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Abstract

Background: The objective of this research was to map quantitative trait loci (QTLs) of multiple traits of breeding
importance in pea (Pisum sativum L.). Three recombinant inbred line (RIL) populations, PR-02 (Orb x CDC Striker),
PR-07 (Carerra x CDC Striker) and PR-15 (1-2347-144 x CDC Meadow) were phenotyped for agronomic and seed
quality traits under field conditions over multiple environments in Saskatchewan, Canada. The mapping populations
were genotyped using genotyping-by-sequencing (GBS) method for simultaneous single nucleotide polymorphism
(SNP) discovery and construction of high-density linkage maps.

Results: After filtering for read depth, segregation distortion, and missing values, 2234, 3389 and 3541 single
nucleotide polymorphism (SNP) markers identified by GBS in PR-02, PR-07 and PR-15, respectively, were used for
construction of genetic linkage maps. Genetic linkage groups were assigned by anchoring to SNP markers
previously positioned on these linkage maps. PR-02, PR-07 and PR-15 genetic maps represented 527, 675 and 609
non-redundant loci, and cover map distances of 951.9, 1008.8 and 914.2 cM, respectively. Based on phenotyping of
the three mapping populations in multiple environments, 375 QTLs were identified for important traits including
days to flowering, days to maturity, lodging resistance, Mycosphaerella blight resistance, seed weight, grain yield,
acid and neutral detergent fiber concentration, seed starch concentration, seed shape, seed dimpling, and
concentration of seed iron, selenium and zinc. Of all the QTLs identified, the most significant in terms of explained
percentage of maximum phenotypic variance (PV,,) and occurrence in multiple environments were the QTLs for
days to flowering (PVax =47.9%), plant height (PV.x = 65.1%), lodging resistance (PVyax = 35.3%), grain yield
(PVimax = 54.2%), seed iron concentration (PV.x = 27.4%), and seed zinc concentration (PV . = 43.2%).

Conclusion: We have identified highly significant and reproducible QTLs for several agronomic and seed quality
traits of breeding importance in pea. The QTLs identified will be the basis for fine mapping candidate genes, while
some of the markers linked to the highly significant QTLs are useful for immediate breeding applications.
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Background

Pea (Pisum sativum L.) is one of the most widely grown
pulse crops in the world, along with common bean and
chickpea. Pea seeds are highly nutritious as they contain
approximately 25% protein, slowly digestible carbohy-
drates, and a rich array of vitamins, minerals, and phyto-
chemicals [1]. Key pea breeding objectives include
increasing resistance to biotic and abiotic stresses, as
well as increasing grain vyield, lodging resistance, and
seed mineral concentration [2]. Breeding progress over
the past two decades has led to improvement in grain
yield in the order of 2% per year, as well as improve-
ments in lodging resistance, biotic stress tolerance, seed
protein concentration, and improved plant architecture,
in particular with the wide adoption of the afila gene for
the semileafless trait (reviewed by [3]).

Molecular markers including single nucleotide poly-
morphisms (SNPs), simple sequence repeats (SSRs) and
other markers have been used to study the genetic
variation within Pisum. These markers were useful for
the construction of linkage maps to provide frameworks
for identification of quantitative trait loci (QTLs) and
trait-linked markers related to many important traits in-
cluding resistance to diseases such as powdery mildew,
Fusarium wilt, Ascochyta blight and rust, lodging resist-
ance, time to flowering, seed mineral and protein con-
centration (reviewed by [2-5]), and validation of some of
the identified QTLs (eg. [6]). However, the QTLs identi-
fied using these markers had large confidence intervals
due to low resolution genetic maps and uneven distribu-
tion of markers. Therefore, development of high density
genetic linkage maps is important for QTL identification
and marker-assisted breeding.

SNP markers have a wide occurrence across the
genome, thus are an ideal choice for construction of
high density linkage maps and identification of markers
closely linked to traits [7]. With the use of next gener-
ation sequencing, many SNPs have been detected in
many different crops, and these SNPs are useful to
discriminate between closely related individuals, fine
mapping of QTLs, characterization of genes contributing
to quantitatively inherited traits, and to distinguish
between closely related QTLs of different traits [8, 9]. In
pea, 20,008 and 248,617 SNPs have been identified by
genome wide transcriptome sequencing [10] and DNA
sequencing [2] of diversity panels, respectively. These
SNPs have been used to develop 1536 [10] and 13,200
[2] SNP arrays, and to generate linkage maps and associ-
ation mapping analyses in different pea populations.
Some of these maps have been combined to build
consensus maps to increase mapping resolution and
genome coverage [10-12]. Genotyping-by-sequencing
(GBS) method allows simultaneous SNP discovery and
genotyping of populations [13]. In the last few years,
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GBS has been used for SNP identification, generation of
high-density linkage maps, and fine mapping of QTLs
for various traits in a diverse range of crops [14-16],
including mapping of Ascochyta blight resistance [17]
and components of heat stress resistance [18] in pea.
Recently, Boutet et al. [19] identified 419,024 SNPs using
HiSeq whole genome sequencing of four pea lines. A
subset of 64,263 markers were genotyped in a subpopu-
lation of 48 RILs of a mapping population using GBS
and a genetic linkage map was constructed [19]. The
currently available sequencing and genotyping technolo-
gies can be used to accelerate breeding for key traits by
exploiting the diversity of pea germplasm, identification
of trait-linked markers, and their use in marker-assisted
selection (MAS).

Bi-parental mapping populations are useful for high
precision mapping of various traits [20], and the markers
thus identified have been used for MAS. Determining
marker-phenotype association for complex traits is a dif-
ficult task because of the number of underlying QTLs,
QTL x Environment interaction, and epistasis [21].
Therefore, multi-location, multi-year replicated field tri-
als are required to characterize QTLs associated with
complex traits. QTLs responsible for the genetic control
of various biotic stresses, seed protein content, lodging
resistance, and seed nutrition in pea have been reported
[2, 6, 22]. The current study was designed to identify
QTLs for Mycosphaerella blight resistance, lodging re-
sistance, agronomic traits, seed mineral concentration,
fibre concentration, and grain yield using three
bi-parental populations of pea, repeated phenotyping at
two different field locations, and high density genetic
linkage mapping by GBS, for MAS in pea breeding.

