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Abstract

Background: Switchgrass breeders need to improve the rates of genetic gain in many bioenergy-related traits in
order to create improved cultivars that are higher yielding and have optimal biomass composition. One way to
achieve this is through genomic selection. However, the heritability of traits needs to be determined as well as the
accuracy of prediction in order to determine if efficient selection is possible.

Results: Using five distinct switchgrass populations comprised of three lowland, one upland and one hybrid
accession, the accuracy of genomic predictions under different cross-validation strategies and prediction
methods was investigated. Individual genotypes were collected using GBS while kin-BLUP, partial least squares,
sparse partial least squares, and BayesB methods were employed to predict yield, morphological, and NIRS-based
compositional data collected in 2012–2013 from a replicated Nebraska field trial. Population structure was assessed
by F statistics which ranged from 0.3952 between lowland and upland accessions to 0.0131 among the lowland
accessions. Prediction accuracy ranged from 0.57–0.52 for cell wall soluble glucose and fructose respectively, to
insignificant for traits with low repeatability. Ratios of heritability across to within-population ranged from 15 to 0.6.

Conclusions: Accuracy was significantly affected by both cross-validation strategy and trait. Accounting for population
structure with a cross-validation strategy constrained by accession resulted in accuracies that were 69% lower than
apparent accuracies using unconstrained cross-validation. Less accurate genomic selection is anticipated when most of
the phenotypic variation exists between populations such as with spring regreening and yield phenotypes.
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Background
The ability to accurately predict performance and breed-
ing values of crops and livestock based on large numbers
of genetic markers in the absence of phenotypic data has
been the focus of intense research efforts and is now be-
ing applied in advanced breeding programs [18, 35, 56].
This approach, known as genomic selection (GS), would
be useful, in theory, for perennial grasses such as switch-
grass that require 2–3 seasons to determine their full
yield potential. In dairy cattle, the generation interval
has been reduced from 4 to 7 y to approximately 2.5 y,

allowing annual rates of genetic gain to increase from ~
50–400% depending on the heritability of the trait [18].
In crops such as maize and wheat, predictions show that
GS accuracies as low as 0.2 can achieve greater annual
genetic gains than marker-assisted selection breeding
schemes [24]. In perennial species, annual genetic gains
and cost per unit of gain are also predicted to be higher
with GS [20, 48, 64]. This can be the case with switch-
grass (Panicum virgatum L.) if genomic estimates of
breeding values (GEBV) are sufficiently accurate and the
generation interval can be shortened.
Switchgrass is an attractive, perennial biomass crop for

the US, due to its favorable net energy yield as well as sev-
eral environmental and economic advantages [51]. Switch-
grass is open pollinated and highly self-incompatible with
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ample genetic diversity [53]. The genetic variation be-
tween cultivars can differ 3–5 fold for biomass [54], 10%
for lignin content [4], and 85% for water-use efficiency
[28]. Some switchgrass lines reach heights of more than
3 m, and have vigorous root systems that may extend to
depths of more than 3.5 m [41]. Phenotypic variation in
many traits is sufficient for genetic analysis and breeding.
Breeding programs have focused on recurrent selection of
synthetic cultivars from wild switchgrass populations, tar-
geting traits such as (1) high biomass yields, (2) improved
seedling establishment, and (3) increased feedstock quality
[3]. In the upper southeastern US, switchgrass biomass
yields average more than 14 Mg ha− 1 [17], and in some lo-
cations more than 25 Mg ha− 1, suggesting greater yield
potential with further improvement by breeding.
Defining the type of selection scheme and relative ad-

vantage of implementing GS in forages, it was found that
under certain scenarios GS could be advantageous over
phenotypic selection. For allogamous species such as
switchgrass the GS advantage can result in increases of
up to 2.6 fold [52].
To date, genomic prediction in switchgrass has been

attempted in panels of northern-adapted upland and
lowland germplasm and in two populations of half-sib
families, one upland and one derived from the Liberty
cultivar [5, 31, 47]. These reports employed a variety of
different modeling and genotyping methods and repre-
sented different population structures and unique envi-
ronments. Reported accuracies have been from over 0.5
to negative ranges depending on the trait, environment,
and composition of the calibration set (CS) and valid-
ation set (VS).
The composition of the CS has been shown to be crit-

ical for improving the accuracy of GS, particularly under
situations where there is population structure [26].
Population structure can produce false associations in
genome-wide association studies [45, 66]. It can intro-
duce upward bias to estimates of heritability [58], and
can introduce bias into genomic prediction [32, 49, 65].
Capturing as much phenotypic variation as possible in
the CS is desirable [26]. However, significant population
structure should be accounted for when evaluating per-
formance of the CS and genomic prediction accuracies
decline as the relationship between CS and VS becomes
weaker [23].
In this study, the impact of population structure on es-

timations of genomic heritability and on genomic pre-
diction was assessed using both compositional and
morphological traits in switchgrass related to bioenergy.
The genetic trials were conducted with space planted
populations with unknown pedigree relationships. These
populations were derived from both upland and lowland
ecotypes and therefore represent high diversity. Four dif-
ferent methods for genomic prediction were tested and

their performance compared. Heritability was parti-
tioned into across and within-population components
that may have specific contributions to prediction
accuracy.

Methods
Plant populations
Experiments were established from greenhouse-grown
seedlings in 2009 in the field at the Eastern Nebraska
Research and Extension Center (ENREC) near Mead,
NE. One hundred twenty-five seedlings were planted for
each of five populations in 5 rows of 25 seedlings on
1.1 m centers. Populations were randomly assigned to
plots and genotypes within populations were randomly
assigned to individual rows and positions within the
plots. No fertilizers were applied in the establishment
year while in post-establishment years 112 kg ha− 1 nitro-
gen was applied in the spring as NH4NO3. In establish-
ment and post-establishment years herbicides and
hand-weeding were used to control annual weeds. Atra-
zine (6-chloro-N-ethyl-N-isopropyl-1,3,5,-triazine-2,4-di-
amine), 2,4 -D (2,4-dichlorophenoxyacetic acid) and
S-metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-
(2-methoxy-1-methyl) acetamide] were applied at rates
of 1.96, 1.48, and 1.26 kg ha− 1 respectively once in late
spring or early summer. In 2011 two ramets were dug
from each genotype in the original plots and used to es-
tablish two additional randomized plots per population,
keeping the populations separate blocks. Residual plot
stubble was burned in April 2011 and again in April
2012 prior to the onset of spring regrowth.
The five populations used in this study were either ob-

tained from NRCS Plant Material Centers or were har-
vested from isolated polycross blocks near Mead, NE
which were maintained at least 500 m from other
switchgrass fields. All populations were assumed to be
tetraploid based on breeding history. A summary of the
populations is presented in Table 1. Kanlow (K) is a re-
leased tetraploid lowland cultivar with high yield. Kan-
low N1 (N1) has been previously described [59] and
represents a population that had survived 4 years with-
out winter kill in Nebraska. Summer (S) is a tetraploid,
upland cultivar adapted to more northern latitudes with
good winter survival. The seed lot used to establish our
Summer population represented a bulk harvest of a se-
lection nursery comprised of 1000 individuals with high
yield and good vigor. The Kanlow N1-EM (N1EM)
population is an early flowering population of plants se-
lected from the Kanlow N1 base. The Kanlow x Summer
F2 (KxS) population represents a population two genera-
tions removed from the initial randomly intercrossed
parental populations in which Kanlow was used as the
male parent.
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Phenotypic analysis
Spring emergence
Spring emergence (GRN) was determined in 2013 as the
day of year (DOY) when green shoots visibly emerged
from winter dormancy.

