14.19.2).
Moreover, we found two Arabidopsis homolog genes of
B-ketoacyl-CoA synthase in our data. Related with fatty
acid oxidation (Fig. 6), the results revealed two genes en-
coding for a putative acyl-CoA oxidase (ACX — 1.3.3.6)
and two genes encoding for a aldehyde dehydrogenase
(NAD+) (ALDH - 1.2.1.3). Also, two distinct target
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genes related the w-hydroxylation of various fatty acids
and with high homology for the Arabidopsis Cyto-
chrome P450 (CYP) 86A8 (A:tCYP86AS8) and for the
Arabidopsis CYP 96A1 (AtCYP96A1) were found.

The results additional show several genes encoding for
enzymes involved in the glycerol metabolism (Fig. 7) as al-
dehyde dehydrogenase (NAD+) (ALDH - 1.2.1.3),
NADP-dependent alcohol dehydrogenase (ADH — 1.2.1.1),
NADPH-dependent aldehyde reductase (ADR — 1.1.1.21),
glycerol 3-phosphate acyltransferase (GPAT - 2.3.1.15),

1,2-diacyl-3-B-D-galactosyl-sn-glycerol acylhydrolase (DGL
— 3.1.1.26), triacylglycerol acylhydrolase (LIP - 3.1.1.3) and
diacylglycerol O-acyltransferase (DGAT - 2.3.1.20).

Several genes encoding for enzymes related with the
glycerophopspholipid metabolism (Fig. 8) were also
identified: glycerol-3-phosphate dehydrogenase (NAD
+) (GPDH - 1.1.1.8), glycerol-3-phosphate dehydro-
genase [NAD(P)+] (GPDH - 1.1.1.94), phospholipase
Al (PLA1-3.1.1.32) and the phosphoethanolamine N-
methyltransferase (NMT - 2.1.1.103).
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MYB1 target genes related with lipid transporters

Our ChIP-Seq data reveals that QsMYBL1 is targeting
several ATP-binding cassette proteins (ABC) or
ABC-like transporters. Of these, 26 present high
homology for the G family of ABC (ABCG) genes
(Additional file 4). Five of these genes have high simi-
larity with AtABCGI11I, six of them with AtABCG37
and six with the AtABCG40. In addition, we identified
five genes encoding for lipid-transfer proteins (LTPs)
(Additional file 5), three of them with similarity to
protease inhibitor/seed storage/LTPs and two of them
putative LTPs genes in Q. suber.

Relative expression of QsMYB1 targeted genes

The expression of five putative genes targeted by QsMYB1:
QsGPAT, Qsb-GLU, QsCAD, QsABCG11 and QsPOX were
evaluated by RT-qPCR on transformed embryos overex-
pressing QsMYB1 (tECL) and non-transformed embryos

(ntECL)(Fig. 9). Results shows relative increased expres-
sion when genes are targeted in 5UTR (QsGPAT,
QsABCGI1 and POX) and in the promotor region
(Qsp-GLU). In contrast, QsCAD which is targeted in an
exonic region exhibited a relative decreased expression in
embryos overexpressing QsMYB1::3xFLAG.

Discussion

Quercus suber MYB1 (QsMYBI1) is a TF that is mainly
expressed in organs and tissues with secondary growth
resulting from the activity of the phellogen [27]. This
points to a putative regulation of QsMYB1 in the lignin
and suberization processes and therefore possibly in
cork formation and differentiation. In fact, Arabidopsis
mutants generated by gene trap insertion in AtMYB6S,
the QsMYBI orthologue, produce increased biomass and
lignin levels relatively to wild type. In addition its closest
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Fig. 4 Enzymes target by QsMYB1 in the phenylpropanoid biosynthesis pathway (colored boxes). Numbers correspond to enzymes E.C. numbers

homolog, AtMYB84, exhibit an overlapping expression
suggesting a partly redundant function [33].

In order to identify the genes regulated by QsMYBI in
a genome-wide scale, a cork oak embryo model was
established, allowing protein overexpression, isolation
and easy access to genomic material. In this context,
genetic modified cork oak embryos overexpressing
QsMYBI1 were produced and used in a ChIP-Seq experi-
ment allowing for the identification of the QsMYB1 pu-
tative binding sites. Although this is a proxy model, as
embryos do not present neither the developmental stage
nor the secondary growth tissues where QsMYBI is nat-
urally up-regulated, it allowed for the identification of
several QsMYB1 target genes with specific and defined
DNA binding domains related with several aspects of
tissue lignification, suberization and consequently with
cork formation, which are further discussed. Further-
more QsMYB1 may not target all the binding sites as at
the secondary tissues where it has been found to be
expressed [27]. However, the overexpression system used
in this study, which forces the production of QsMYBI,
is an attempt to mimic the up-regulation and
DNA-binding status observed in other tissues or organs
[27]. The results showed that for five QsMYB1 gene tar-
gets analysed by RT-qPCR there is a pronounced gene

expression modulation in the embryos overexpressing
QsMYBI. These findings confirm that QsMYB1 regu-
lates its expression. Moreover, it was observed that, for
the tested genes, when QsMYBI targets a gene region
upstream of the coding sequence (e.g. 5’UTR and pro-
moter) the gene expression is up-regulated whereas
when the target region is an exon, the targeted gene ex-
pression is down-regulated (Fig. 9). Thus, QsMYB1
seems to have a dual opposite regulatory role either
up-regulating or down-regulating gene expression.

