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Abstract

Background: Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression.
Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns
in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific
gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs)
in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with
large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this
approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000
TFs in maize.

Results: Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific
regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs,
and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs
were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched
expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for
that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm.

Conclusions: By combining publicly available genome-wide expression data and network analysis, we can uncover
GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study
provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs.
We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/
mgrn/), for easy querying. All source code and data are available at Github (https://github.com/timedreamer/maize_
tissue-specific_GRN).

Keywords: Maize, Gene expression, Transcriptional regulation, Transcription factor, Network, Bioinformatics, Systems
biology, Machine learning, Database

Background
Regulation of gene expression is one of the most import-
ant and complex issues in biology. It is particularly inter-
esting and intricate in eukaryotic species due to their
large genomes and higher-order nuclear organization.
Plant biologists pioneered genetic research in gene
regulation, from Gregor Mendel to Barbara McClintock,

and their work forms the foundation of the current
understanding.
Maize (Zea mays) has been a model organism for over a

hundred years, and is also of substantial economic signifi-
cance. The recent development of next-generation se-
quencing has greatly enhanced maize research by making
it easier to investigate genome-wide expression changes.
Such data can be used to construct gene regulatory net-
works (GRNs) that elucidate gene regulation interactions
in a systematic way [1, 2]. Even though all cells carry the
same genetic code, cellular differentiation is likely guided
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by distinct GRNs. There has been limited research in
maize to decipher tissue-specific GRNs [3, 4].
Although there are many different types of genetic

regulatory proteins, transcription factors are of particu-
lar interest because they represent a relatively straight-
forward regulatory interaction between a protein and the
chromosome, likely leading to direct changes in tran-
scriptional activity. One of the TF resources in maize is
the Grass Regulatory Information Services (GRASSIUS)
with 2587 annotated TFs in maize [5], and 2034 TF open
reading frame (ORF) cloned vectors [6] to facilitate
TF-target interaction analysis. In this study, we focused
on the TFs from the GRASSIUS annotation and our
GRN refers to the interactions between the GRASSIUS
TFs and their regulated targets. Other types of regula-
tion, such as protein-protein interaction and epigenetic
regulation, are beyond the scope of this study but can be
analyzed with variations on the approaches available
through GRN analysis [7, 8].
To unravel TF regulatory interactions, in vivo methods

using chromatin immunoprecipitation (ChIP) are the
gold standard. Basically, ChIP experiments isolate
TF-DNA complexes in vivo. Coupled with PCR
(ChIP-qPCR), microarray (ChIP-chip) or sequencing
(ChIP-Seq), this approach can determine the positions of
TF binding and allow the prediction of high-confidence
TF regulatory regions. However, in plants there are a
relatively small number of published ChIP datasets, per-
haps due to limitations with plant transformation, anti-
body efficiency, and other experimental difficulties. Even
in a well-studied plant model like Arabidopsis thaliana,
there are only 46 TFs with ChIP-chip/Seq data, collected
from three main databases including JASPAR [9],
CIS-BP [10] and CressInt [11]. In maize, there is pub-
lished ChIP-Seq data for only five TFs. As a comparison,
the human ENCODE project generated ChIP-Seq data
for 630 TFs [12].
As an alternative or complementary approach, in vitro

methods could be applied to construct large-scale GRNs.
Several yeast-one hybrid (Y1H) systems have been estab-
lished for Arabidopsis TF-DNA screening [13–15]. In
maize, the TFome project [6] provides an invaluable re-
source of over 2000 maize TF clones to facilitate
high-throughput studies, including a recent Y1H screen
that identified over a thousand TF-Target interactions in
a maize phenolic metabolic pathway [16]. Other poten-
tial data for GRNs can be generated with systematic evo-
lution of ligands by exponential enrichment (SELEX)
[17], protein binding microarrays (PBM) [18] or DNA
affinity purification sequencing (DAP-seq) [19]. These
methods can discover cis-elements for tens to hundreds
of TFs that help decode complex transcriptional net-
works. DAP-Seq can also incorporate DNA methylation
information which has been shown to impact TF-target