Yield
All plots were harvested on a single clone basis after a
killing frost between November 2 and 7, 2012 using a
Carter Harvester (Carter Manufacturing Co., Brookston,
IN) set at a cutting height of 10 cm. Fresh weights of in-
dividual clones were determined and subsamples were
taken to determine percent moisture and provide an es-
timate of dry weight. Yield (YLD) was reported as dry
weight corrected for the weight of the subsample.

Anthesis
The anthesis date (ANT) was determined as the day of
year when 50% of the mature tillers of each clone
reached the anther emergence/anthesis R4 stage [39].

Near infrared spectroscopy data
Harvested samples were dried in a forced air oven at
60 °C. These samples were then ground in a Wiley mill
to pass a 2 mm test sieve and later in a Cyclone Mill to
pass a 1 mm test sieve. Ground samples were scanned
using a Model 6500 near-infrared spectrometer (FOSS
NIRSystems, Inc., Laurel, MD). Estimates of over 20 bio-
mass components, including theoretical yields of simple
sugars and ethanol, were obtained from broad-based
near infrared spectroscopy (NIRS) calibrations. Descrip-
tions of the traits can be found in Table 2 and in more
detail in [61].

Phenotypic data analysis
Estimates of best linear unbiased predictors (BLUP)
values for each trait across replicates, genotypic variance
(σG

2), error variance (σe
2), and repeatability (H2) were

obtained using the restricted maximum likelihood
method in the “lme4” package [2] in R (R Core Team).
Broad-sense heritability, equivalent to line-based

repeatability across plots, was estimated from the vari-
ance components obtained with the BLUP model:

H2 ¼ σ2G

σ2G þ σ2
e

n

;

where n refers to the average number of replicates per
genotype. Data was centered and scaled by the standard
deviation prior to analysis to allow simpler comparisons
among methods and traits and some outliers were
removed.

Genotyping
Leaf tissue samples from the original plots prior to es-
tablishing replicates were collected and genomic DNA
was extracted using a CTAB method [6]. Genotyping-
by-sequencing library production followed a previously
established protocol [13] with a few modifications.
Briefly, gDNA was digested with PstI and ligated to Illu-
mina adapters with a custom set of sequence index bar-
code tags. Barcoded DNA was subsequently adapted
with Illumina sequencing primers and purified with a
Qiagen PCR cleanup kit. DNA libraries were pooled (96
samples per flow-cell land) and single-end reads were
generated on an Illumina HiSeq 2000 at the Vincent J.
Coates Genomics Sequencing Laboratory, University of
California, Berkeley.
Sequencing generated 1.25 × 109 100-bp single-end

reads that were fed to the TASSEL-GBSv2 pipeline [19]
and generated a total of 810 million 64-bp sequence tags
of which 721 million could be matched to the master tag
database aligned to version 4.0 of the switchgrass gen-
ome assembly (https://www.phytozome.jgi.doe.gov)
using BWA [30]. For the alignment, only the 18 main
chromosomes were used. Prediction and annotation of
single nucleotide polymorphism (SNP) effects were per-
formed using SNPEff [9]. The number of tags across in-
dividual taxons ranged from 13,777 to 5,104,802 with an

Table 1 Switchgrass seed sources used in this study

Strain Description Source

‘Kanlow’ (K) Released lowland-tetraploid cultivar NRCS-Manhattan Kansas Manhattan Plant Materials Center

Kanlow N1 (N1) Kanlow-derived population that had survived winter-kill
over a four year period in Nebraska

Syn 2 increase of isolated polycross from selected plants

‘Summer’ (S) Upland tetraploid with exceptional vigor and biomass
yield in Nebraska and heading later than DOY 209 in
2005

Syn 1 increase from 1000 individual polycross nursery

Kanlow N1 Early Maturity
(N1EM)

Derived from Kanlow N1 with high yields and heading
day earlier than DOY224

Syn 1 bulk harvest from 15 individuals grown in an isolated
polycross nursery

KxS F2 (KxS) Upland-lowland hybrid population, K(♂) × S(♀) Syn 2 seed increase 1 generation removed from initial hybrids
grown in an isolated polycross
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Table 2 Repeatability (H
^2) whole plant, biomass composition, and actual and potential ethanol yield traits among the populations

tested

Variable Abbreviation Units Ĥ
2 Population

K KxS N1 N1EM S

Whole plant

Dry matter Yield YLD kg 0.61 1.45 ± 0.43aa,b 1.03 ± 0.31c 1.23 ± 0.32b 1.37 ± 0.36a 0.6 ± 0.22d

Anthesis Date ANT DOY 0.94 246.0 ± 4.0a 227.4 ± 10.4d 240.8 ± 8.6b 235.2 ± 7.5c 202.0 ± 10.5e

Spring Emergence Date GRN DOY 0.78 137.6 ± 8.7a 133.1 ± 1.5c 138.3 ± 1.5a 137.7 ± 1.2b 130.7 ± 1.9d

Composition

Dry Matter DM mg g− 1 0.47 911.4 ± 1.9a 911.2 ± 2.1a 910.4 ± 1.6bc 911.0 ± 1.9ab 910.2 ± 2.5c

Carbon C mg g− 1 0.71 448.9 ± 3.1a 445.6 ± 3.2c 447.53 ± 2.9b 450.0 ± 3.2a 444.0 ± 3.9d

Nitrogen N mg g− 1 0.6 5.76 ± 1.03ab 5.27 ± 0.94c 5.92 ± 0.87a 5.47 ± 0.97bc 5.57 ± 1.16abc

Extracted fat FAT mg g− 1 0.71 9.23 ± 1.22b 7.12 ± 1.28c 9.59 ± 1.23ab 9.7 ± 1.1a 7.32 ± 1.23c

Minerals (total ash) ASH mg g− 1 0.72 63.12 ± 5.6b 71.31 ± 7.38a 62.47 ± 5b 61.1 ± 5.1b 70.11 ± 8.64a

Klason Lignin KL mg g− 1 0.46 286.4 ± 16.0c 298.5 ± 15.0a 287.1 ± 12.6c 293.3 ± 12.7b 296.6 ± 15.1ab

Uronic Acids UA mg g− 1 0.67 17.04 ± 0.36b 16.74 ± 0.39c 17.2 ± 0.35a 17.25 ± 0.4a 16.39 ± 0.48d

Rhamnose RHA mg g− 1 0.49 1.70 ± 0.14d 1.75 ± 0.16bc 1.77 ± 0.13b 1.7 ± 0.12 cd 1.85 ± 0.21a

Fucose FUC mg g− 1 0.54 0.23 ± 0.04b 0.26 ± 0.03a 0.22 ± 0.03c 0.23 ± 0.03b 0.23 ± 0.04b

Arabinose ARA mg g− 1 0.49 32.93 ± 1.48b 33.35 ± 1.44ab 33.76 ± 1.41a 32.94 ± 1.31b 33.79 ± 1.65a

Xylose XYL mg g− 1 0.66 212.4 ± 5.7c 214.8 ± 6.4b 212.3 ± 6.3c 212.9 ± 6.1bc 218.3 ± 7.1a

Mannose MAN mg g− 1 0.59 8.95 ± 0.83ab 7.82 ± 0.85c 8.79 ± 0.74a 9.10 ± 0.87b 8.71 ± 1.41d

Galactose GAL mg g− 1 0.41 9.61 ± 0.67b 9.63 ± 0.74b 9.96 ± 0.62a 9.53 ± 0.53b 9.7 ± 0.88ab

Glucose GLC mg g− 1 0.47 298.1 ± 7.2b 296.6 ± 7.2b 295.4 ± 6.9b 301.0 ± 6.1a 296.0 ± 8.0b

p-Coumarate esters PCA mg g− 1 0.83 8.32 ± 0.55a 7.53 ± 0.69c 8.06 ± 0.57b 8.01 ± 0.59b 6.46 ± 0.75d