QsMYB1 targets phenylpropanoid pathway genes
regulating the biosynthesis of essential lignin and suberin
precursors

The results of our study clearly show that QsMYBI is
targeting genes coding for key enzymes responsible for
the biosynthesis of phenylpropanoids, which constitute
phenolic components of suberin and lignin polymers.
Members of the R2R3-MYB TF family are well known
for their regulatory function in diverse metabolisms as
the phenylpropanoid [34], lignin [35, 36], lipid [37] and
flavonoid metabolism [38] among others. Phenylpropa-
noids are phenolic derivatives which contain a phenyl
ring and a Cj side chain that comprise a multitude of
plant secondary metabolites and cell wall components as
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Fig. 5 Enzymes target by QsMYB1 in the fatty acid biosynthesis pathway (colored boxes). Numbers correspond to enzymes E.C. numbers

lignin and suberin [39, 40]. The Arabidopsis MYB41,
phylogenetically close to AtMYB68 (the Arabidopsis
homolog of QsMYBI), when overexpressed has an
up-regulatory effect on phenylpropanoid, lignin and su-
berin synthesis and related-genes expression [12]. Like
AtMYB41, our results indicate an involvement of
QsMYBI1 in the phenylpropanoid metabolism. QsMYB1
targets 4-coumarate:CoA ligase which is involved in the
conversion of ferrulic, caffeic and coumaric acids to
w-OH-alkyl-ferulates/n-alkyl ferulates, n-alkyl caffeates
and n-alkyl coumarates, that in turn are linked to fatty
alcohols to produce alkyl hydroxycinnamates, an essen-
tial constituent in suberin-associated waxes [41]. In
addition, QsMYBI targets cinnamyl alcohol dehydrogen-
ase and class III plant peroxidase, which together with
4-coumarate:CoA are involved in the biosynthesis of the
monomeric precursor of lignin p-hidroxy-cinnamyl alco-
hols, the so-called monolignols. Furthermore class III
plant peroxidases are also involved in polymerization of
suberin monomers in the apoplast [42]. A recent work
demonstrated that various genes for enzymes of the phe-
nylpropanoid pathway are up-regulated in the poplar
phellem tissue, namely 4-coumarate:CoA ligase and cin-
namyl alcohol dehydrogenase [13]. Together, the results
indicate an involvement of QsMYB1 in the synthesis of

phenolic compounds from the phenylpropanoid pathway
evidencing an earlier regulatory action in the synthesis
of essential lignin and suberin precursors.

QsMYB1 is targeting genes encoding enzymes
responsible for suberin biosynthesis

Suberin may be defined as a complex glycerol-based poly-
mer consisting of a polyaliphatic polyester linked with
phenolic components and embedded waxes [43—-45]. Be-
sides suberin composition vary between developmental
stages, tissue and plant species, in Q. suber depolymerisa-
tion of cork suberin include monoacylglycerols of
w-hydroxy acids and a,w-dicarboxilic acids, ferrulic acid
linked to w-hydroxi acids, trimeric diesters of glycerol
linked to o,w-dicarboxilic acids and w-hydroxi acids linked
to ferrulic acid and glycerol [46, 47]. Our results reveal
that QsMYBI is targeting genes that encode enzymes in-
volved in synthesis of the suberin polyester building
blocks; one QsLACS and two QsKCS predicted genes, con-
stituting evidence of genes associated with suberin mono-
mers synthesis in Q. suber. LACS catalyses the acyl
activation reaction of free fatty acids to fatty thiosteres
[48]. In poplar LACSI and LACS2 are up-regulated in
phellem [13]. In Arabidopsis LACS1 and LACS2 have
overlapping roles activating fatty acids in cutin and wax
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synthetic pathways. In addition, LACS?2 is involved in su-
berin formation besides the capability of LACS enzymes
may also act on modified fatty acids as w-hydroxy acids
and a,w-dicarboxilic acids before esterification to glycerol
[49]. In turn, B-ketoacyl-CoA synthase (KCS) is respon-
sible for controlling the extension of elongation of the
long-chain fatty acyl-CoAs [50]. In Arabidopsis, two
[-ketoacyl-CoA synthases, AtKCS2 and AtKCS20 are in-
volved in elongation of Cy acyl chain suberin precursors
[51, 52]. In potato, silencing of StKCS6 gene resulted in re-
duction of suberin monomers with chain lengths of Cyg
and higher in the tuber periderm indicating that StKCS6
is involved in elongation of suberin precursors to Cyg or
higher chain lengths [53].