binding in Arabidopsis [19] and human [20]. Most of
these approaches have not yet been used in maize.
PlantRegMap and some other tools [21–23] predict TF

binding sites based upon the idea that homologous TFs
in different related species might recognize the same
motif or cis-regulatory element (CRE). These sequences
are represented in Position Weighted Matrices (PWMs)
that can be used to predict TF targets. This approach
relies on high-quality PWMs generated from ChIP-Seq,
PBM or DAP-Seq data. PlantRegMap collected 674
high-quality motifs which could project to only 229 of
the 2587 TFs predicted for maize by GRASSIUS [5].
Another limitation of in vitro and homology-based
methods is that regulatory interactions at tissue and
cell-type levels cannot be detected or inferred from this
data alone.
An alternative approach to infer regulatory networks is

through the use of statistical inference algorithms ap-
plied to gene expression data. One particularly effective
algorithm is GENIE3 [24], which was the highest scoring
of inference algorithms that were compared based upon
the Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenge 4 and 5 [25]. GENIE3 has
been successfully applied to Arabidopsis [26] and maize
[27] GRN construction. This method uses regression
trees [28] to model regulators for each gene, and can
therefore predict TF-target interactions. GENIE3 it does
not require a specific experimental design, and can
therefore be applied to the large amount of publicly
available genome-wide expression dataset. Furthermore,
GENIE3 can reveal non-linear relationships. It makes
use of the random forest algorithm [29] with ensembling
1000 bootstrap trees and finds the regulators that can
reduce model variance by splitting trees. GENIE3 has
implementations in Python, Matlab and R languages that
are easy for researchers to use. Also, similar methods
have been adapted to time-series [30], single-cell [31],
and integrated [32] GRNs showing its wide applicability.
GENIE3 takes advantage of parallel computing and can
generates large networks on a multi-core desktop. By
using network analysis, GRNs were constructed for a
total of 2241 TFs in four different tissues (leaf, root,
Shoot Apical Meristem and seed). We discovered TF in-
teractions that could be confirmed by ChIP-Seq datasets,
which suggest that this approach was effective at pre-
dicting true interactions. GRNs in different tissues re-
vealed tissue-specific TF regulatory interactions that
could correlate with distinct biological functions. We
found the centrality of a TF didn’t correlate with its ex-
pression and each tissue employed distinct TFs as master
regulators. A user-friendly web portal (http://www.bio.
fsu.edu/mcginnislab/mgrn) was developed. All source
codes are available at Github and can be easily applied to
other organisms.
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Results
Maize transcription factors show tissue-specific
expression patterns
Previously, we re-analyzed 1266 high-quality RNA-Seq
libraries in various maize tissues and generated a gene
coexpression network [33]. Tissues with more than 100
libraries from that expression matrix were chosen to
construct tissue-specific GRNs (Fig. 1a). There were four
tissues included: leaf, root, shoot apical meristem (SAM)
and seed (Additional file 1). In each tissue, genes having
more than one counts per million (CPM) in more than
10% of tissue libraries were considered expressed in that
tissue. We found 76.06% (30,028/39479) of genes in
maize were expressed in at least one tissue, and 54.34%
(21,453/39479) of genes were expressed in all four tis-
sues (Fig. 1b). These numbers are comparable with a
previous study [34] that reported 91.4% of genes were
expressed in at least one tissue and 44.5% were expressed
in all tissues, although our analysis used fewer tissues and
an updated gene annotation (AGPv3). A small portion of
genes exhibited tissue-specific expression (Fig. 1b), and

gene ontology (GO) enrichment analyses were conducted
for those genes (Additional file 2). We found leaf-specific
genes were enriched for photosynthesis activity
(p-value = 2.40E-06) and seed-specific genes were en-
riched in nutrient reservoir activity (p-value = 1.39E-37),
including 20 zein genes.
Next, we inspected the expression pattern of TFs