Esterified ferulates FEST mg g− 1 0.9 1.91 ± 0.15a 1.53 ± 0.23c 1.86 ± 0.18ab 1.81 ± 0.18b 1.2 ± 0.2d

Etherified ferulates FETH mg g−1 0.34 1.05 ± 0.2a 0.82 ± 0.26bc 0.92 ± 0.19b 1.05 ± 0.19a 0.82 ± 0.26c

Cell wall concentration CWC mg g− 1 0.62 825.0 ± 20.0d 850.2 ± 19.6b 828.8 ± 19.4d 840.7 ± 17.0c 860.1 ± 21.3a

ARA + XYL +Man+GAL AXMG mg g− 1 0.7 259.8 ± 5.9b 261.2 ± 6.5b 260.4 ± 6.8b 261.0 ± 6.1b 266.5 ± 6.4a

ARA + XYL AX mg g− 1 0.73 240.1 ± 5.3c 245.5 ± 5.8b 241.3 ± 6.4c 241.5 ± 5.6c 252.1 ± 6.5a

Sucrose SUC mg g−1 0.81 14.77 ± 4.72a 8.94 ± 4.37c 16.30 ± 4.79a 12.83 ± 3.50b 5.65 ± 3.95d

Soluble glucose GLCS mg g− 1 0.81 10.50 ± 1.92ab 8.30 ± 1.93c 11.10 ± 1.88a 10.21 ± 1.67b 6.85 ± 2.01d

Fructose FRU mg g− 1 0.75 8.83 ± 2.25b 6.57 ± 2.05c 9.75 ± 2.46a 8.20 ± 1.96b 5.21 ± 2.10d

Total soluble carbohydrates SC mg g− 1 0.85 34.65 ± 8.60a 22.75 ± 7.85c 36.32 ± 8.61a 29.4 ± 6.76b 17.66 ± 7.39d

Starch STA mg g−1 0.55 8.11 ± 1.80ab 7.73 ± 2.60b 7.71 ± 2.06b 7.95 ± 1.73b 8.88 ± 2.20a

Non-structural carbohydrates
(starch + SC)

NSC mg g− 1 0.82 33.63 ± 10.14a 21.28 ± 9.75c 35.12 ± 10.35a 29.13 ± 7.59b 16.95 ± 9.04d

Total hexoses HEX mg g− 1 0.82 373.6 ± 9.7a 359.8 ± 10.2b 372.7 ± 7.7a 375.1 ± 7.2a 348.4 ± 10.8c

Total sugars SUG mg g− 1 0.62 664.8 ± 10.1b 658.2 ± 10.9c 666.7 ± 10.0ab 668.8 ± 10.0a 658.7 ± 11.6c

Ethanol and potential ethanol

Ethanol/g dry forage ETOH mg g− 1 0.81 79.79 ± 5.24ab 73.41 ± 5.83c 81.65 ± 6.06a 79.22 ± 4.98b 70.07 ± 6.02d

Pentose sugars relased/g dry
forage

PENT mg g−1 0.68 213.0 ± 5.2a 217.3 ± 6.8b 213.9 ± 5.9a 214.3 ± 6.0a 223.8 ± 7.4c

Proportion of hexoses that are
non-structural or soluble

PSOL % 0.8 0.09 ± 0.03a 0.06 ± 0.02c 0.09 ± 0.03a 0.07 ± 0.02b 0.05 ± 0.02d

Pentose proportion of total
carbohydrates

PPEN % 0.84 0.43 ± 0.01d 0.44 ± 0.01b 0.43 ± 0.01c 0.43 ± 0.01 cd 0.45 ± 0.01a

Theoretical ethanol from hexoses
(excluding starch)

HEXE mg g− 1 0.71 202.7 ± 4.5b 198.4 ± 5.2c 203.6 ± 3.9ab 204.3 ± 3.9a 194.9 ± 6.4d
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average of 1,229,285. TASSEL detected a total of 70,215
SNP sites with 46% of potential genotype calls present.
SNP filtering was then performed. First, genotypes

with a depth of 1 were set to missing which eliminated
2.33% of the individual SNP calls. Second, individuals
were filtered out if they contained missing information
for > 75% of the SNP positions. This resulted in the loss
of 104 individuals (16% of the population). Third, sites
with a minor allele frequency of < 0.025 and with geno-
type calls in fewer than 50% of all individuals were elimi-
nated. Fourth, sites in complete LD with other sites were
pruned. After applying these filters, a total of 19,342
SNPs remained across 483 individuals with 71% of the
potential genotype calls present.

Genetic differentiation and genomic heritability estimates
For evaluating genomic selection methods and heritabil-
ity imputation of missing genotypes was necessary and
was conducted using the LD-kNNi algorithm where the
l sites most in LD with the site to be imputed are used
to determine the nearest neighbors and the weightings
to be used when imputing [38]. In the imputed dataset
the parameters k = 13, l = 8 were applied. Accuracy was
determined by masking and imputing 10,000 known ge-
notypes and was estimated at 88.5%.
Population differentiation was measured on the im-

puted dataset with the FST statistic using the method of
Weir and Cockerham [62]. Individual clustering by prin-
cipal components analysis was performed with the geno-
typic data for the purposes of visualizing population
structure [33].
For the purposes of predicting genomic breeding

values (GEBV) and estimating genomic heritability

within and across populations, additive genetic variance
(σG

2) and residual variance (σe
2) were derived from ap-

plying ridge-regression mixed modeling kinship-BLUP
used a restricted maximum likelihood (REML) approach
implemented in the R package rrBLUP version 4.5 [14,
46]. The estimate of the realized additive relationship
matrix was calculated as:

Â ¼ WW 0

2
P

ipi 1−pið Þ

where W is the centered (n x m) genotype matrix and p
is the allele frequency [15]. The basic model

y ¼ Xβþ Zuþ e

u∼N 0;Kσ2g
� �

was used where X is a full-rank design matrix for the
fixed effects (β), Z is the design matrix for the random
effects u, K is the additive relationship matrix A, and e
is for the residuals (e ~ N (0, Iσe

2)) with I being the
identity matrix.
The matrix K captures population structure due to ad-

mixture, genetic drift, and selection history as well as
kinship. Here, marker-based estimates of heritability
across and within subpopulations (hg

2, hgA
2, hgW

2) were
derived based on the BLUP phenotypes and on orthog-
onal decomposition of the genetic variance components
by reparameterizing the basic model above. This was ac-
complished in a manner similar to that of Guo et al. [21]
based on initial work of [12, 27]. After eigenvalue de-
composition of K as

Table 2 Repeatability (H
^2) whole plant, biomass composition, and actual and potential ethanol yield traits among the populations

tested (Continued)

Variable Abbreviation Units Ĥ
2 Population

K KxS N1 N1EM S

Estimated ethanol from non-
structural carbohydrates

NSCE mg g− 1 0.79 17.10 ± 4.64a 11.78 ± 4.74c 17.98 ± 4.76a 14.83 ± 3.64b 9.74 ± 4.36d

Cell wall ethanol CWE mg g− 1 0.68 63.06 ± 4.14b 59.61 ± 3.62c 64.64 ± 3.74a 63.76 ± 4.26ab 59.03 ± 3.84c

Theoretical ethanol conversion
efficiency from cell wall hexosans

CWEP % 0.48 35.28 ± 3.19b 34.42 ± 2.88b 36.23 ± 2.64a 35.10 ± 2.87b 34.35 ± 3.36b

Pentoses extraction efficiency PENTP % 0.6 78.28 ± 1.10b 78.53 ± 1.28b 78.93 ± 1.11a 78.40 ± 0.88b 79.41 ± 1.23a