Methods

Plant materials

Three recombinant inbred populations (RILs) of pea,
namely, PR-02 derived from the cross Orb/CDC Striker,
PR-07 derived from the cross Carrera/CDC Striker, and
PR-15 derived from the cross 1-2347-144/CDC
Meadow, each consisting of 94 individuals were used for
phenotyping and genotyping. Cultivar Orb was devel-
oped by Sharpes (UK), cultivar Carrera was developed
by Limagrain (The Netherlands), cultivar CDC Striker
[23], cultivar CDC Meadow [24], and breeding line
1-2347-144 [25] were developed by the Crop Devel-
opment Centre, University of Saskatchewan, Canada.
All the RIL populations were developed at the Crop
Development Centre, University of Saskatchewan
using single seed descent to the F5 generation. A
single seed of each RIL at Fy generation was used for
genotyping, and PR-02 and PR-07 RILs of Fg to Fg
generations, and PR-15 RILs of F, and Fg generations,
were used for phenotyping.
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Genotyping-by-sequencing (GBS)
RIL populations were genotyped using GBS according to
the protocol described in detail by Elshire et al. [13].

Library preparation and sequencing

Young leaf tissue harvested and freeze dried from ~
14-day old seedlings was used for DNA extraction using
the QIAGEN DNeasy 96 plant kit. DNA was quantified
using picogreen and DNA concentration of each RIL
was normalized to 20 ng/pl. Two hundred ng of DNA of
each individual was digested with restriction enzymes
Pstl and Mspl, and ligated with unique 4-8 sequence
barcode adapters. From the 40 pL individual ligation
reaction mixture, five uL of adapter ligated DNA of 47
RILs and 15 uL of adapter ligated DNA of each parent
were pooled separately in a single tube to produce
49-plex libraries. The pooled DNA was PCR-amplified
using sequencing primer followed by purification using a
QIAGEN PCR purification kit. The purified DNA library
was quantified using a Bioanalyzer (Agilent Technologies)
and GBS 49-plex libraries were sequenced on a single lane
of Mlumina HiSeq™ 2500 platform (Illumina® Inc., San
Diego, CA, USA) using V4 sequencing chemistry at
SickKids Hospital, Toronto, Canada.

SNP variant calling

From the Illumina data of each library, sequences were
assigned to individual samples based on the 4 to 8 base
pair barcode adapters ligated to individual DNA using
in-house Perl scripts. Following deconvolution, barcode
sequences were removed from the sequences, and the
reads were trimmed for quality using the read trimming
tool Trimmomatic-0.33. To discover polymorphisms, fil-
tered reads were mapped to the draft genome assembly
provided through the international pea genome sequen-
cing consortium (unpublished) using the sequence align-
ment tool Bowtie 2 version 2.2.5. Samtools-1.1 and
BCFtools-1.1 were utilized to call variants and output
them in variant call format (VCF) format.

Construction of genetic linkage maps

Polymorphic SNP markers from the previously pub-
lished linkage maps of the three RIL populations (Sindhu
et al, 2014) were included in the linkage analysis along
with the polymorphic markers identified by GBS in the
current study. Polymorphic markers with less than 15%
of missing data per sample were used to construct the
genetic linkage maps. The segregation distortion of each
marker was assessed by Chi-square test and markers
with a distortion probability of greater than 90% were
omitted from the linkage analysis. The linkage analysis
was conducted using MstMap program with a logarithm
of odds (LOD) value of 9.0 and Kosambi mapping func-
tion [26, 27].
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Phenotyping of mapping populations

PR-02 and PR-07 were phenotyped in two location field
trials over three years, and PR-15 was phenotyped in
two location field trials over two years, from 2010 to
2013 (Additional files 1, 2 and 3). The mapping popula-
tions were evaluated for agronomic traits plant height,
days to flower, days to maturity and lodging (1-9 rating
scale, 1 =no lodging to 9 = completely lodged at physio-
logical maturity), grain yield and 1000 seed weight ac-
cording to methods reported in Warkentin et al. [3].
PR-02 and PR-07 were evaluated for seed mineral con-
centration (Fe, Zn and Se) according to methods re-
ported in Diapari et al. [28]. PR-07 was evaluated for
acid detergent fiber, neutral detergent fiber, and starch
concentration according to methods reported in Arga-
nosa et al. [29]. PR-15 was evaluated for seed phytate
concentration according to the methods reported in
Warkentin et al. [25]. PR-02 and PR-07 were evaluated
for Mycosphaerella blight severity on a 0-9 rating scale
(0=no disease to 9=completely blighted) from
mid-flowering to physiological maturity stages according
to Jha et al. [30], and the area and under disease pro-
gress curve (AUDPC) was calculated. Seed shape (1=
completely round to 5 = blocky) and seed dimpling (per-
cent of seeds with dimpled seed coat) were evaluated ac-
cording to the methods reported in Ubayasena et al
[31].

The two locations used for field trials were Sutherland
(near the city of Saskatoon) (52°12" N, 106°63" W; Dark
Brown Chernozem) and Rosthern (52°66’ N, 106°33" W/;
Orthic Black Chernozem) in Saskatchewan, Canada. At
each location, the RILs were planted in three row plots
with 30 cm row spacing, 1 m row length, at a seeding
rate of 75 seeds per plot in a randomized complete block
design, which was fully replicated two times. Agronomic
best management practices as per provincial government
and pulse grower manuals for field pea production in
Saskatchewan were utilized including appropriate seed-
ing dates, seeding methods, weed control, and harvest
methods. The frequency distribution of the trait mea-
surements in each population were tested for normality
by the Shapiro-Wilk test [32]. In case the W value was
low, the trait was removed from further analysis. ANOVA
was conducted for each trait in each location using SAS
Mixed Procedure (SAS Institute, 2015). Pearson correl-
ation coefficient values were calculated to determine the
correlation of traits measured in each population.

QTL mapping

The phenotypic means by location for each trait were
used for QTL mapping. QTL mapping was performed
using composite interval mapping (CIM) using QTL
Cartographer v2.5 [33]. To declare a QTL, the threshold
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for each search was obtained from 1000 permutations
with a significance level of 0.05.

Results

Genotyping-by-sequencing (GBS)

In all of the sequencing runs of 49-plex libraries
approximately 225 million raw reads per lane were
obtained from sequencing on Illumina HiSeq™ 2500
platform. Across the three populations, the average read
count obtained per RIL was 3.9-4.6 million and 84% of
the reads survived after trimming for quality. The
trimmed reads were mapped to the reference genome
and the number of mapped reads per RIL in PR-02,
PR-07 and PR-15 were 3.24, 242 and 2.48 million,
respectively (Table 1).