among four tissues. Of all 2587 TFs annotated by
GRASSIUS [5] in maize AGPv3, 86.63% were expressed
in at least one tissue and 54.46% (1409/2587) were
expressed in all four tissues in our data (Fig. 1c). This
suggests that a considerable number of TFs are present
in multiple plant organs. 10.90% (282/2587) of TFs were
only expressed in one tissue (44 in leaf, 100 in root, 52
in SAM and 86 in seed), including some well-studied
examples: Narrow Sheath1 (NS1) in leaf; Rootless
concerning crown and seminal roots1 (RTCS1) in root;
Teosinte Branched1 (TB1) in SAM; Viviparous1 (VP1) in
seed (Table 1). Mutants of these TFs have been shown to
exhibit phenotypes in relevant tissues. For example, the
ns mutant plants exhibit deletion of lower leaf margins

a b

c d

Fig. 1 Maize Gene Regulatory Networks (GRNs) in four tissues. a Number of RNA-Seq libraries used to build GRNs in each tissue. Libraries were
grouped into tissues based on SRA metadata data and/or published papers (details in Supplemental table1). SAM: shoot apical meristem. b A
Venn diagram showing the overlap of genes expressed in leaf, root, SAM and seed. A gene was designated as expressed in a tissue if it had
counts per million (CPM) value higher than 1 in more than 10% of libraries. c An UpSet graph showing the overlap of expressed Transcription
Factors (TFs) in each tissue. Number of TFs expressed in each individual or combination of tissues were represented in bar plot (orange). The
intersections were represented by connected black dots. Total number of TFs expressed in each tissue were represented in blue bar plot.
d Expression heatmap of 1409 TFs that were expressed in all four tissues. TFs were clustered into 15 sub-groups (separated by dashed lines)
based on their expression patterns. Gene expression value from each tissue were averaged and z-transformed, resulting in a scaled expression
values between − 1.5 and + 1.5 for each gene. Hierarchical Clustering was calculated by hclust() function in R
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[35]; the rtcs1 mutants completely lose crown and lateral
roots [36]; tb1 mutants are highly branched due to the
loss of apical dominance [37]; vp1 mutant seeds germin-
ate early on immature cobs [38]. Even though some TFs
were expressed in all four tissues, these 1409 genes had
distinct expression patterns (Fig. 1d), which may con-
tribute to tissue-specific functions. Since TFs are pivotal
gene expression regulators, their patterns may represent
diverse and tissue-specific gene regulatory networks.

Gene regulatory network construction for four tissues
To construct tissue-specific GRNs, we used GEne
Network Inference with Ensemble of trees (GENIE3)
algorithm [24], the best performer in the DREAM 4 and
5 challenge that used a tree-based ensemble machine
learning method to predict gene regulatory relationships
[25]. Although extensive benchmark comparisons be-
tween this and other algorithms have been reported pre-
viously [24, 25], we compared GENIE3 with two other
state-of-art algorithms: Minimum Redundancy NET-
work (MRNET) [39] and context likelihood of related-
ness (CLR) algorithm [40]. The tissue-specific GRNs
were inferred from each tissue’s expression matrix by
setting the 2587 TFs as “candidate regulators”. This re-
sulted in a predicted GRN for each of the 4 tissue types.
First, we evaluated the quality of these four networks

by using published TF ChIP-Seq data of DNA precipi-
tated using antibodies that would interact with Knotted1
(KN1) [41], Fasciated ear4 (FEA4) [42] and Opaque
endosperm2 (O2) [43]. These 3 proteins are known TFs
with specialized function in SAM and ear development
(KN1 and FEA4) or seed development (O2). FEA4 is
expressed in all four tissues while KN1 is only expressed
in SAM and seed, and O2 is only expressed in seed. The
performance of the GRNs were evaluated by TF
ChIP-Seq data using area under the receiver operator
characteristic curves (AUROC) and area under the
precision-recall curves (AUPR). These are widely used
summary statistics for binary classification problems,
such that values higher than those obtained using ran-
dom samples indicate that the classification algorithm
has detected more patterns than expected for a random