Hexose ethanol extraction efficiency HEXEP % 0.68 42.02 ± 2.78b 39.54 ± 2.83c 43.38 ± 3.06a 41.56 ± 2.83b 37.30 ± 3.30d

Forage quality composition

In vitro dry matter digestibility IVDMD mg g− 1 0.71 360.3 ± 21.9a 321.3 ± 22.1c 363.4 ± 22.3a 346.7 ± 19.7b 308.6 ± 27.5d

Neutral detergent fiber NDF mg g−1 0.44 778.5 ± 15.9c 790.2 ± 14.7ab 773.0 ± 15.9c 787.3 ± 14.4b 793.7 ± 18.9a

Acid detergent fiber ADF mg g− 1 0.49 418.3 ± 17.9c 431.8 ± 15.8a 409.6 ± 17.5d 421.6 ± 15.3bc 425.6 ± 21.3ab

Acid detergent lignin ADL mg g− 1 0.47 66.1 ± 4.2b 69.9 ± 4.0a 64.6 ± 3.9c 66.9 ± 4.0b 68.6 ± 5.8a

Total energy content CAL cal 0.63 4115 ± 10a 4095 ± 10d 4112 ± 12ab 4110 ± 11b 4106 ± 12c
aAverage ± standard deviationbFor each trait, different letters designate values that are significantly different from one another, α < 0.05
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K ¼ UDU 0

where U is an n x (n-1) matrix of the eigenvectors of K
with Ui the column I (i = 1,2, …, n-1) representing the
individual principal component loadings, and D is an (n-
1) x (n-1) diagonal matrix with each diagonal element
representing eigenvalues of K, arranged in decreasing
value λ1, λ2, . λn - 1. The basic model is then rewritten as

y ¼ 1μþ Uαþ e

and α becomes an (n-1) × 1 vector of random genetic ef-
fects that have a normal distribution N (0, DσG

2) with
the principal components used as random variables that
has the same distribution as the basic model yet allows
separation of subpopulation structure explained by the
dominant principal components (d) into across-
population genetic variance,

σ2gA ¼ 1
n−1

Xd

i¼1

α2i

and within-population genetic variance,

σ2gW ¼ 1
n−1

Xn−1

i¼dþ1

α2i

The total genetic variance was calculated as

σ2 ¼ 1
n−1

Xn−1

i¼1

α2i

Corresponding marker-based trait heritability were ob-
tained as [27]:

h2gA ¼ σ2gA
σ2 þ σ2e

h2gW ¼ σ2gW
σ2 þ σ2e

h2g ¼
σ2

σ2 þ σ2
e

Genomic prediction
Four methods were used to model the data: (1) a
kinship-BLUP method (kin-BLUP); (2) a partial least
squares regression method (PLS), (3) a sparse, partial
least squares method (SPLS), and (4) BayesB (BB).
Prediction accuracy r (correlation of the VS GEBV

with their BLUP values) was assessed for all methods
using modified 5-fold cross-validation (CV) where the
VS was constructed from specific populations or combi-
nations of populations and divided into 5 sets that each

comprised a single fold. The calibration set (CS) then
consisted of the remaining individuals from all popula-
tions. Initial broad screening of all traits using 5-fold CV
across the entire dataset (“All”) enabled us to focus on
traits with higher prediction accuracy. In general, ana-
lysis was limited to those 22 traits with prediction accur-
acies greater than 0.5 with the kin-BLUP method.
Each analysis, except for BayesB, was conducted using

20 replications of a 5-fold CV approach to estimate pre-
diction accuracy within a single population or combin-
ation of populations. The subjects were divided at
random into five sets. For each set, the phenotypic BLUP
values (y) were sequentially used as a validation set (VS)
by masking and predicting the values ŷ based on the
model parameters estimated with the other four sets and
with inclusion of other genotypes from outside the sub-
ject group that served as the VS. The CS always included
all individuals not included in the VS.
Accuracy was determined from the average phenotypic

correlation rðŷ2; y2Þ between the true phenotype (y) and
GEBV ðŷÞ across folds and replications. The mean

squared error (MSE) was estimated from 1
n

P ðy−ŷÞ2
where n is the number of individual VS genotypes used
for each fold. Reported MSE values were averaged across
folds and replicates.

Partial least squares method
The partial least squares method (PLS) introduced by
Wold [63] decomposes the genotypic data W in orthog-
onal scores T called latent variables and loadings P that
are obtained by projecting the predicted variables and
the observable variables to a new space and regressing y
not on W but on the first a columns of the scores T.
The latent variables are obtained individually in an itera-
tive process which are then used as new variables of a
linear regression. This allows to account for collinearity
among the predictor variables and instances with many
more predictor variables than observations. The PLS
method was implemented with the R packages ‘pls’ [36].
In this specific instance the first 15 latent variables were
used for prediction.

Sparse partial least squares method
The sparse partial least squares method (SPLS) [29], like
PLS, allows selection of a sparse set of explanatory vari-
ables and dimensionality reduction while maintaining
good predictive ability. In the SPLS case, this is done
through imposing constraints onto the explanatory vari-
ables that are included in the loadings P. The constraints
are imposed through a threshold parameter λ1. Values
for this parameter as well as the optimal number of la-
tent variables to use for each trait were obtained through
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a cross-validation approach. SPLS prediction was imple-
mented using the ‘SPLS’ package [7, 8].

BayesB method
This method allows a portion (π) of the markers to
have large effects while most markers have no effects.
Marker variance is unique for each marker. Marker ef-
fects were estimated with Monte Carlo Markov Chan
simulations. The BayesB model was run with the
‘BGLR’ package in R that employs a Gibbs sampling al-
gorithm [11, 35]. A value of 0.05 for π was used with
5000 iterations and a 1500 iteration burn-in period and
a sampling frequency of 5.

Results
Read distribution and SNP diversity
The sequence tags aligned to a total of 148,557 unique
genome loci or approximately 104 Mbp− 1, of which
19,769 (13%) overlapped or intersected with annotated
gene regions. This is comparable to the 15% of the total
switchgrass genome annotated as gene region and dem-
onstrates little ascertainment bias using GBS. Within
these sequences, 19,342 SNPs were identified after filter-
ing. These were primarily biallelic and are summarized
in Table 3. Of the 19,342, 52.1% were transitions and
44% were transversions (TsTv = 1.183), 0.8% were single
nucleotide indels, 3.6% were triallelic, and 0.1% were
tetra-allelic. On average, there were 14.84 SNP Mbp− 1

detected with a strong significant relationship between
the total number of SNPs and the annotated length of
the chromosome (P < 0.001, Adjusted R2 = 0.7791), and
between SNP density and distance to the end of the
chromosomes (P < 0.001, Adjusted R2 = 0.7147). A total
of 5118 SNPs were annotated in coding sequences with

65% of the non-reference alleles caused by either mis-
sense or nonsense mutations, 2216 were in introns in
gene regions, 786 were annotated in the 3’ UTR region,
and 670 were annotated in the 5’ UTR region.