Genetic linkage mapping

Of the >25,000 SNPs identified by GBS in each RIL
population, after filtering for read depth of 5, percent-
age of missing values as less than 15%, Chi-square
value of >0.1 probability for segregation distortion,
2066, 3023, and 3444 SNPs were used to construct
genetic linkage maps of PR-02, PR-07 and PR-15, respect-
ively. A total of 306, 366, and 337 SNP markers earlier ge-
notyped using Illumina GoldenGate array in the same
three populations (Sindhu et al. 2014) were added to the
GBS data set for linkage map construction.

In PR-02, 1866 SNP markers (1560 from GBS and 306
from GoldenGate assay) formed 14 linkage groups with
a map length of 951.9 centiMorgans (cM). The length of
individual linkage groups ranged from 4.0 to 149.2 cM.
The total number of non-redundant loci represented by
the mapped SNPs are 527 with 4 to 87 loci per linkage
group. The SNP markers identified through GBS repre-
sented an additional 329 loci compared to the 198 loci
represented by the SNP markers identified using the
GoldenGate assay (Sindhu et al. 2014). The average dis-
tance between two loci is 1.81 ¢cM and the maximum
distance is 19.3 cM (Fig. 1).

The PR-07 linkage map has 3355 SNP markers (2990
from GBS and 365 from the GoldenGate assay) in 15
linkage groups. These markers together represented a
total map distance of 1008.8 ¢cM with a minimum of
71 ¢cM and a maximum of 207.0 cM distance per
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linkage group. A total of 675 non-redundant loci were
mapped with a minimum of 10 and maximum of 128
non-redundant loci per linkage group. The SNPs identi-
fied through GBS represented 459 non-redundant loci in
addition to the 216 loci mapped from previous reported
SNPs (Fig. 2).

The PR-15 linkage map has 3408 SNPs (3077 SNPs
from the current GBS and 337 from the GoldenGate
assay) grouped into 12 linkage groups. The total map
length is 914.2 cM with individual linkage groups ranging
from 20.0 cM to 153.1 cM. The map represented 609
non-redundant loci with a minimum of 16 and maximum
of 94 per linkage group. Of the total non-redundant loci
mapped, 417 are represented by the SNPs identified by
GBS and 192 have a representation of earlier genotyped
SNPs. The average distance between the non-redundant
loci across the linkage groups is 1.5 ¢cM (Fig. 3).

Phenotypic data

Phenotypic data collected for PR-02, PR-07, and PR-15
are summarized in Additional files 1, 2, and 3, respect-
ively. Data for all traits were tested for normality using
the Shapiro-Wilk test. In the vast majority of cases the
W value was >0.90. In cases in which the W value was
low, the traits were removed from further analysis.

All three populations were assessed for days to flower-
ing. In the case of PR-02 and PR-15, RILs flowered
within a relatively narrow range, while this range was
generally greater, approximately one week, for PR-07 de-
pending on the station/year. The range in days to matur-
ity was wider for all three RIL populations, generally
from one to two weeks. Substantial variation was noted
in all three RIL populations for plant height and lodging
score, with greatest variation in PR-07 for both traits.
Similarly for grain yield, substantial variation was noted
in all three RIL populations, with somewhat greater
range in variation noted in PR-07 and PR-15. Mean yield
ranged from 195 to 516 g m™ 2 in PR-02, 266536 g m™ >
in PR-07, and 307-858 g m™? in PR-15. Mean commer-
cial yield of field pea in western Canada is approximately
270 g m 2, indicating that the three RIL populations
have good yield potential, and that the field trials re-
ported here were conducted under conditions favourable
for expression of yield potential. The Mycosphaerella

Table 1 Summary of average read count from sequencing of three mapping populations (49-plex libraries) using genotyping-by-

sequencing method

RIL Population

Average number of reads/RIL (millions)

Read count Reads surviving No. of unique reads Total No. of reads mapped
after trimming to draft genome
PR-2 (Orb x CDC Striker) 46 402 1.15 (28.7%) 3.24 (80.8%)
PR-7 (Carerra x CDC Striker) 40 3.15 1.08 (34.3%) 242 (76.8%)
PR-15 (1-2347-144 x CDC Meadow) 39 3.19 1.19 (37.3%) 248 (77.8%)
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Fig. 1 Linkage map of PR-02 (Orb x CDC striker) with 527 non-redundant loci each represented by a group of co-segregating markers. The loci
represented by markers in red were reported earlier by Sindhu et al. (2014) and the loci represented by markers in black were added from the
current GBS genotyping of the same population

blight resistance, reported as AUDPC ranged from 156
to 208 in PR-07 RILs measured at all six station/years.

Several post-harvest seed quality traits were assessed
in some of the RIL populations. Substantial variation
was noted in 1000 seed weight, as well as protein,
iron, zinc, and selenium concentration in PR-02 and
PR-07. In the case of seed selenium concentration,
the range in variation among RILs in PR-02 and
PR-07 was greater at the Sutherland (Saskatoon) site
than at the Rosthern site in each year. Peas grown in
the Saskatoon region are known to have generally
greater selenium concentration than peas grown in
the Rosthern region [34], and that was also observed
in this research. Acid detergent fiber, neutral deter-
gent fiber, and starch concentrations of PR-07 lines
varied significantly at each station/year assessed, as
did seed coat dimpling and seed shape. PR-15 was
developed from the cross between a low phytate and
a normal phytate parent, and as expected, lines dif-
fered significantly for this trait at each station/year
assessed.

Correlation analyses in the three RIL populations were
presented in Additional files 4, 5, and 6. In PR-02 and
PR-07, the strongest correlation was between days to
flowering and days to maturity, followed by correlation
between days to maturity and yield in PR-02, and Myco-
sphaerella blight severity and lodging in PR-07. In
PR-15, the strongest correlation observed was between
plant height and yield, followed by plant height and days
to maturity, days to maturity and yield, and days to
flowering and lodging resistance.

QTL detection in pea mapping populations

Across the three pea mapping populations, a total of 375
QTLs, i.e., 96 in PR-02, 225 in PR-07, and 54 in PR-15,
were identified for multiple traits in multiple environ-
ments. The identified QTLs had a maximum LOD value
of 23.8 and explained phenotypic variation of up to
62.9% in case of QTLs identified for plant height in
PR-07. Of all the identified QTLs, 292 trait specific
QTLs were detected on the same linkage group in more
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than one environment within the same population
(Tables 2, 3 and 4).