subset. From each ChIP-Seq dataset, genes with
high-confidence peaks within 10 kb regions were consid-
ered as positive targets for that transcription factor (see
Methods for details). The expression patterns for KN1,
FEA4 and O2 were consistent with the published gene
expression atlas [44] for these three TFs, and the sum-
mary statistics for all of our GRNs were all better than
random samples except for O2 (Table 2). It has been
shown that there is a very low overlap between
O2-bound genes and genes that are misregulated in o2
mutants [43]. Thus, it may be difficult for any algorithm
that is purely based on expression data to infer
regulatory interactions for O2. Aside from the O2 GRN,
the AUROC and AUPR values suggested that our
tissue-specific GRNs predicted regulatory interactions
that were consistent with ChIP-Seq data. Although
GENIE3 generally resulted in similar AUROC and AUPR
values compared to MRNET and CLR, the AUROC and
AUPR values for FEA4 SAM networks generated by
GENIE3 were higher than the MRNET and CLR net-
works (Additional file 3). Since it’s already known that
FEA4 is an important regulator in SAM, we chose the
GENIE3 as our network construction method for
additional experiments.
In the next set of analyses, for normalization purposes,

the four GRNs were constrained to include only the top
1 million interactions (edges) calculated by GENIE3.
This is a commonly used cutoff for networks [27] and
allows us to compare networks between tissues with dif-
ferent total number of edges. For all remaining results,
unless specifically indicated, otherwise the GRNs used
for analysis are constrained in this manner. Edges of net-
works were treated as “directed” wherein TFs were mod-
eled as regulators and all genes expressed in that tissue
as targets. We compared the edge overlap among four
tissues (Additional file 4). For pairwise comparison, leaf
and SAM GRNs shared the most of edges with 7.12%
(71,190/100000) common between the two tissues,
followed by seed and SAM 5.07% (50,664/1000000). To
our surprise, of four million edges total, about 80% of
edges were unique to a tissue and only 0.268% (2679
/1000000) edges were shared between all four tissues.
This result indicated that even though over 50% of TFs
are expressed in four tissues, there are likely distinct
regulatory targets in different specific tissues. We inves-
tigated the 2679 shared edges of four GRNs consisting
of 353 TFs and 1657 target genes (Additional file 4 &
Additional file 5). The GO analysis of target genes re-
vealed multiple essential biological processes including
cell cycle, DNA replication, cell division and chromo-
some organization (Additional file 6). Interestingly, there
were 30 genes annotated as histone H3K9 methylation
(p-value = 1.04E-21) which suggested the importance of
epigenetic regulation, and particularly heterochromatin

Table 1 Examples of TFs that are unique to a single tissue

Tissue Gene name GeneID Reference

Leaf Narrow sheath1 GRMZM2G069028 [35]

Root Rootless concerning crown
and seminal roots1

GRMZM2G092542 [82]

SAM Teosinte branched1 AC233950.1_FG002 [83]

Seed Viviparous1 GRMZM2G133398 [84]

Seed Opaque endosperm2 GRMZM2G015534 [43]

Seed Prolamin-box binding factor1 GRMZM2G146283 [85]

Seed Transfer cell response regulator1 GRMZM2G016145 [86]
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formation and gene silencing [45–47]. These interactions
may be necessary for plant growth.