Differentiation of the populations
Population means and repeatability values for whole
plant measurements and NIR traits are shown in Table
2. MANOVA tests demonstrated significant influences
of population of origin on both morphological and
NIR-compositional data. Population yield averages
ranged from 0.6 kg dry matter YLD for Summer to
1.47 kg for Kanlow. Timing of anthesis and spring emer-
gence were different for each population. Anthesis
ranged from July 20 (202 DOY) for Summer to Septem-
ber 2 (246 DOY) for Kanlow while spring regreening
ranged from May 10 (130 DOY) for Summer to May 17
(137 DOY) for Kanlow. Individually, the Pearson
product-moment correlation coefficient r between YLD
and GRN was 0.22 while r between YLD and ANT was
0.43 (Additional file 1: Figure S1). There were also sig-
nificant positive correlations within two groups of
NIR-estimated cell wall properties (Additional file 1: Fig-
ure S2). These two groups were: (1) GLC, KL, ADL,
NDF, DM, FUC; and (2) N, IVDMD, MAN, UA, RHA,
ARA, GAL. There were significant negative correlations
between these two groups of properties. Repeatability
which, in this case, represents an upper limit of
broad-sense heritability ranged from 0.94 for ANT DOY
to 0.34 for etherified ferulates (FETH).
Population fixation statistics (FST) were evaluated over

all SNPs weighted by the population size and are re-
ported in Table 4. Most of the genetic variation that can
be explained by population structure is due to differ-
ences between the K, N1, and N1EM populations (as a
group) and the S populations (FST ~ 0.39–0.40). The K,
N1, and N1EM populations were all closely related (FST
~ 0.01–0.03) to each other. The hybrid-based KxS popu-
lation share more similarities with both S and K-based
populations (FST ~ 0.13–0.16) than these were to one an-
other,. This indicated that there was significant genetic
differentiation between the lowland-derived (K, N1,
N1EM) and the upland (S) populations.
Comparing the K, N1, and N1EM populations as a

group with the S population, no fixed differences (df )
were found whereby the lowland populations would be
homozygous for one allele and the upland population
homozygous for another. However, 3715 sites were fixed
in either group and segregating in the other.
Before performing the genomic predictions, the miss-

ing data was imputed using a k-nearest neighbor imput-
ation method (LD-kNNi) for unordered markers. This
approach uses pair-wise LD information from the
markers that are the most tightly linked (i.e. in LD) in

Table 3 Characterization of SNP obtained in five populations by
GBS after alignment with the switchgrass genome v. 4.1 and
filtering

Parameter value

Ts:Tv ratio 1.183

1 bp indel 0.8%

tri- + tetra-allelic 3.7%

Average SNP Mbp− 1 14.84

Annotated coding 5118
aMissense 3275 (64%)

Silent 1740 (34%)

Nonsense 76 (1.4%)

introns 2216

3’UTR 786

5’ UTR 670

Total SNPs 19,342
aMissense, silent, and nonsense were relative to reference AP13 genotype
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the genotypes to be imputed. Imputation resulted in
3,139,549 genotypes being added or 28% of the dataset.
Prediction accuracy of the missing data was estimated to
be 88.5% based on masking and imputing 10,000 known
genotypes.
Inference of population structure in the five popula-

tions based on PCA of the molecular data showed that
the first three principal components accounted for 4.6–
22.4% of the variation to jointly explain 40.4% (Fig. 1a).
The populations can be completely resolved by the first
PC (Fig. 1b, c) into three clusters represented by the
lowland accessions (K, N1, and N1EM), the upland ac-
cession (S), and the hybrid accession (KxS) that is posi-
tioned between the two other groups. This result agrees
with the group means of many of the phenotypes that
indicate significant differences between these three pop-
ulations (Table 2 and Additional file 1: Figure S3) as well
as with the populations fixation statistics. Previous stud-
ies have also reported genetic differentiation between
upland and lowland populations [16, 37, 40].
The first three PC were used to assess the impact of

population structure on genomic heritability (hg
2) for

the entire data set by orthogonal decomposition of the
genetic variance components. Separate genomic herit-
ability estimates (hg

2, hgA
2, and hgW

2) for selected traits
are presented in Table 5 and the variance estimates are
provided in Additional file 1: Table S5. Estimates for hg

2

ranged from 0.57 for ANT and SC to 0.15 for YLD. The
highest estimate for hgA

2 was 0.43 for ANT while the
lowest was 0.14 for ASH and YLD. More important for
the accuracy of genomic selection applications, hgW

2 es-
timates ranged from 0.01 for YLD to 0.31 for NSC. The
hgW

2 for ASH represented 62% of the total while the
hgW

2 for NSCE represented 60% of the total. Collect-
ively, the phenological traits (ANT and GRN) and YLD
were most influenced by population structure while the
NIR-compositional traits were influenced to a variable

degree. The hgA
2 for NIR compositional traits ranged

from 38 to 74% of total heritability.

Genome-wide patterns of linkage disequilibrium
The accuracy of genomic selection is dependent on the
degree of marker disequilibrium with underlying QTL
for traits of interest. Marker data was used to model
disequilibrium with potential QTL loci and calculated
pairwise r2 for all markers positioned on the same
chromosome. These were then sorted by distance and
the results for the 0–1 kb distance interval are plotted in

Table 4 FST estimates for pairs of switchgrass populations
weighted by sample size (19,342 SNPs)

Comparison FST Standard error

K v. S 0.3952 1.3 × 10−3

K v. N1 0.0131 1.1 × 10−4

K v. N1EM 0.0266 1.6 × 10−4

K v. KxS 0.147 6.4 × 10−4

S v. N1 0.3861 1.3 × 10−3

S v. N1EM 0.3949 1.3 × 10−3

S v. KxS 0.1559 7.6 × 10−4

N1 v.N1EM 0.0151 1.1 × 10−4

N1 v.KxS 0.1345 6.3 × 10−4

N1EM v. KxS 0.1446 6.6 × 10−4

a

b

c

Fig. 1 a Proportion of genetic variance explained by principal
components (PC) 1 through 8. b Plot of PC loadings along axes
(PC1) and (PC2) for individuals in the five switchgrass populations
indicated. c Plot of PC loadings along axes (PC3) and (PC4) for the
same individuals. Individuals are colored according to population
as indicated in the legend for (b), and the percentage variance
explained by each PC are indicated within parenthesis on each axis

Fiedler et al. BMC Plant Biology  (2018) 18:142 Page 8 of 16



Fig. 2. The mean r2 was 0.178 within chromosomes
across the entire dataset and appears to decay quite
rapidly dropping to nominal levels within 0.25 kb.
Filtering the data, based on criteria including depth of se-

quence coverage required per genotype, data-missingness,

or minor-allele frequency, had nominal effects on r2 values
and resulted in loss of information as SNP sites were fil-
tered out. Non-linear curve fitting using an exponential dis-
tribution was used to estimate the distance threshold for an
r2 = 0.2. Changing the sequence depth required to call a
genotype from 2 to 8 resulted in an approximate 6% in-
crease in the threshold distance. Changing the amount of
missing data allowed from 25 to 50% resulted in a 19% in-
crease in threshold distance, while filtering sites based on
minimum minor allele frequency from 0.05 to 0.20 resulted
in a 380% increase in threshold distance. However, these
changes only resulted in a small overall increase in thresh-
old to 76 bp. The threshold for the S population was 69 bp
while that for the combined lowland accessions (Low) was
58 bp. The KxS population had a lower threshold than ei-
ther the S or K populations.
Because r2 is known to vary across the genome we

attempted to look at trends across single chromosomes,
but the data was too sparse to detect these variations re-
liably. Overall the threshold value ranged from 33 bp
(Chr7N) to 82 bp (Chr3N) across all 18 chromosomes.
Threshold values were not significantly different be-
tween the N and K subgenomes.