QTLs for agronomic traits

QTLs for days to flowering Of the multiple QTLs
identified for DTF, QTLs on LG5a and LG6 in PR-02,
LG1la and LG3b in PR-07, LG3a and LG5 in PR-15 were
identified in multiple trials (Tables 2, 3 and 4). Com-
pared between the three populations and environments
tested, the QTL on LG6 in PR-02 was significant in five
of the six trials. In all the five trials, the QTL position
shared a common position on the same linkage group.
The LOD values of this QTL on LG6 ranged from 5.3—
19.0 and explained a phenotypic variance of 17.9 to
47.9% (Table 5).

QTLs for days to maturity QTLs for DTM positioned
on LG3b and LG6 of PR-02 (Table 2), LGla and LG3b
of PR-07 (Table 3), and LG3a and LG5 of PR-15 (Table 4)

were identified in repeated trials. QTLs on LG6 in PR-02
and LG3a in PR-15 shared a common position within
these two respective linkage groups. In PR-02, the QTLs
on LG6 represented a maximum LOD value of 8.4 and
explained 33.4% of phenotypic variance. In the same
population, the QTLs on LG3b represented a maximum
LOD value of 7.7 and explained a phenotypic variance of
up to 24.9% (Table 5). The maximum LOD value of the
QTLs identified in PR-07 and PR-15 was 4.4 and 6.6 and
these QTLs explained a phenotypic variance of 11.8 and
15.2%, respectively (Tables 3 and 4). These QTLs located
on LGla in PR-07 and LG5 of PR-15 (Table 7) shared
the same linkage group positions with the most signifi-
cant QTLs identified for DTF.

QTLs for plant height Multiple QTLs were identified
for plant height in all three mapping populations.
However, the QTLs of LG3b in PR-02 and PR-07, and
LG3a in PR-15 were identified in all of the trials
(Tables 2, 3 and 4). These QTLs also shared linkage
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Fig. 3 Linkage map of PR-15 (1-2347-144 x CDC Meadow) with 609 non-redundant loci each represented by a group of co-segregating markers.
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group positions between most of the trials in each
population, and represented a maximum LOD value
of 16.7, 23.8 and 13.0, and explained a phenotypic
variance of 41.5, 62.9 and 27.4, in PR-02, PR-07 and
PR-15, respectively (Tables 5, 6 and 7).

QTLs for Mycosphaerella blight resistance Myco-
sphaerella blight resistance was measured at four growth
stages of PR-07 using a 0-9 rating scale and the scored
values were used to calculate AUDPC. Of the QTLs iden-
tified on six linkage groups in six trials, the QTLs on
LG3b were identified in four of the six trials (Table 3).
These QTLs on LG3b shared overlapping linkage group
positions in three trials, and the QTL representing this
overlapping region had the maximum LOD of 8.9 and ex-
plained 26.3% of the phenotypic variance (Table 6).

QTLs for lodging resistance All three mapping popula-
tions were evaluated for lodging resistance and signifi-
cant QTLs were identified in all populations on linkage

groups associated with chromosome 3. In all the popula-
tions, lodging scores measured at pod filling stage were
used for QTL analysis. In PR-02, QTLs were identified
on LG3b in two of the five trials (Table 2). In PR-07,
QTLs on LG3b were identified in five of the six trials
(Table 3). In PR-15, QTLs were identified on LG3a in
two of the four trials while four other QTLs were lo-
cated on different linkage groups in individual trials
(Table 4). The major QTLs for lodging resistance identi-
fied on Chromosome 3 had a maximum LOD value of
8.8, 13.2 and 9.2 in PR-02, PR-07 and PR-15 populations,
respectively, and these QTLs explained a phenotypic
variance of up to 35.3% in PR-07 (Tables 2, 6 and 7).

QTLs for grain yield Based on six trials, multiple QTLs
were identified for grain yield in PR-02, PR-07 and
PR-15. QTLs were mapped on LG6 of PR-02 in five
of the six trials, LG3b of PR-07 in five of the six tri-
als, and LG3a of PR-15 in all the four trials (Tables 2,
3 and 4). In PR-02, the QTL on LG6 was located in
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Trait Station/year Linkage group
LGla LGlb LG2a LG2b LG3a LG3b LG3c LG4a LG4b LG4Ac LG5a LGSb LG6  LG7
Days to Flowering 2011 Sutherland 446 529
2011 Rosthern 354 9.16
2012 Sutherland 36 12.84
2012 Rosthern 379
2013 Sutherland 525 3.86 19.0
2013 Rosthern 1063
Days to Maturity 2011 Sutherland 4.26 5.56
8.19
2011 Rosthern 446 3.19
48
2012 Sutherland 5.06
2012 Rosthern 7.69 306 633
2013 Sutherland 50
2013 Rosthern 3.07 4.1 84
Plant height (cm) 2011 Sutherland 12.81 6.45
8.1
2011 Rosthern 5.09 4.56
2012 Sutherland 6.2 547 4.05
441
2012 Rosthern 16.71 4.22
2013 Rosthern 443
Lodging Resistance (1-9) 2011 Sutherland 373
2011 Rosthern 392
3.61
2012 Sutherland
2012 Rosthern 8.83
2013 Rosthern 4.64
Yield (g/mz) 2011 Sutherland 2231 3.09
3.26
2011 Rosthern 338 10.99 6.2
354
2012 Sutherland 4.73
2012 Rosthern 32 11.24
2013 Sutherland 6.61
2013 Rosthern 348 7.96
1000 seed weight (g) 2011 Sutherland 306 34 303 6.15 4.64
2011 Rosthern 46 446 551 361
Seed protein conc. (%) 2012 Sutherland 3.17
2013 Sutherland 5.00 339
2013 Rosthern 497 337
Acid detergent Fiber (%) 2012 Sutherland 464 6.86
2013 Sutherland 344 836

2013 Rosthern

8.65
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Table 2 Quantitative trait loci (QTL) identified for multiple traits in PR-02 mapping population (Continued)

Trait Station/year Linkage group
LGla LGlb LG2a LG2b LG3a LG3b LG3c LG4a LG4b LG4c LG5a LG5b LG6  LG7

Neutral detergent Fiber (%) 2012 Sutherland 353 55

2013 Sutherland 5.05 6.07

2013 Rosthern 5 5.96
Seed starch conc. (%) 2012 Sutherland 444

2013 Sutherland 554

2013 Rosthern 553
Seed iron conc. (ppm) 2011 Sutherland 3.97 761 334

2011 Rosthern 6.28 337
Seed selenium conc. (ppm) 2011 Sutherland 116 351 32

2011 Rosthern 3.1
Seed zinc conc. (ppm) 2011 Sutherland 432

2011 Rosthern 13.71 452

452

Values presented in the table represent logarithm of the odds (LOD) of the QTL peak

the same linkage group position in three of the five
trials and this common QTL represented LOD values
of 6.2 to 8.0 and explained phenotypic variance of
11.8 to 24.6% (Table 5). The QTL located on LG3b of
PR-07 represented a maximum LOD value of 14.1
and explained 41.7% phenotypic variance. The same
QTL explained a phenotypic variance of 22.6% in
another trial (Table 6). The QTLs identified on LG3a
of PR-15 were at different linkage group positions in
all the four trials, and explained a phenotypic vari-
ance of up to 17.9%, while the QTLs identified on
LG1b in two of the four trials shared the linkage
group position and explained phenotypic variance of
6.7 to 9.2% (Table 7).