Several CYP86 family members were identified in our
data, namely homologues of AtCYP86A1 and of
AtCYP86A8. CYP86A8 monooxigenase are capable of
o-hydroxylating saturated and unsaturated fatty acids
with chain lengths from C;, to Cig and is likely to be in-
volved in cutin biosynthesis [54]. Two major monomers
of the suberin polyester are w-hydroxy acids and a,w-di-
carboxylic acids, which in plants are formed by the
hydroxiliation of the terminal methyl group (w-position)
catalysed by enzymes of the CYP86 subfamily of cyto-
chrome P450 monooxygenases [55]. The Arabidopsis

CYP86A1 and CYP86B1 are involved in root suberin
synthesis [55-57]. Similarly, in potato, the StCYP86A33
orthologue of AtCYP86A1 is important for the produc-
tion of w-functionalized suberin monomers of the tuber
periderm resulting in significant reduction in 18:1
w-hydroxy acids and a,w-dicarboxilic acids when the
gene is silenced [58].

Our results reveal a QsGPAT homolog target by
QsMYB1 indicating a regulatory role of this TF in the pro-
duction of monoacylglycerols, which may be considered
as the initial step in the aliphatic suberin biosynthesis. In
poplar, several GPATs are up-regulated in phellem, namely
GPATS, GPAT6 and GPATS [13]. In Arabidopsis, GPAT4,
6 and 8 are bifunctional enzymes with sn-2 acyltransferase
and phosphatase activity, catalysing the formation of sun-2
monoacylglycerol products. GPATS5 in turn is involved in
the transfer of very long-chain aliphatics to a glycerol
based acceptor in Arabidopsis root and seed coat suberin
[59]. Arabidopsis mutants of GPATS show a large reduc-
tion in long-chain unsubstituted fatty acids, w-hydroxy
acids and o,w-dicarboxilic acids in root and seed coat
suberin with a total reduction of 50% in total suberin con-
tent [59]. In the case of GPAT7, the GPAT7 gene is in-
duced by wounding producing soluble suberin-like
precursors in overexpressing lines [60]. These results
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clearly indicate that QsMYBL is targeting genes encoding
for enzymes that are responsible for the production of ali-
phatic domain of suberin.

QsMYB1 targets putative transporters of suberin-lipid
components

By directly targeting genes coding for 4-coumarate:CoA,
cinnamyl alcohol dehydrogenase, LACSs, KCSs, GPATSs
amongst others, QsMYBL is likely to regulate the phenyl-
propanoid and the suberin biosynthesis pathways. In
addition, QsMYB1 may have a regulatory effect in the ex-
pression of suberin transporters.

The various suberin lipidic precursors are generically
transported from the endoplasmic reticulum where they
are synthesized to and across the plasma membrane, and
then polymerized in the apoplast to form the suberin
barrier [61]. We identified several members of the ABCG
gene family targeted by QsMYBI1, namely homologs of
AtABCGI11 and AtABCG6, which implicates directly
QsMYB1 in regulation of lipid transport and suberin

formation. Transport of aliphatic lipids across the plasma
membrane involves plasma membrane-localized trans-
porters of the ABCG family which consists of half-
transporters that oligomerise to form the functional trans-
porter [62]. Rains et al. [13], recently reported up-regulated
ABCG transporter genes in poplar phellem, namely homo-
logs of AtABCGI1 and AtABCG2. In Arabidopsis, the
ABCG transporter ABCG11 is implicated with cutin and
suberin biosynthesis [63—65] while ABCG12 and ABCG13
are involved in export of cuticular wax monomers [65, 66].
Because homo- and heterodimers of ABCG11 and
ABCG12 are reported as important for wax export and
ABCGI13 seems to be required for cutin deposition in
flowers [67], it is widely accepted that tissue-dependent
combinations of different half-size ABCG proteins involved
in the transport of wax, cutin and suberin components are
possible to occur [61]. Furthermore, ABCG11 can form di-
mers with ABCG9 and ABCG14 which links it to a func-
tion in lipid homeostasis regulation in vascular organs as
phloem [68]. Additionally, a recent study reported that
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half-size ABCG2, ABCG6 and ABCG20 are involved in the
formation of suberin layers in seed coats and roots where
abcg2/6/20 triple mutants had increased permeability, al-
tered suberin structure and reduce aliphatic components
[69]. Another type of proteins involved in lipid excretion
into the extracellular space are LTPs. Evidence of LTPs in-
volvement in cuticular wax, suberin and sporopollenin as-
sembly is increasing in recent literature [70, 71]. Our data
also identified five genes coding for LTPs reinforcing the in-
volvement of QsMYB1 in the regulation of genes involved
in lipid traffic across the cellular membrane and possibly in
suberin assembly and deposition.