Genomic prediction
Prediction accuracy results are summarized in Table 6
and Additional file 1: Tables S1-S4. In all cases, due to
population structure, GEBVs were more accurate when
the VS was sampled across the entire dataset (uncon-
strained). The highest accuracy using this CV method
was obtained for Flowering DOY (ANT) using
kin-BLUP (r = 0.88) while the following traits (FEST,
HEX, PCA, PPEN, GRN, IVDMD, FAT, SUC, YLD, SC,
GLCS, ETOH, HEXE, UA, NSC, FRU, ASH, AX,
HEXEP, PSOL) were above 0.5 under the same condi-
tions. When using a CV method where the VS was con-
strained to consist exclusively within one of either K,
N1, N1EM, S, or KxS populations, ANT accuracy ranged
from 0.46 in the N1 population to 0.06 in the K popula-
tion and across different traits r ranged from 0.57 for
Fructose (FRU) (MSE = 0.18) in the KxS population to −
0.23 (MSE = 0.05) for GRN in the KxS population. On
average, across all traits and populations, accuracy was
reduced 69.6% from the unconstrained CV strategy using
kin-BLUP and similarly for the other prediction
methods. GEBVs were slightly more accurate when the
“Low” population was used as a VS rather than the indi-
vidual K, N1, or N1EM populations and accuracies were
reduced only 66.9% from the unconstrained CV strategy.
The influence of increasing SNP density as well as the

training population size on prediction accuracy was ana-
lyzed as before using kin-BLUP with 5-fold CV across all
individuals for three test traits: IVDMD, YLD, and ANT.
The results are shown in Fig. 3a and b. For these traits

Table 5 Trait dependent across and within-population genomic
heritability estimates from switchgrass traits based on the first
three principal components

Trait ahgA
2 hgW

2 hg
2

ANT 0.43 b(0.76) 0.14 (0.24) 0.57

ASH 0.14 (0.38) 0.23 (0.62) 0.38

AX 0.29 (0.74) 0.1 (0.26) 0.39

ETOH 0.26 (0.51) 0.25 (0.49) 0.51

FAT 0.16 (0.5) 0.16 (0.5) 0.32

FEST 0.34 (0.65) 0.18 (0.35) 0.51

FRU 0.26 (0.64) 0.15 (0.36) 0.41

GLCS 0.31 (0.63) 0.18(0.37) 0.49

GRN 0.46 (0.87) 0.03 (0.13) 0.49

HEX 0.26 (0.74) 0.09 (0.26) 0.35

HEXE 0.18 (0.57) 0.13 (0.43) 0.31

HEXEP 0.16 (0.48) 0.17 (0.52) 0.33

IVDMD 0.19 (0.65) 0.10 (0.35) 0.29

NSC 0.25 (0.45) 0.31 (0.55) 0.55

NSCE 0.20 (0.4) 0.30 (0.6) 0.50

PCA 0.25 (0.59) 0.17 (0.41) 0.42

PPEN 0.31 (0.67) 0.16 (0.33) 0.47

PSOL 0.25 (0.47) 0.29 (0.53) 0.54

SC 0.29 (0.51) 0.27 (0.49) 0.57

SUC 0.28 (0.59) 0.19 (0.41) 0.47

UA 0.18 (0.7) 0.08 (0.3) 0.26

YLD 0.14 (0.92) 0.01 (0.08) 0.15
ahgA

2, across-population genomic heritability; hgW
2, within-population genomic

heritability; hg
2, genomic heritability

bfraction of total genomic heritability in parentheses

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Distance (kb)

r2

Fig. 2 Genome-wide linkage disequilibrium. SNPs were evaluated for
LD measured as r2 for patterns of linkage disequilibrium from pairs
of SNPs separated by a 0.001–1 kb window. Smoothing (red line)
was based on a penalized cubic regression spline
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Table 6 Genomic prediction accuracy (r) for indicated traits
using kin-BLUP, partial least squares (PLS), sparse partial least
squares (SPLS), and BayesB (BB) regression methods and
different cross-validation strategies

TRAIT aVS br kin-BLUP r PLS r SPLS r BB

ANT All c0.88 0.87 0.88 0.88

K 0.06 − 0.06 0.02 −0.12

KxS 0.23 0.24 0.23 0.34
dLow 0.58 0.55 0.57 0.53

N1 0.46 0.45 0.44 0.44

N1EM 0.3 0.22 0.29 0.34

S 0.11 0.11 0.12 0.23

ASH All 0.58 0.58 0.59 0.62

K 0.16 0.12 0.11 0.13

KxS 0.26 0.27 0.28 0.22

Low 0.2 0.2 0.22 0.09

N1 0.15 0.16 0.17 0.19

N1EM 0.16 0.21 0.24 0.28

S 0.17 0.18 0.18 0.07

AX All 0.58 0.56 0.58 0.52

K 0.1 0.1 0.13 0.12

KxS 0.26 0.26 0.08 0.19

Low 0.14 0.14 0.05 0.02

N1 0.1 0.19 −0.02 0.32

N1EM 0.14 0.08 0.13 0.17

S 0.13 0.12 0.09 0.05

ETOH All 0.64 0.64 0.63 0.61

K 0.2 0.31 0.24 0.31

KxS 0.41 0.39 0.34 0.39

Low 0.23 0.28 0.24 0.17

N1 0.22 0.3 0.25 0.31

N1EM 0.24 0.2 0.26 0.21

S 0.18 0.2 0.14 0.06

FAT All 0.68 0.68 0.68 0.71

K 0.18 0.18 0.23 0.17

KxS 0.1 0.06 0.11 0.14

Low 0.37 0.4 0.38 0.34

N1 0.41 0.51 0.47 0.35

N1EM 0.4 0.42 0.38 0.44

S 0.02 0.04 0.02 0.06

FEST All 0.82 0.83 0.83 0.80

K 0.08 0.07 0.14 0.26

KxS 0.44 0.4 0.39 0.36

Low 0.31 0.32 0.35 0.33

N1 0.22 0.27 0.26 0.41

N1EM 0.44 0.43 0.48 0.28

S 0.37 0.48 0.5 0.42

Table 6 Genomic prediction accuracy (r) for indicated traits
using kin-BLUP, partial least squares (PLS), sparse partial least
squares (SPLS), and BayesB (BB) regression methods and
different cross-validation strategies (Continued)

TRAIT aVS br kin-BLUP r PLS r SPLS r BB

FRU All 0.59 0.59 0.59 0.56

K 0.05 0.09 0.05 −0.06

KxS 0.57 0.48 0.43 0.51

Low 0.17 0.21 0.2 0.13

N1 0.12 0.21 0.19 0.03

N1EM 0.06 0.05 0.1 0.12

S 0.1 0.11 0.15 0.27

GLCS All 0.64 0.64 0.63 0.71

K 0.06 0.05 0.01 0.2

KxS 0.45 0.44 0.39 0.52

Low 0.1 0.16 0.14 0.17

N1 0.08 0.12 0.12 0.25

N1EM 0.04 0.12 0.15 0.09

S 0.24 0.36 0.32 0.35

GRN All 0.75 0.65 0.88 0.88

K −0.05 −0.13 −0.04 0.2

KxS 0 −0.28 0.03 −0.31

Low 0.05 −0.1 0.12 0.04

N1 0.19 −0.07 0.28 −0.08

N1EM 0.01 −0.05 −0.02 0.01

S 0.25 0.2 0.27 0.2

HEX All 0.78 0.78 0.77 0.78

K 0.27 0.21 0.21 0.22

KxS 0.39 0.45 0.34 0.13

Low 0.16 0.18 0.16 0.24

N1 −0.02 0.08 0.09 0.16

N1EM 0.15 0.19 0.24 0.18

S 0.34 0.39 0.35 0.39

HEXE All 0.64 0.65 0.65 0.60

K 0.27 0.25 0.14 0.22

KxS 0.39 0.46 0.41 0.5

Low 0.18 0.21 0.2 0.24

N1 −0.02 0.04 0.11 0.06

N1EM 0.2 0.26 0.21 0.27

S 0.26 0.31 0.29 0.34

HEXEP All 0.58 0.59 0.58 0.53

K 0.12 0.25 0.16 0.13

KxS 0.36 0.28 0.28 0.19

Low 0.24 0.31 0.27 0.21

N1 0.25 0.35 0.31 0.23

N1EM 0.25 0.2 0.26 0.19

S 0.17 0.12 0.12 0.05
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increasing the number of SNPs beyond 50 that were in-
cluded in the CS improved accuracy 50.0–62.2% with lit-
tle improvement seen beyond 3000 SNP. The effect of
increasing the number of individuals comprising the CS
from 40 to 386 resulted in a 7.6–10.1% improvement in
prediction accuracy and a decrease in its standard devi-
ation across replicates and folds.
When the CV approach was unconstrained by popula-

tion different regression techniques produced very

Table 6 Genomic prediction accuracy (r) for indicated traits
using kin-BLUP, partial least squares (PLS), sparse partial least
squares (SPLS), and BayesB (BB) regression methods and
different cross-validation strategies (Continued)