QTLs for seed weight Seed weight of 1000 seeds was
determined in two trials of PR-02 and QTLs have been
identified on seven linkage groups, of which QTLs on
LG3b and LG6 were identified in both trials (Table 2).
QTLs on these two linkage groups represented a max-
imum LOD of 4.6 and explained a phenotypic variance
of 11.6% (Table 5). For the same trait, multiple QTLs
were identified on six linkage groups in PR-07, based on
six trials. QTLs on three linkage groups LG3c, 4 and 6
were identified in at least four or more of the six trials
tested (Table 3). The QTL on LG3c is the most signifi-
cant QTL based on its overlapping linkage group posi-
tions in four of the five trials, with a maximum LOD of
15.6 and 40.0% phenotypic variance explained (Table 6).

QTLs for seed quality traits
QTLs for seed protein concentration QTLs for seed
protein concentration were mapped on LG1b and LG4a

of PR-02 in two of the three trials tested (Table 2). In
both the trials the identified QTLs were in the same
linkage group positions. The QTLs on LG1b and LG4a
represented a maximum LOD value of 5.0 and 3.4, and
explained the phenotypic variance of up to 15.9 and
10.3%, respectively (Table 5). In PR-07, QTLs for seed
protein concentration were identified on LG3b and
LG7b in three and four of the six trials. These QTLs on
LG3b and LG7b represented an average LOD of 3.7 and
3.4, and explained 11.7 and 10.6% phenotypic variance,
respectively (Tables 3 and 6).

QTLs for acid detergent fibre (ADF) In PR-02, based
on three trials, QTLs were identified for ADF on four
linkage groups, of which QTLs on LG7 were identified
in two of the three trials (Table 2). The two QTLs on
LG7 were in a common linkage group position with
LOD values of 8.4 and 8.7 and explained a phenotypic
variance of 28.0 and 26.2% (Table 5). In PR-07, QTLs
were identified on seven linkage groups, of which QTLs
on LG4 and LG7a were identified in four and three of
the six trials, respectively. These QTLs which shared the
same linkage group positions in two trials represented a
maximum LOD of 6.6 and phenotypic variance of 18.7%
(Table 6).

QTLs for neutral detergent fibre (NDF) QTLs on
multiple linkage groups were identified for NDF in
PR-02, of which QTLs on LG5a were identified in all the
three trials tested (Table 2). These three QTLs repre-
sented LOD values from 5.0 to 5.5 and phenotypic
variance of 16.2 to 19.0% (Table 5). In PR-07, NDF QTLs
were identified on LGla in all the six trials and QTLs on
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Table 3 Quantitative trait loci (QTL) identified for multiple traits in PR-07 mapping population

Trait Station/year Linkage group
LGla LGIb LG2a LG2b LG3a LG3b LG3c LG4 LGSa LG5b LG5c LG6 LG7a LG7b LG7c
Days to flowering 2010 Sutherland 341
413
2010 Rosthern ~ 5.52 3.09 3.00 5.10
2011 Sutherland 472 499
2011 Rosthern 3.00
4.80
2012 Sutherland
2012 Rosthern 413
Days to Maturity 2010 Sutherland  4.35 402 790
2010 Rosthern 3.77 337
2011 Sutherland 414 324
2011 Rosthern 439
2012 Sutherland 3.85 341
2012 Rosthern 4.29
3.54
Plant height (cm) 2010 Sutherland 15.74 375
2010 Rosthern 3.06 238
2011 Sutherland 33 11.89
2011 Rosthern 16.17
3.25
2012 Sutherland 4.26 23.82 7.5
2012 Rosthern 20.52 5.09
Mycosphaerella resistance 2010 Sutherland 3.89 4.78
(AUDPO 2010 Rosthern 321 5.96
2011 Sutherland 7.76 4.06 6.31
2011 Rosthern
2012 Sutherland 323 3.15 3.54
2012 Rosthern 8.85 6.24
Lodging resistance (1-9) 2010 Sutherland 1319 392
2010 Rosthern 6.85 7.21
6.52
2011 Sutherland 343
2011 Rosthern 4.25
2012 Sutherland 4.73 4.07 4.07
2012 Rosthern 643 10.3
Yield (g/m?) 2010 Sutherland 924 3.02 558
2010 Rosthern
2011 Sutherland 375 3.1
2011 Rosthern 14.13
2012 Sutherland 6.79 3.1 398
2012 Rosthern 402 412

4.08
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Table 3 Quantitative trait loci (QTL) identified for multiple traits in PR-07 mapping population (Continued)

Trait Station/year Linkage group
LGla LGIb LG2a LG2b LG3a LG3b LG3c LG4 LGSa LG5b LG5c LG6 LG7a LG7b LG7c
1000 seed weight (g) 2010 Sutherland 1451 383 401 435
2010 Rosthern 341 1138 4.00 3.75
6.84
2011 Sutherland 497 3.05
2011 Rosthern 11.69 3.05 333
2012 Sutherland 3.07 333 662
2012 Rosthern 15.57 5.58
Seed protein conc. (%) 2010 Sutherland 3.16 3.15
2010 Rosthern 3.88
2011 Sutherland 6.21 3.16
2011 Rosthern  3.22 342 651 384 601 4.56
2012 Sutherland  3.98 483 314
2012 Rosthern 4.08 3
Acid detergent fibre (%) 2010 Sutherland 3.84
2010 Rosthern  15.74 642
6.55
2011 Sutherland 10.1 474 495
2011 Rosthern 3.87 492 515
2012 Sutherland 12.07 32 339 532
2012 Rosthern 4.05 6.22 3.18 341
Neutral detergent fibre (%) 2010 Sutherland 3.72 8.61
2010 Rosthern  4.76
2011 Sutherland  7.25 744 597 5.05
332
2011 Rosthern 13,61 584 363
2012 Sutherland 1946 6.95 3.05 512
2012 Rosthern  14.72 6.94
Seed starch conc. (%) 2010 Sutherland
2010 Rosthern 403 333
2011 Sutherland  6.09 439
503
2011 Rosthern 6 705 34 8.39
2012 Sutherland  7.57 327 473 6.6
2012 Rosthern  5.79
2012 Rosthern  7.56 637 376 3.56
Seed iron conc. (ppm) 2010 Sutherland 413 422
2010 Rosthern 10.14 362
5.84
2011 Sutherland 2.89 714
2011 Rosthern 4.56 3.03
2012 Sutherland 404 3.28