Putative regulation of glycerolipids metabolism by
QsMYB1

Glycerolipids are fatty acid esters of glycerol. Fatty acids
are constituents of membrane lipids of every cell. The
first step in the novo synthesis of fatty acids is the carb-
oxylation of acetyl-CoA to malonyl-CoA by acetyl-CoA
carboxylase [72]. In Arabidopsis acetyl-CoA carboxylase
is required for very long chain fatty acid elongation [73].
Our data suggests that QsMYBL is regulating a homolog
gene of acetyl-CoA carboxylase, which indicates direct
regulation on a fundamental key step of fatty acid

synthesis and elongation pathways. The second enzyme
responsible for fatty acids biosynthesis is the fatty acid
synthase (FAS) which in plants is a type II FAS consist-
ing of a multienzyme complex of acyl carrier proteins
[72]. The results also revealed that at least 2 genes with
homology for Arabidopsis enoyl-[acyl-carrier-protein]
reductases (NADH) are QsMYB1 gene targets. One acy-
l-[acyl-carrier-protein] desaturase was also identified in
our data. This type of desaturases are responsible for
fatty acid modifications introducing cis-double ligation
in the acyl chain acyl-[acyl-carrier-protein] and ultim-
ately in the correspondent fatty acid [72]. Therefore,
QsMYB1 may regulate the production of unsaturated
fatty acids, which in turn is used as precursors for the
suberin monomeric units synthesis.

Suberin, in cork oak, presents monoacylglycerols, digly-
cerol diesteres and diacylglycerols in is chemical compos-
ition [40, 46]. The availability of glycerol-derived molecules
may constitute a critical limitation step in glycerol-derived
monomers synthesis of suberin [59]. In this study,
were identified two genes coding for aldehyde dehy-
drogenases which are responsible for the production
of D-glyceraldehyde, which in turn is converted to
glycerol by aldehyde reductase and alcohol dehydrogenase
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(both also identified in our data) to form glycerol in plants
[72]. These results indicate that QsMYBI is acting on
transcription regulation of genes involved in the synthesis
of glycerol. In addition, the results revealed that QsMYB1
is exerting its action on a gene encoding for diacylglycerol
O-acyltransferase which is responsible for the conversion
of diacylglycerols to triacylglycerols [74]. Interestingly,
QsMYBI also seems to act on the opposite conversion re-
action of triacylglycerols to the correspondent diacylglyc-
erols by targeting the homolog gene of a triacylglycerol
acylhydrolase. Triacylglycerol acylhydrolases are also de-
scribed to have the ability for catalysing the reaction of di-
acylglycerols to monoacylglycerols [75, 76]. This finding
may constitute an evidence for the transcription regula-
tion of diacylglycerols and monoacylglycerols synthesis in
Q. suber, however further studies have to be performed in
order to confirm this hypothesis.

QsMyb1 may be involved in abiotic stress responses

through the regulation of the glycerophospholid pathway
Glycerophospholipids are major components of cellular
membranes which are synthesized from glycerol-3-
phosphate and have functions as second messengers in
plant growth regulation and cellular response to environ-
mental change or stress [72]. Lipid membrane compos-
ition, remodelling and activation of a variety of

phospholipid-based pathways is a strategy developed by
plants to survive and adapt to osmotic stress [77].

Almeida et al. [29] reported a putative function of
QsMYBI in the regulatory network of cork oak response
to heat and drought stresses. Accordingly, we found that
QsMYBI is targeting a gene coding for phospholipase
Al, a sn-1-specific phospholipase that releases free fatty
acids from phospholipids and can act on the cellular
membrane galactolipids and triacylglycerols [78]. In Ara-
bidopsis, the DEFECTIVE IN ATHER DEHISCENCEI
(DADI) gene has been shown to code phospholipase Al
catalysing the initial step of jasmonic acid biosynthesis
[79]. The Arabidopsis phospholipase coded by the
At2g42690 gene, which is UV-B inducible, was also
reported as having properties that suggest a possible in-
volvement in the biosynthesis of jasmonic acid [80].
These studies point to involvement of phospholipases A
in hormonal response to stress and may indicate evi-
dence of a relation between QsMYBI1 and response to
stress mediated by hormones. Furthermore, our results
revealed that QsMYBI is targeting a phosphoethanola-
mine N-methyltransferase homolog gene of Arabidopsis
which catalyses key steps in choline biosynthesis, namely
the N-methylation of phosphoethanolamine [81]. Cho-
line is well reported as an important player in plant grow
and development [82]. Choline is also oxidized to
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glycinebetaine which is a strong osmoprotectant that
confers tolerance to salinity, drought and other stress
[83, 84]. In Arabidopsis, the silencing of phosphoethano-
lamine N-methyltransferase results in temperature-
sensitive male sterility and salt hypersensitivity, which
demonstrates that choline biosynthesis also contributes
to tolerance to environmental stress [85]. Our results
suggest an involvement of QsMYBI response to drought
stress specifically involving a key choline biosynthesis
enzyme supporting the hypothesis that QsMYB1 expres-
sion is modulated in response to heat and drought
stresses [29].