TRAIT aVS br kin-BLUP r PLS r SPLS r BB

IVDMD All 0.69 0.67 0.67 0.66

K 0.13 0.15 0.19 0.04

KxS 0.39 0.27 0.26 0.27

Low 0.26 0.27 0.29 0.3

N1 0.14 0.18 0.16 0.24

N1EM 0.19 0.13 0.19 0.19

S 0.12 0.02 0.05 0.04

NSC All 0.6 0.61 0.6 0.57

K 0.18 0.15 0.1 0.34

KxS 0.38 0.33 0.31 0.4

Low 0.23 0.28 0.24 0.3

N1 0.15 0.25 0.26 0.16

N1EM 0.13 0.18 0.23 0.27

S 0.25 0.34 0.29 0.01

NSCE All 0.58 0.59 0.57 0.61

K 0.14 0.13 0.04 0.16

KxS 0.39 0.37 0.34 0.4

Low 0.24 0.29 0.24 0.21

N1 0.11 0.22 0.18 0.12

N1EM 0.17 0.26 0.26 0.19

S 0.29 0.38 0.29 0.27

PCA All 0.74 0.73 0.74 0.75

K 0.15 0.13 0.17 0.12

KxS 0.38 0.26 0.25 0.22

Low 0.31 0.29 0.32 0.21

N1 0.07 0.13 0.08 0.13

N1EM 0.52 0.47 0.52 0.48

S 0.36 0.39 0.41 0.2

PPEN All 0.73 0.73 0.72 0.74

K 0.3 0.28 0.27 0.44

KxS 0.35 0.37 0.34 0.16

Low 0.24 0.27 0.25 0.31

N1 0.11 0.23 0.18 0.27

N1EM 0.31 0.25 0.26 0.24

S 0.23 0.27 0.24 0.16

PSOL All 0.58 0.58 0.57 0.56

K 0.14 0.15 0.08 0.05

KxS 0.42 0.36 0.33 0.42

Low 0.25 0.28 0.25 0.24

N1 0.18 0.26 0.24 0.28

N1EM 0.11 0.16 0.19 0.18

S 0.24 0.31 0.28 0.21

Table 6 Genomic prediction accuracy (r) for indicated traits
using kin-BLUP, partial least squares (PLS), sparse partial least
squares (SPLS), and BayesB (BB) regression methods and
different cross-validation strategies (Continued)

TRAIT aVS br kin-BLUP r PLS r SPLS r BB

SC All 0.66 0.67 0.67 0.64

K 0.16 0.18 0.11 0.29

KxS 0.47 0.43 0.42 0.42

Low 0.3 0.35 0.33 0.34

N1 0.15 0.25 0.25 0.15

N1EM 0.15 0.21 0.25 0.31

S 0.25 0.33 0.3 0.1

SUC All 0.68 0.68 0.67 0.7

K 0.13 0.17 0.06 0.14

KxS 0.49 0.44 0.4 0.42

Low 0.28 0.3 0.27 0.31

N1 0.21 0.29 0.28 0.12

N1EM 0.13 0.14 0.16 −0.1

S 0.19 0.17 0.14 0.18

UA All 0.63 0.62 0.62 0.61

K 0.11 0.18 0.08 0.14

KxS 0.21 0.21 0.22 0.19

Low 0.24 0.26 0.27 0.28

N1 0.03 0.08 0.12 0.34

N1EM 0.33 0.38 0.41 0.46

S 0.01 −0.02 0.01 0.09

YLD All 0.66 0.62 0.65 0.65

K 0.02 −0.03 0.09 0.2

KxS 0 −0.12 0.09 −0.03

Low 0.14 0.11 0.05 0.22

N1 0 0.07 −0.08 0.16

N1EM 0.13 0.06 0.02 0.24

S 0.25 0.15 0.24 0.14
aValidation strategies were designed to estimate prediction accuracy within
the indicated population by performing 5-fold cross validation with each
validation set comprised of 20% of the indicated population
br correlation of GEBV with observed phenotypic values, GS accuracy
cPrediction accuracies above 0.4 are highlighted. See Additional file 1: Tables
S1–4 for mean square error (MSE), intercept, slope, and standard
deviation statistics
d’“Low” represents the combined N1, N1EM, and K populations
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similar prediction accuracies for all traits except GRN.
For GRN, the SPLS method produced the highest accur-
acy (r = 0.74, MSE = 0.31) while PLS produced the lowest
(r = 0.65, MSE = 0.34). When the CV strategy was con-
strained by individual population or within the lowland
(“Low”) populations collectively, the results among re-
gression techniques were more variable. The greatest
variation among methods occurred for the trait·popula-
tion combinations where maximum prediction accuracy
was below 0.3. However, the coefficient of variation was
greater than 20% between methods for some trait·popu-
lation combinations with accuracies above 0.3. These in-
cluded the NSCE·S, PPEN·KxS, NSC·S, PCA·Low,
GRN·S, and SC·S combinations. In these cases, SPLS or
PLS were the most reliable prediction methods, while
BB was the least reliable.
Analysis of variance was used to quantify the

influences of trait, population, and prediction method on
both accuracy and bias of GEBV measurements
(Additional file 1: Table S6). GEBV prediction accuracy
was heavily influenced by both CV strategy and trait and
their second-order interactions with prediction method.
The influence of prediction method alone was only sug-
gestive of a significant effect. Bias was also impacted to a
large degree by population and trait and their interaction
effects while the second-order interaction of trait x pre-
diction method was only suggestive of some influence.

Discussion
GBS
Genotyping by sequencing approaches have been used
with varying numbers of loci and different genome cov-
erages for GS purposes in many species. Previously in
switchgrass, both reference based and non-reference
based SNP calling methods have been applied to GBS
data and these methods have provided evidence that
marker discovery and GS breeding approaches may be
both cost-effective and accurate [5, 31, 44]. In this study,

the ability to call SNP accurately was facilitated with the
TASSEL-GBSv2 pipeline. Numbers of tags and SNPs ob-
tained using this method were comparable to other spe-
cies such as oil palm (Elaeis guineensis; 19,432 SNPs)
and wheat (Triticum aestivum; 34,749) [10, 43]. The tags
and SNPs aligned unevenly across the reference genome
with more located toward the ends of each chromosome
and with no significant bias toward either sub-genome.
Using PstI with a recognition sequence of ‘CTGCAT’ to
assemble the libraries may have resulted in fewer
markers aligned to repetitive elements of low GC con-
tent and in more markers associated with the coding or
regulatory regions of the reference sequence located in
subtelomeric regions. This uneven distribution is diffi-
cult to separate from the current state of the available
switchgrass reference genome which is fragmentary, but
consistent with known gene distribution in other grass
species such as sorghum (Sorghum bicolor; [42]).