2012 Rosthern 3.18 1005 6.93
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Table 3 Quantitative trait loci (QTL) identified for multiple traits in PR-07 mapping population (Continued)

Trait Station/year Linkage group

LGla LGIb LG2a LG2b LG3a LG3b LG3c LG4 LGSa LG5b LG5c LG6 LG7a LG7b LG7c

2010 Sutherland
2010 Rosthern

Seed selenium conc. (ppm) 3.65

2011 Sutherland

2011 Rosthern

2012 Sutherland

2012 Rosthern
Seed zinc conc. (ppm) 2010 Sutherland
2010 Rosthern
2011 Sutherland
2011 Rosthern

444

2012 Sutherland
2012 Rosthern

461
346

2010 Sutherland
2010 Rosthern
2011 Sutherland

Seed dimpling (%)

2011 Rosthern
2012 Sutherland
2012 Rosthern
2010 Sutherland
2010 Rosthern
2011 Sutherland

Seed shape (1-5)
6.02

2011 Rosthern
2012 Sutherland
2012 Rosthern

3.96

3.68
3.08
4.51
312 329
3.81
432
4.15
448 5.85
173
17.11 367
6.61
4.09
12.09
49
448
8.56 461
3.69 8.85
362 9.14
9.02
412
9.53
599 485 1037
8.3 7.87
857 552
4.56 3.68
8.29 424 648
472 371 6.29
7.65 846

Values presented in the table represent logarithm of the odds (LOD) of the QTL peak

LG4 and LG7a were identified in four and three of the
six trials, respectively (Table 3). The QTLs on all these
three linkage groups shared the same linkage group
position in at least 50% of the trials and represented a
maximum LOD of 19.5 and explained a phenotypic vari-
ance of up to 44.0% (Table 6).

QTLs for seed starch concentration For seed starch
concentration, multiple QTLs were identified on LG2b
and LG4a of PR-02, and LGla, LG3b, LG3c and LG7b of
PR-07 (Tables 2 and 3). In PR-02, the QTLs on LG2b
represented the same linkage group regions in two of
the three trials tested with an LOD of 5.5 and 21.0% of
phenotypic variance explained (Table 5). In PR-07, QTLs

identified on LG1la, LG3b, LG3c and LG7a were signifi-
cant in repeated trials, and the QTLs shared the linkage
group positions in majority of the trials. The maximum
LOD value represented by an individual QTL is 8.4 and
this QTL on LG7a explained a phenotypic variance of
20.1% (Table 6).

QTLs for seed iron concentration Based on two
phenotypic trials, QTLs for seed iron concentration were
identified on four linkage groups of PR-02, while the
QTL on LG3b was highly significant in both the trials
representing LOD values of 7.6 and 6.3 (Table 2). This
QTL has the common linkage group position in both
trials and represents a phenotypic variance of 20.7 and
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Table 4 Quantitative trait loci (QTL) identified for multiple traits in PR-15 mapping population

Trait Station/year Linkage group
LGla LGIb LGlc LG2a LG2b LG3a LG3b LG4 LG5 LG6a LG6b LG7a LG7b
Days to flowering 2012 Sutherland 38
2012 Rosthern 4.69 521 3.52
2013 Sutherland 448 458 722
2013 Rosthern 3.94 373
Days to maturity 2012 Sutherland 3.99 351 357
2012 Rosthern 4.71 32
333
2013 Sutherland 4.02 3.76 6.55 5.01
2013 Rosthern 5.79 364 56
Plant height (cm) 2012 Sutherland 435
2012 Rosthern 12.99 525 5.92
2013 Sutherland 6.06 322
347
2013 Rosthern 52 12.94
Lodging resistance (1-9) 2012 Sutherland 9.15
2012 Rosthern 8.83 3
2013 Sutherland 337
2013 Rosthern 37
Yield (g/m?) 2012 Sutherland 3.39 545
2012 Rosthern 3.16 4.1 9.06
2013 Sutherland 467
31
2013 Rosthern 477
Seed phytate conc. (ppm) 2012 Sutherland 352 10.59 509
6.93
2012 Rosthern 1248
2013 Sutherland 4.08 1137 453
6.03
2013 Rosthern 6.69

Values presented in the table represent logarithm of the odds (LOD) of the QTL peak

26.7% (Table 5). In comparison, of the QTLs identified
on six linkage groups of PR-07, the QTLs on LG3b were
significant in all of the six trials tested (Table 3). QTLs
on this linkage group shared the linkage group position
in four of the six trials and represented a maximum
LOD of 10.1 and phenotypic variance of 35.5% (Table 6).

QTLs for seed selenium concentration QTLs were
identified on three linkage groups of PR-02 based on
two phenotypic trials, of which LG7 represented QTLs
in both the trials within the same linkage group region
and explained a phenotypic variance of up to 15.0%
(Tables 2 and 5). In PR-7, QTLs were identified on LG4

and LG5b in two of the six trials (Table 3). The QTL on
LG5b has the maximum LOD value of 4.5 and explained
17.1% of the phenotypic variance.

QTLs for seed zinc concentration Four QTLs were
identified one each on LG1la and LG3b, and two on LG6
of PR-02 in one of the two trials tested (Table 2).
The QTL on LG3b was highly significant with an
LOD value of 13.7 and 25.8% of phenotypic variance
(Table 5). In comparison, the most significant QTLs
for seed zinc concentration in PR-07 were also
located on LG3b. One QTL on this linkage group
positioned in the same region in three trials had an
average LOD value of 15.5 and explained 42.7% of
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the phenotypic variance (Table 6). QTLs were also
identified on LG7a in repeated trials with a maximum
LOD of 59 and 11.7% of phenotypic variance ex-
plained (Table 6).

QTLs for seed dimpling In PR-07, QTLs for seed
dimpling were identified on four linkage groups with the
QTL on LGb5a being consistent in all six trials (Table 3).
This QTL was mapped in the same linakge group pos-
ition in all trials. The LOD and percent phenotypic vari-
ance explained by this QTL ranged from 4.1 to 10.4 and
12.7 to 29.2, respectively (Table 6).