QsMYB1 targets other transcriptional elements expanding
its regulatory action

Three motifs ((CWHCAA], [CYTCBTC] and [BKTGG]
were identified as the principal motifs characteristic of
the QsMYB1-DNA binding. The [CWHCAA] and
[BKTGG] motifs present high homology with already
described R2R3-MYB binding site motifs [31], while
[CYTCBTC] has a similarity with zinc finger C2H2-type
motif of TF IIIA, which in Arabidopsis encodes a protein
required for transcription of 5S ribosomal RNA [86].
However, the presence of secondary motifs signatures is
a constant in the dataset. Secondary motifs result from
two events: two TFs binding to neighbouring sites, or
one TF binding to another TF that in turn binds to
DNA. Taking into account that members of the MYB
family are well known by acting as homo- or heterodi-
mers [87], the data suggest that QsMYB1 is either bind-
ing to DNA or to other TFs resulting in an extensive
and complex transcriptional regulation of genes. There-
fore, QsMYB1 may be involved in a complex regulatory
network targeting both transcriptional elements and a
group of specific genes with direct function in several
biological processes. We found that QsMYBI1 is target-
ing other transcription elements, which supports the
idea that QsMYBI1 directly regulates the expression of
genes and also exerts its effect through other TFs, tran-
scription regulators and chromatin regulators. Amongst
these, the more abundant gene targets of QsMYBI1 are
involved: in fine tuning transcription, translation and
posttranscriptional modifications as CCHC zinger finger
proteins (CCHC) family, which specifically interacts with
single-stranded DNA or RNA oligonucleotides [88] or
C2H2-type zinc fingers TFs (C2H2) which besides DNA
binding also provides protein-protein and RNA-protein
interactions [89] or BED-type zinc finger proteins, which
function as either transcription activators or repressors
by modifying local chromatin structure on binding to
GC-rich sequences [90, 91]; in regulation of cell division,
cell-fate determination, transmembranar signaling and
vesicle fusion as the WD40-like TFs; and in integrating
gene regulatory networks which controls the metabolic,
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hormonal and environmental signals in plant growth,
development and response to plant abiotic and biotic
stresses as the AP2/ERF TF [92, 93] and the bHLH TF
families [87].

Together with MYB, bHLH represents a large propor-
tion of the TFs in Arabidopsis both regulating multiple
biological process [94]. Members of the two families are
described by acting as homodimers or heterodimers con-
sisting of proteins from the same family or in complexes
with TFs from other families including the WD40-like
TFs previously referred [94]. In many cases, MYB/bHLH
complexes have been described and associated with the
developmental and metabolic plasticity present in plants
[94]. The regulation of pathways controlled by these two
types of TFs as well as the mechanism regulating their
activity is therefore linked, which is in line with our re-
sults. Thus, by forming heterodimers with other tran-
scriptional elements, QsMYB1 may trigger additional
regulatory mechanisms at chromatin, transcription and
post-transcriptional level.

Conclusions

This study has contributed to increase the knowledge
about the molecular mechanisms behind cork forma-
tion and differentiation. To address the role of
QsMYB1 we performed a genome-wide analysis of
the DNA targets of this TF using ChIP-Seq. QsMYB1
was shown to be involved in lignin and suberin bio-
synthesis and assembly, acting through a complex
regulatory network directly by targeting enzyme
genes, and indirectly by targeting genes encoding for
other transcriptional regulatory elements. The com-
plex QsMYBI1 regulatory mechanisms that we dis-
closed may represent an example of how Q. suber has
optimised its developmental regulatory systems during
evolution. Furthermore, we found QsMYB1 as a mas-
ter regulatory factor of cork formation and differenti-
ation since it acts on genes belonging to the lignin
and suberin biosynthetic pathways, the two main
components of cork. In addition, QsMYB1 has the
capability to modulate the process of lignin and su-
berin synthesis through the regulation of specific
genes of the phenylpropanoid pathway. Further stud-
ies are required to confirm and reveal the specific
role of the reported genes and to clarify the exact
function of QsMYBI1 in the process. Even so, the gen-
erated data is a starting point to an in-depth under-
standing of suberin biosynthesis and deposition. By
starting to unravel the biosynthetic pathways involved
in cork formation we provide important knowledge to
support the development of breeding programs based
e.g, on the design of cork metabolic engineering
strategies.
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Methods

Plant material and growth conditions

No specific permission was needed for the development
of this study. Quercus suber is protected in Portugal
against logging. Sample collections did not involve en-
dangered or other protected species.