Population structure
Many of the trait phenotypes and the molecular variation
displayed moderate to severe population structure. This
was expected given the breeding history and origination of
these lines. The lowland populations K, N1, and N1EM
were less differentiated among themselves. Large differ-
ences in the estimation of genomic heritability occurred
depending on population and trait. Except for a few traits
(PSOL, NSC, ASH, FAT), most of the heritability existed
across populations rather than within populations. This
contrasts with some findings in maize (Zea mays) and rice
(Oryza sativa) populations where most heritability could
be explained within populations [21].
Accuracy and reliability of genomic predictions, have

been shown to decline as the distance between valid-
ation and training set increases [26]. In order to avoid
this situation, random sampling combined with a large
CS enabled capturing most of the existing diversity in
the CS across populations. Others have dealt with this
issue by stratified sampling across populations to

a b

Fig. 3 Differing numbers of SNPs or numbers of individuals in the kin-BLUP model. SNPs and individuals were randomly sampled at the indicated
levels and then used to construct the realized relationship matrix. Error bars: ± standard deviation of predictive ability (accuracy). a Different numbers
of SNPs using all available individuals from all populations. b Random subsampling of the numbers of individuals using all available SNPs
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optimize the calibration set or have used criterion such
as reliability [57], prediction error variance, or coeffi-
cients of determination [1, 26, 50]. These choices are
particularly relevant within a breeding program and de-
pend on the interaction of trait architecture and degree
of structure present.

Genomic prediction
The repeatability of measured traits was between 0.34
and 0.94. A strong positive relationship (R2 = 0.7; data
not shown) exists between repeatability and GEBV ac-
curacy and more focus was given to the 21 traits that
had both reasonable repeatability and accuracy above 0.5
for further analysis using different prediction ap-
proaches. These traits included total hexoses and etha-
nol potential, which are both important parameters for
bioenergy, as well as IVDMD which is predictive of daily
weight gains in cattle. Some traits that resulted in poor
GEBV accuracy included CAL, GAL, N, STA, MAN,
FUC, GLC and DM. One or more of these traits may
have had better accuracy using a restricted VS. However,
these traits were not examined due to the poor overall
accuracy. Although yield was included in this study,
yield data were collected in a spaced-planting trial whic
is not an accurate indicator of yield in densely-planted
(sward) plots with higher plant competition and mortal-
ity rates [5, 44]. This fact complicates genomic selection
strategies that include yield, but even including progeny
testing in sward plots, GS breeding strategies can still
shorten the generation interval. Prediction accuracy for
switchgrass yield in swards has been reported to be be-
tween 0.145 and 0.237 depending on the genotyping
platform [5].
Similar to previous examples of genomic prediction

based on GBS [10], reducing the number of SNP
markers used in analysis (to approximately 3000 in this
case) did not adversely affect predictive ability when the
VS was unconstrained among all populations. The ac-
curacy of GEBVs using kin-BLUP increased up to the in-
clusion of 3000 SNP markers for YLD, ANT, and
IVDMD. This could be due to the ability of relatively
few markers to adequately capture the relationships be-
tween populations, as well as the relatively close rela-
tionships of individuals within each population. Higher
marker coverage would be necessary to adequately cap-
ture more genetic variance associated with QTL in com-
mon between populations. Indeed, predictive ability
within individual populations was poor in many cases
and average inter-marker interval was much greater than
the distance threshold for LD (r2 ≤ 0.2). LD was found in
this study to decline rapidly over short distances <
1000 bp. This rapid LD decay could be explained by the
outcrossing nature of switchgrass [34], large effective
population size, high recombination rates or other

mechanisms [22]. These rates were similar to those re-
ported for US inbreds and landraces in Zea mays [55]
and in Picea abies [25]. Increasing the number of indi-
viduals included in the kin-BLUP analysis from 50 to
483 led to moderate, linear increases in average predic-
tion accuracy with a lower standard deviation between
replicates using 5-fold cross validation.
Differences between prediction methods were of inter-

est as there are very few empirical examples of direct
comparisons among these methods using actual data ra-
ther than simulated data. The PLS method employs di-
mensionality reduction while the sparse PLS combines
both dimensionality reduction and variable selection.
BayesB also uses variable selection as it allows some
markers to have large effects and most to have a genetic
variance of 0. Previously, results with switchgrass
showed no discernible performance differences with
three different prediction methods [31]. This study has
shown also that the methods were overall very similar in
prediction abilities across different traits and VS. Vari-
ation between methods was observed relative to trait·po-
pulation combinations with lower accuracies. These
combinations had higher standard deviations between
replicates and across folds, so in large part this variation
is likely to represent the random error component.
However, several trait·population combinations stood
out. These included the estimated ethanol from
non-structural carbohydrates (NSCE), soluble glucose
(GLCS), sucrose (SUC), and non-structural carbohy-
drates (NSC) particularly in the Summer population
where the PLS method performed substantially better
than the other methods. It is not surprising in this case
that these traits should act similarly as these phenotypes
were positively correlated and NSCE and NSC are calcu-
lated directly from the NIR estimates of STA, GLCS,
FRU, and SUC [60]. Another combination that is inter-
esting are the estimates of p-coumaric esters (PCA) and
ester-linked ferulates (FETH). These traits are positively
correlated and have the lowest values in the Summer
population. The accuracies of the GEBV were relatively
high when the VS consisted of any population, except
Kanlow and in the specific case of PCA in Kanlow N1.
This is only exceptional because, for these two traits,
there appears to be no strong reason why there should
be such a range of prediction accuracies across the dif-
ferent populations, within the same trait among the low-
land populations, given they were so closely related
based on PCA and F statistics.
The prediction accuracies in this set of data are com-

parable to those found among morphological and com-
positional traits in a Northern upland diversity panel
[31]. In that study, some of the same traits were ana-
lyzed, the CS and VS were derived from all the lines,
and the first two principal components of a PCA were
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used as explanatory variables to account for population
structure. In the present study, the first three principle
components were considered only for calculating herit-
ability across populations while the populations were
treated independently or in combination during the
cross-validation step to evaluate model performance
without attempting to use the PC as explanatory
variables.

Conclusions
This study emphasizes the possible benefits of using gen-
omic selection in switchgrass. There are still many im-
provements that can be made in both phenotyping and
genotyping methods (such as efficient indirect methods to
predict yield in highly competitive environments) to
improve genetic gains more rapidly in switchgrass [5].
However, it is apparent that both morphological and com-
positional traits may be efficiently selected using indirect
methods based on genotypic data alone and whole gen-
ome regression techniques. The key in the future will be
to assess the cost effectiveness of these techniques in
switchgrass, given the uncertainty and complexity of bioe-
nergy production processes.
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Additional file 1: Figure S1. Correllelogram depicting positive (blue)
and negative (red) correlations among whole plant traits. Color scale on
right indicates Pearson correlation coefficient r. Figure S2. Correllelogram
depicting positive (blue) and negative (red) correlations among wall
composition traits determined by NIR. Color scale on right indicates
Pearson correlation coefficient r. Figure S3. Boxplots of (a) ANT, (b)
IVDMD, and (c) YLD for each population. Bottom and top of each box
represent the first and third quartiles. Horizontal line represents the
median, whiskers extend to the most extreme data point that is no more
than 1.5 times the interquartile range from the box. Table S1. kin-BLUP
regression statistics from 20 replicates of 5-fold CV. Table S2. Partial Least
Squares regression statistics from 20 replicates of 5-fold CV. Table S3.
Sparse Partial Least Squares Regression statistics from 20 replicates of
5-fold CV. Table S4. BayesB Regression statistics from 5-fold CV. Using
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on dominant principal components 1–3. Table S6: ANOVA of factors
influencing prediction accuracy. (DOCX 442 kb)
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