QTLs for seed shape In PR-07, 16 QTLs located on six
linkage groups were identified for seed shape. The QTLs
on LG3c were identified in all six trials, while the QTLs
on LG7a were identified in four of the six trials (Table 3).
The maximum LOD of QTLs on LG3c was 8.6, and the
maximum phenotypic variance explained was 22.1%. The
four QTLs identified on LG7a shared the linkage group
position and the LOD and percent phenotypic variance
explained ranged from 6.3 to 8.5, and 15.7 to 20.6, respect-
ively (Table 6).

QTLs for seed phytate concentration QTLs for seed
phytate concentration were mapped in PR-15. QTLs for
this trait were identified on three linkage groups, LG3a,
LG5 and LG6a, of which the QTL on LG5 was identified
in all four trials tested in two locations (Table 4). The
four QTLs were positioned in two chromosome regions,
with two trials from each location sharing the same
region. The LOD values of these QTLs ranged from 6.7
to 12.5 and explained a phenotypic variance of 16.1 to
33.2% (Table 7).

Discussion

Precise phenotyping is critical for accurate identification
of marker trait association and presence of QTL [5].
This research was based on substantial sets of pheno-
typic data collected in three pea RIL populations. Pheno-
typic data arose from field trials which were managed
under conditions typical of field pea production in west-
ern Canada. Field trials are superior to indoor trials in
terms of their direct relevance to plant breeding and
subsequent commercial applications. Agronomic traits
(days to flower, days to maturity, plant height, lodging
score, and grain yield) were assessed at four to six
station/years, with two biological replications at each
station/year. All field trials had low coefficient of vari-
ation for grain yield, and average to above-average mean
grain yield indicating their reliability for use in QTL ana-
lyses. Relevant seed quality assessments (seed macro-
and micro-nutrient concentration, seed weight, seed
dimpling, and seed shape), including phytate
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concentration in the case of PR-15, were collected and
in all cases useful variation was noted. The most signifi-
cant trait associations observed among the three RIL
populations were between days to flowering and days to
maturity, days to maturity and yield, and Mycosphaerella
blight severity and lodging.

In this research, we identified QTLs for many import-
ant traits for pea breeding, based on extensive phenotyp-
ing in field trials and high density genetic linkage maps
based on GBS and Illumina GoldenGate array genotyp-
ing. Some of the traits evaluated in this study are highly
quantitative in nature, and are important for pea breed-
ing. Some of the QTLs identified for individual traits
were also compared between the mapping populations.

We used the GBS protocol as described by Elshire
et al. [13] to genotype the pea mapping populations be-
cause of its potential for SNP discovery across the entire
genome and the availability of a reference draft genome
provided by the International Pea Genome Consortium
to facilitate read alignment and SNP calling. GBS has
been successfully used in many different crops to score
co-dominant SNP markers across the genome and to
generate high density genetic linkage maps [35]. Based
on whole genome sequencing of four pea lines, Boutet
et al. [19] identified 419,024 SNPs and a subset of 64,754
SNPs were genotyped by sequencing of RILs of the cross
Baccara/P1180693, thus indicating the potential of se-
quence based genotyping methods for simultaneous
genotyping of a number of SNPs in pea. In our study,
GBS was successful in identification of > 25,000 SNPs in
each mapping population, and after filtering 2234, 3389
and 3541 SNP markers were used for genetic linkage
map construction in PR-02, PR-07 and PR-15 mapping
populations, respectively. In a similar study, using Apekl
restriction digestion based GBS, Ma et al. [36] identified
1609 high quality SNPs in a pea RIL population derived
from Aragorn x Kiflica. To improve the quality of the
genetic linkage maps, all SNP markers with > 15% miss-
ing data were omitted from map construction, though
some important SNPs might have been eliminated. Liu
et al. [37] suggested utilization of SNPs with < 20% miss-
ing data without imputation to improve the data quality
of GBS genotyping. The SNP markers genotyped by GBS
were anchored with the existing SNP markers genotyped
in the same populations [10] for assignment of linkage
groups as well as generation of dense linkage maps. The
average distance between the mapped loci was 1.57 cM,
and the identified GBS markers were distributed across
the seven chromosomes of pea. The dense genetic link-
age maps developed in the current study will facilitate
further fine-mapping of the identified QTLs for agro-
nomic and seed nutritional traits.

The genetic linkage maps developed in this study were
used to identify QTLs for multiple traits in multiple
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environments. The phenotypic data from each station/
year were used independently for identification of QTLs
and their consistency across environments. In interpret-
ing the results for identification of reliable trait-linked
markers, QTLs which were identified on the same link-
age groups in repeated trials were considered, and the
next level of comparison was made through comparison
of QTL positions in repeated trials. Overall, 375 QTLs
were identified for various traits including days to flow-
ering, days to maturity, plant height, Mycosphaerella
blight resistance, lodging resistance, seed mineral con-
centration, starch and fibre concentration, seed weight
and grain yield, known to be a highly complex trait.
Highly significant and reproducible QTLs were identi-
fied for plant height, lodging resistance, yield and seed
iron concentration in more than one population.

Although flowering time is a quantitative trait
controlled by multiple genes, in pea HIGH RESPONSE
TO PHOTOPERIOD (HR), an ortholog of EARLY
FLOWERING 3 (ELF3), has been identified as a gene in-
volved in Circadian clock function, which controls a sig-
nificant proportion of flowering time variation in global
pea germplasm [38]. Henaut et al. [39] confirmed the as-
sociation of the HR locus with QTL for flowering time
and the co-localization of this locus with a major QTL
affecting winter frost tolerance. Vanhala et al. [40] re-
ported that in the absence of HR, flowering time in a
collection of pea accessions was affected by the LATE
FLOWERING (LF) gene, and positively correlated with
the length of the growing season in the region of origin of
the accession. In the current study, the major QTL for
flowering time was localized on LG6 in PR-02. This QTL
was identified in five of the six field trials tested, shared
overlapping linkage group positions, and explained pheno-
typic variance of up to 47.9%. Based on the known linkage
between HR locus and flowering time response in pea
from previous studies, this QTL on LG6 could be the HR
locus. Identification of QTLs for flowering time in PR-07
and PR-15 on different linkage groups could be because of
the absence of HR locus in these populations.