GRN analysis can be used to predict tissue-specific
regulation by TFs
After exploring the overall network quality, we further
analyzed the tissue-specific interactions for KN1, FEA4
and O2. Consistent with their expression pattern, O2
only had predicted interactions in seed, KN1 only had
predicted interactions in SAM and seed, while FEA4 had
predicted interactions in all four tissues (Figs 2 and 3).
For both KN1 and FEA4, SAM GRNs had over 500 pre-
dicted interactions. This is consistent with important
regulatory roles for KN1 and FEA4 in SAM develop-
ment, and such functions have been reported for these

TFs [41, 42]. For KN1 and FEA4 respectively, 91.23%
(1644/1802) and 95.96% (832/867) interactions were pre-
dicted to be exclusive for one tissue (Fig. 2c, d). Interest-
ingly, we found two unique GO terms, “shoot system
development (p-value: 1.31E-02)” and “nutrient reservoir
activity (p-value: 6.31E-25)” from KN1 SAM targets and
O2 seed targets respectively (Additional file 7) suggest-
ing that the tissue-specific GRNs identified genes with
relevant functionality.
If GRN predictions were enriched for ChIP-Seq con-

firmed targets, that would suggest that GRNs could reliably
identify putative targets for other TFs without ChIP-seq
data. From the predicted targets of KN1, FEA4 and O2, we
compared how many of them in each tissue were con-
firmed by ChIP-Seq data (Fig. 3 & Additional file 8).

Table 2 Evaluation of tissue GRNs generated by GENIE3

KN1 AUROC AUPR FEA4 AUROC AUPR O2 AUROC AUPR

Random 0.500 0.108 random 0.500 0.103 random 0.500 0.061

SAM 0.558 0.187 leaf 0.545 0.147 seed 0.496 0.07

Seed 0.554 0.193 root 0.541 0.14

SAM 0.56 0.171

seed 0.533 0.15

AUROC and AUPR values were calculated tissue GRNs using three TFs’ ChIP-Seq data (KN1, FEA4 and O2). The random networks (random) were permutated
10,000 times. The leaf, root, SAM and seed refer to tissue-specific GRN

a b

c d

Fig. 2 Target prediction of top 1 million edges for Knotted1 (KN1) (a and c) and Fasciated ear4 (FEA4) (b and d) in different tissues. a Number of
predicted KN1 targets in each tissue-specific GRN. b Number of predicted FEA4 targets in each tissue-specific GRN. c A Venn diagram showing
the overlap of KN1 targets between the SAM and seed GRN. d A Venn diagram showing the overlap of FEA4 targets between the four
tissue-specific GRNs
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One-tail Fisher’s exact tests were applied to test the signifi-
cance of the overlap. Most of the predictions exhibited sig-
nificant enrichment for ChIP-identified targets, except for
FEA4 seed and O2 seed predictions (p-value > 0.05; Fig. 3).
This might be because FEA4 has a limited function in seed.
Although O2 seed predicted targets were not enriched in
O2-bound genes, our network predicted interactions for 7
of the top 10 most down-regulated genes in o2 mutants,
including 6 zein genes which are well-characterized O2 tar-
gets [43].
Another prediction method is to search gene pro-

moter regions for TF-specific cis-regulatory element
[21, 22, 48, 49]. This method relies on high-quality
Position Weight Matrices (PWM) that are only available
for limited number of TFs in maize. We compared our
predictions with the PlantRegMap database [21] contain-
ing KN1, but data was not available for FEA4 and O2.The
PlantRegMap’s prediction were also significantly enriched
(p-value < 2.2E-16) for KN1 ChIP-binding targets.
Furthermore, we compared the percentage of overlap

between GRN predicted targets and ChIP identified tar-
gets among various network sizes. Predictions for KN1,
FEA4 and O2 that were within 10 million edges were in-
cluded in the “large” network, only those predictions
that were within the top 1 million edges were included
in the “medium” networks, and only those predictions in
the top 100,000 edges were included in the “small” net-
works. An increasing pattern of overlap percentage
(Fig. 4) was observed for most of TFs as more stringent
networks, networks with fewer edges, were selected, ex-
cept for FEA4 in root. In FEA4 root GRN, no overlap

targets could be found (Additional file 8), but this is
likely related to the small number of interactions (n = 2).
Moreover, we compared tissue GRNs with developmen-
tal atlas GRNs (Additional file 8) [27]. The atlas GRNs
were also created using GENIE3, but used different
mRNA and protein expression datasets. 2200 TFs and
545 TFs were included in the mRNA and protein GRN
respectively. KN1 and O2 were in both GRNs, but FEA4
only in the mRNA GRN (Additional file 9). We found
our tissue-specific GRNs had comparable or better
overlap percentage between predicted targets and