A stable Q. suber somatic embryogenesis line, Cel,
was obtained by somatic embryogenesis induction from
adult tree leaves as described by Hernandéz et al. [95].

Trees were located at Cercal do Alentejo, Portugal,
growing in a montado ecosystem. Embryo clusters were
grown under long day conditions (16 h light per 8 h dark
cycle) at 25 °C on MSSH medium, containing Murashige
and Skoog (MS) micronutrients [96], Schenk and Hildeb-
randt (SH) macronutrients [97] and supplemented with
MS vitamins [96], 3% (w/v) sucrose and 1% (w/v) agar.

Quercus suber genetic modified cell lines

A binary vector for overexpression of QsMYBl:triple
FLAG epitope fusion protein was constructed using Gate-
way™ technology (Gateway® Recombination Cloning, Invi-
trogen, Lifetechnologies Corporation, CA, USA). QsMYB1
coding sequence (accession number JF970262) was ampli-
fied with primers MYBlns_attB1F and MYBlns_attB2R
(Additional file 6: Table S1) using attB1 and attB2 adapters
and recombined with the pDONR221 vector to generate a
QsMYB1 ENTRY vector (pENTRY_QsMYB1). Triple
FLAG epitope (3xFLAG) nucleotide sequence was gener-
ated by annealing the 3xFLAG_F_Olig and the 3xFLA-
G_R_Olig oligonucleotides (Additional file 6: Table S1) and
recombined with the pDONR221 vector in order to pro-
duce a 3xFLAG ENTRY vector (pENTRY_3xFLAG). A
PCR-fusion/Gateway procedure for gene fusion [98] was
applied to generate an overexpression pK7WG2,0 vector
carrying the QsMYBI1:3xFLAG fused coding sequence
(pK7MYB1::3xFLAG). A diagram of the procedure is
showed in (Additional file 6: Figure S1). The resulting bin-
ary vector was mobilized into A. tumefaciens AGL1 by tri-
parental mating [99] using E. coli MC1012 harbouring the
mobilizing plasmid pRK2013. After a 10 days sub-culture
period, embryos were transformed as described by Alvarez
and Ord4s (2007) [100].

RT-gPCR validation of QsMYB1::3xFLAG expression

Genetic transformed embryo clusters were grown by
repetitive embryogenesis in kanamycin selective
medium during 24 months with regular sub-culturing
every 30 days, to allow for transformed embryos se-
lection. After 24 months of embryo transformation,
aleatory independent embryo clusters were selected
for RT-qPCR analysis in order to screen the expres-
sion of the QsMYB1:3xFLAG transcript. Specific
primers qPCRQsMYBIF and SR(C) (Additional file 6:
Table S2) were used in the RT-qPCR experiments.
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One microgram of total RNA was used for ¢cDNA
synthesis using the QuantiTect Reverse Transcription
kit (Qiagen, Valencia, CA, USA), which includes an
additional genomic DNA elimination step and uses a
mix of oligo(dT) and random hexamer primers.
RT-qPCR experiments were carried out in a iCycler
iQ5 Instrument (Bio-Rad Laboratories, Hercules, CA,
USA) using the Sso Advanced Universal SYBR Green
Master mix (Bio-Rad Laboratories, Hercules, CA,
USA) in 96-well plates. Three replicates were per-
formed in reaction mixtures of 20 uL containing
10 pL of 2X Sso Advanced Universal SYBR Green
Master mix, 400 nM of each specific primer pair
(Forward/Reverse) and 1 pL of ¢cDNA with a dilution
of 1:100 as template. Normalization between samples
was performed using two reference genes: ACTIN
(ACT) and CLATHRIN ADAPTOR COMPLEXES
(CACs) shown to be constitutively expressed (data

not shown). Normalized relative quantities (NRQ)
ACt.goi

were calculated by NRQ:%

[1Eg
the amplification efficiency for each primer pair, f the
number of reference genes used to normalize the
data, goi the gene of interest, ref the reference gene
and ACt is the Ct of the sample with higher Ct
across samples minus the Ct value of the sample in
test [101].

where E is

RT-qPCR of QsMYB1 target genes

Three random transformed embryo clusters overexpressing
QsMYBI1:3xFLAG and three random non-transformed
embryo clusters were selected for assessment of the relative
expression of 5 QsMYB1 putative target genes: QsGPAT,
Qsp-GLU, QsCAD, QsABCG11 and QsPOX genes. Specific
primers for each gene (Additional file 7) were used in the
RT-qPCR experiments. RNA and cDNA were prepared as
for RT-qPCR validation of QsMYB1::3xFLAG expression.
RT-qPCR experiment were performed by the same de-
scribed conditions, using as reference genes ELONG-
ATION FACTOR 1la (EFl-a) and B-TUBILIN (B-TUB).
Normalized relative quantities (NRQ) were calculated as
described in the previous section.