Highly significant QTLs for plant height were identified
in all three mapping populations. One QTL each on LG3b
of PR-02, LG3c of PR-07, and LG3a of PR-15 identified in
repeated trials, contributed to a phenotypic variance of
41.5, 65.1 and 33.3% in the three populations, respectively.
Tar’an et al. [22] reported three QTLs related to plant
height in a RIL population tested in 11 environments, and
the QTLs together explained 65% of the phenotypic vari-
ance. Hamon et al. [41] identified three minor QTLs for
plant height in another RIL population and these QTLs
were linked to Aphanomyces root rot resistance. Plant
height is known to be associated with other traits such as
lodging resistance and Mycosphaerella blight resistance.
The QTLs identified for plant height in the current study

Page 22 of 25

are well suited for MAS in breeding programs as they ex-
plain 33-65% of the phenotypic variance. Similar to the
observations in pea, plant height in chickpea was identi-
fied as a quantitative trait governed by six QTLs [42].

In pea, improvement of lodging resistance is an
important breeding objective to improve air circulation
in the canopy as a means of reducing fungal disease
development, and to facilitate harvest. Only a few stud-
ies have reported QTLs associated with this complex
quantitative trait, which is also highly dependent on
environmental factors. Tar’an et al. [22] reported two
QTLs for lodging resistance which explained 58% of the
phenotypic variance in 11 environments tested. In the
current study, we identified a major QTL for lodging
resistance on linkage group 3c of PR-07 in the majority
of the environments tested and this QTL explained a
phenotypic variance of up to 35.3%. In PR-15 the major
QTL was located on LG3a and shared the linkage group
region in two of the four environments tested and
explained a phenotypic variance of 31.3 and 28.5%. A
major QTL for lodging resistance in a pea RIL population
derived from Delta x RER which explained 49.9% of the
phenotypic variance was also located on linkage group 3
[43]. The major QTLs for lodging resistance in both
PR-02 and PR-07 overlapped with the QTLs for plant
height identified in these populations. Tar’an et al. [22]
also reported that QTLs associated with lodging suscepti-
bility in pea were also associated with plant height.

Mycosphaerella blight resistance is another complex
quantitative trait important for pea breeding. Lodging
susceptibility is known to increase the severity of Myco-
sphaerella blight [44] and Mycosphaerella resistance
QTLs are known to be associated with lodging resistance
[17]. We have identified QTLs for Mycosphaerella resist-
ance on LG3b and LG4 in PR-07. These QTLs explained
phenotypic variation of 10.5-26.3%. The position of the
QTLs within these linkage groups varied from one trial
to another with the exception of one QTL on LG4 iden-
tified in two trials, thus indicating the effect of environ-
ment on disease resistance. Using an interspecific pea
RIL population, Jha et al. [30] identified QTLs for Myco-
sphaerella resistance on LGIII and LGIV in repeated
field trials. Most of the Mycosphaerella resistance QTLs
identified in other mapping populations were also
located on LGIII [45, 46].

Grain yield is a complex quantitative trait and we have
identified multiple QTLs for grain yield in different
mapping populations. The QTLs on LG4a and LG6 in
PR-02, LG3c and LG7b of PR-07, and LG1b of PR-15
were identified in repeated trials and explained a pheno-
typic variance of 6.7 to 54.2%. The QTL on LG3c of
PR-07 is of particular importance as it was identified in
five of the six trials and explained a phenotypic variance
of 13.3 to 21.6%. Several QTLs for grain yield have been
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reported earlier. Tar’an et al. [47] identified QTLs for
grain yield which together explained 39% of the pheno-
typic variance and the major QTLs were located on
LGIIL Krajewski et al. [48] identified multiple QTLs for
grain yield in pea. In their study, the QTLs were identi-
fied on different linkage groups, while the major QTLs
were located on LG5, with minor QTLs on LG2. Since
grain yield is affected by genotype x environment inter-
actions at both vegetative and reproductive growth
stages, variation in the QTLs identified in different map-
ping populations and different environments is expected.
Annicchiarico et al. [49] reported co-localization of SNP
markers associated with early flowering and high yield of
pea in a genome-wide association study (GWAS). In the
current study, we have noted co-localization of QTLs
associated with days to flowering and grain yield on LG6
of PR-02, LG3b of PR-07 and LG3a of PR-15.

The effect of days to flowering loci on other traits in-
cluding yield was determined by using the days to flow-
ering loci as control markers in cofactor analysis. The
cofactor analysis altered the LOD scores of QTLs for
other traits on the same linkage group from 0 to 35%.
For example, in the PR-07 trial at Sutherland in 2011,
using days to flowering loci on LG3b as control markers
did not alter the LOD score of Mycosphaerella blight
severity QTL on the same linkage group, increased the
LOD of plant height QTL from 11.90 to 17.00, and
decreased the LOD of other QTLs including yield from
3.75 to 3.51, 1000 seed weight from 4.97 to 3.59, ADF
from 10.1 to 6.65, NDF from 7.44 to 5.33, seed zinc
concentration from 6.61 to 4.6.

QTLs for other traits including fiber and starch con-
centration, seed mineral concentration, seed phytate
concentration of mature pea seeds were also identified
in this study. Some of these QTLs were highly significant
and identified in repeated trials, and thus have potential
for MAS in pea breeding. For example, the QTL for seed
zinc concentration identified on LG3c of PR-07 was
identified in four of the six trials and explained a pheno-
typic variance of 12.3 to 43.2%. Ma et al. [36] reported
that the QTL with highest explanation of phenotypic
variance for seed zinc concentration in a mapping
population derived from Aragorn x Kiflica tested in two
different locations was also located on LG3. Shunmugam
et al. [50] also reported a major QTL for seed phytate
concentration in pea on LG5, and this QTL was con-
firmed here using an expanded set of markers.

Conclusions

The current study has identified many QTLs for quanti-
tative traits in pea using GBS resources and dense gen-
etic linkage maps. QTLs for flowering time, plant height
and lodging resistance were identified consistently in field
trials. There is a potential for fine mapping these QTLs,
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identification of trait-related genes using the current QTL
information, and for using the marker information for
MAS in breeding programs. The highly significant and
reproducible QTLs identified for days to flowering
(PViax = 47.9%), plant height (PV ., = 65.1%), lodging re-
sistance (PV .y = 35.3%), grain yield (PV . = 54.2%), seed
iron concentration (PV,. =27.4%), and seed zinc con-
centration (PV .« =43.2%) can be used for immediate
breeding applications. We are in the process of converting
the SNP markers flanking the identified QTL regions for
these traits into simple assays, and validating the markers
using a genome wide association study (GWAS) panel of
175 genotypes which were phenotyped in multi-location,
multi-year replicated field trials.
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