Detection of QsMYB1::3xFLAG fused protein in Q. suber
embryos

Expression of full-length QsMYB1 protein fused with
3xFLAG tag was confirmed by Western Blot. Total pro-
tein content of genetic modified and non-genetic modi-
fied embryos was extracted using TCA-acetone method
[102]. Supernatants were collected, and total protein
concentrations quantified according to Lowry method
[103], using BSA as protein standard. Protein compo-
nents of cell lysates (25-40 pg protein) were separated
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on sodium dodecyl sulfate 10% polyacrylamide gel, and
then transferred onto polyvinylidene difluoride (PVDEF)
membranes (Amersham Biosciences, Buckinghamshire,
UK). PVDF membranes were blocked with 5% (w/v) of
non-fat dry milk at room temperature for 1 h, and incu-
bated overnight at 4 °C with a mouse monoclonal
ANTI-FLAG® M2 (Sigma-Aldrich, St Louis, MO) primary
antibody (1:2000). Bands were visualized by chemilumines-
cence using anti-mouse horseradish peroxidase-conjugated
secondary antibodies, and developed with ECL reagents
(Amersham Biosciences, Buckinghamshire, UK), according
to manufacturer’s instructions.

Immunodetection

Quercus suber embryos were fixed in a freshly prepared
solution of 4% paraformaldehyde in PBS (phosphate
buffered saline: 137 mM NaCl; 0.27 mM KCI; 1 mM
phosphate buffer, pH 7.4). The fixed embryos were sec-
tioned (10- to 20-pm-thick) under water using a vibra-
tome. The sections were kept at 4 °C in a 0.1% solution
of formaldehyde in PBS until further use. Subsequently,
sections were incubated with blocking solution (5% (w/
v) Bovine Serum Albumin (BSA) in 1x PBST — PBS sup-
plemented with 0.5% (v/v) Tween 20), and after washing
in 1xPBST were incubated with a mouse monoclonal
ANTI-FLAG® M2 (Sigma-Aldrich, St Louis, MO) pri-
mary antibody (1:200) supplemented with 1% BSA for
16 h at 4 °C. The primary antibody was detected with a
goat polyclonal secondary antibody to mouse - Alexa
Fluor® 488 IgG - H&L (ab150113, Abcam Cambridge,
UK) (1:200 dilution in PBST supplemented with 1%
BSA) for 1 h at 37 °C. Sections were mounted with
Vectashield mounting medium with DAPI (Vector La-
boratories, USA). Images were acquired on an epifluor-
escence microscope Axio Imager.Z1.

ChIP-Seq assay

ChIP-Seq assay of Q. suber embryos expressing
QsMYB1:3xFLAG was performed by cross-linking and
isolating chromatin embryos using the Abcam Plant
Chromatin Extraction Kit (ab156906, Abcam, Cam-
bridge, UK) protocol, with slight modifications to the
cross-linking procedure: starting with 3 g of fresh em-
bryos, 1 volume of Plant RNA Isolation Aid (Thermo
Fisher Scientific, Waltham, MA, USA) per unit mass of
embryo tissue (mL/mg) was added to 1% formaldehyde
solution and vacuum infiltration step was performed
during 20 min at 4 °C. Chromatin was sheared with a
Bioruptor® Plus (Diagenode): high intensity pulses, 5
rounds of 10 cycles, 30 s ON / 30 s OFF, with a sample
volume of 150 pL to generate ~ 300-bp average frag-
ment sizes, as determined by agarose gel and capillary
electrophoresis (Agilent 2100 Bioanalyzer) using the
High Sensitivity DNA ChIP kit (Agilent, 5067-4626).
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ChIP was performed followed by the protocol devel-
oped by Li and collaborators [104] using mouse mono-
clonal ANTI-FLAG® M2 antibody (Sigma-Aldrich, St
Louis, MO) and mouse IgG serum (Sigma-Aldrich, St
Louis, MO), generating ChIP and Mock samples, re-
spectively. Mock samples were generated in the same
experimental conditions, except the immunoprecipita-
tion step that was performed with IgG serum instead of
the ANTI-FLAG® M2 specific antibody. After reverse
cross-link and DNA purification, the precipitated DNA
was quantified and analysed by capillary electrophoresis
(Agilent 2100 Bioanalyzer) using the High Sensitivity
DNA ChIP kit (Agilent, 5067-4626).

Library preparation and lllumina sequencing

DNA from ChIP of 3xFLAG (ChIP) and from ChIP of
IgG serum (Mock) was used to produce sequencing li-
braries using the KAPA Hyper Prep Kit (KAPA Biosys-
tems, Wilmington, MA). A total of four single-end
libraries were prepared, one for each of the two repli-
cates of the ChIP experiment and two of the control
(Mock), and sequenced using the HiSeq 4000 system
(Ilumina, San Diego, CA), in two independent sequen-
cing lanes (L1 and L5), with a read length of 50 bp.

Sequencing data pre-processing and read mapping
FastQC [105] was used as the first data control tool to
check the quality of the sequencing reads. Raw reads
were preprocessed with Sickle [106] using 20 for the
quality threshold and 40 for the read length. Mapping of
the reads against a draft version of the cork oak genome
(Additional file 8) was performed with Bowtie2 [107]
and unique mapped reads were extracted using the map-
ping quality value of 255. Library complexity was mea-
sured by the non-redundant fraction (NRF) and PCR
Bottlenecking Coefficients (PBC). NRF was calculated as
described by Nakato and Shirahige [108] by setting the
threshold for non-redundant reads to 2. Non-redundant
reads were extracted using the output of MACS2 [109]
filterdup utility. PBC metrics were obtained using BED-
tools [110] genomecov. Phantompeakqualtools [4] was
applied for the cross-correlation analysis of the ChIP
and Mock libraries.

Peak calling and downstream processing

An irreproducible discovery rate (IDR) analysis was
employed to find the most consistent set of peaks across rep-
licates. Self-pseudoreplicates and pooled-pseudoreplicates
were also generated and peaks were called with Model Based
Analysis for ChIP-Seq data (MACS2) [109], using a g-value
<0.05, based on a Poisson distribution comparing the ChIP
and Mock sequenced samples. A maximum number of 8 du-
plicates tags were defined, as it seemed the appropriate value
for which the number of peaks reached a plateau phase using
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the fragment length estimated by Phantompeakqualtools
(Additional file 9). IDR v2.0.2 [111] was used to measure the
reproducibility of replicates ranking the peaks by their
p-value with an IDR threshold of 0.05. Peaks passing the
IDR threshold by comparing true replicates were selected
for downstream analysis according to the ENCODE
(Encyclopedia of DNA elements) ChIP-Seq guidelines [4].

Based on the structural annotation generated for
the genome draft (Additional file 8), custom python
scripts were created to assign a gene to each IDR
peak and its respective location regarding gene
boundaries. Promotor regions were defined to be up
to 2000 bp upstream of the beginning of each gene
and terminator regions were set to be up to 1000 bp
downstream of the end of each gene.

Analysis of targets related with transcriptional elements
Identification of target genes encoding for TFs, tran-
scription regulators and chromatin regulators were ana-
lyzed with the PlantTFcat tool [32] submitting the gene
sequences correspondent of each peak to the web plat-
form analysis.

Motif analysis

A motif discovery analysis was performed using
MEME-ChIP software [112]. MEME-ChIP analysis was
done with the gene models available for the cork oak
draft genome (Additional file 8) and selected based on
the location of detected peaks. Sequences with 250 bp
from both sides of peaks summits were retrieved and
these 501 bp sequences were given as input in
MEME-ChIP software to identify common motifs. Once
motifs were identified, the motifs comparison tool
TOMTOM [113] was used to compare with already
identified and annotated motifs as the Arabidopsis mo-
tifs detected in protein microarray (PBM) [31] or Arabi-
dopsis motifs identified by DNA affinity purification
sequencing (DAP-Seq) [30].

Metabolic pathway analysis

Genomic sequences with 500 bp from both sides of peak
summits were checked against the NCBI non-redundant
protein (Nr) database, annotated with gene ontology
plant-terms, enriched and refined using ANNEX func-
tion and used for metabolic pathway analysis using
through the Blast2GO software [114]. Metabolic path-
way analysis was then performed using the Blast2GO
interface to access Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database [115]. Pathway maps were
downloaded and inspected manually focusing in the
identified enzymes of pathways related with suberin and
lignin metabolism, namely phenylpropanoid biosyn-
thesis, fatty acid biosynthesis and degradation, glyceroli-
pid metabolism and glycerophospholipid metabolism.
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Additional file 4: ABCG peaks. Detected peaks and annotation related
with ABCG genes. (XLSX 11 kb)
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with LTPs genes. (XLSX 40 kb)

Additional file 6: Gene construction strategy and primers. Figure S1.
Gene construction strategy used for QsMYB:triple FLAG epitope fusion
protein production. Table S1. Primers used to generate the overexpression
destination vector pK7MYB1:3xFLAG. Table S2. Primers used to confirm the
integration of the foreign DNA delivered by the destination vector plasmid
and to quantify the QsMYB1:3xFLAG transcript by RT-gPCR. (DOCX 101 kb)

Additional file 7: List of primers used in RT-gPCR experiments of
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rate (IDR) analysis. (DOCX 40 kb)
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