Fig. 3 Venn diagrams summarizing the overlap between predicted targets and ChIP-Seq identified targets of KN1, FEA4 and O2. Blue circles are
the number of predicted targets for tissue-specific GRN (leaf, root, SAM and seed) or the Plant Transcriptional Regulatory Map (PlantReg); red
circles are the number of targets identified by ChIP-Seq. KN1 and O2 were not expressed in some tissues (Not expressed). FEA4 and O2 were not
included in PlantReg database (No data). P-values were calculated from one-tail Fisher’s exact tests and significant overlaps were indicated with
*** (p-values less than 0.01) or * (p-values less than 0.05)

Fig. 4 Overlap between ChIP-Seq identified targets and GRN
predicted targets in three sizes of networks. Network size was
limited to the top 10 million edges (large), top 1 million edges
(medium) and top 100,000 edges (small)
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ChIP-identified targets with the atlas GRNs (Additional
file 9). The overlap percentage also increased when using
small networks, except FEA4-mRNA GRN. In conclusion,
these results demonstrated that tissue-specific GRNs can
predict TF binding interactions in different tissues.

GRN analysis can be used to identify central functionality
of TFs in distinct tissues
As we discovered from KN1 and FEA4, TFs may have
varied numbers of interactions (degree centrality) in dif-
ferent tissues. We wondered whether this might be
correlated with differences in TF gene expression. For
example, TFs might have more interactions in the tissue
in which the TF is the most highly expressed. To test
this, we plotted the number of interactions for each TF
against their expression level in each tissue (Fig. 5 &
Additional file 10). This analysis included 1406 TFs with
at least one interaction in all four tissue GRNs. For all
four tissues, the R-squared values were between 0.0012
and 0.124 (Fig. 5 & Additional file 10) for linear regres-
sion models of the number of interactions against gene

expression (measured by CPM or log2(CPM+ 1)). This
suggested that there were no linear relationships be-
tween TF expression and degree centrality, and that the
difference in number of interactions was not likely to be
caused by differential TF gene expression. Alternatively,
differences in degree centrality may reveal distinct bio-
logical function or activity for TFs in different tissues.
TF degree centrality varied widely for specific TFs be-

tween tissues (Fig. 6a). We calculated the coefficient of
variation (CV), a measure of relative variability, on de-
gree centrality between the four tissues. The CV ranges
from 9.583 to 186.376 with a mean value equales to
88.444. To focus on TFs with large numbers of predicted
interactions, a minimum difference in degree centrality
of 500 was considered acceptable for further analysis
(Additional file 11). We then analyzed the TFs with top
100 largest CVs and found 12 (leaf ), 28 (root), 28 (SAM)
and 32 (seed) of them had the highest degree centrality
in each tissue. TFs with large numbers of interactions in
the leaf included genes that would be expected to
regulate different aspects of leaf development based on

a b

c d

Fig. 5 Effect of gene expression (calculated by log2(CPM + 1)) on the number of interactions for TFs in (a) Leaf GRN, (b) Root GRN, (c) SAM GRN,
(d) Seed GRN. Linear regressions were plotted in blue lines with a grey band as the 95% confidence intervals. R2 and p-values were calculated
from the linear models by lm() function in R
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homology to Arabidopsis, like SPL9/15 [50] and TCP2/
24 [51]. For example, GRMZM2G126018 (homologous
to SPL9/15) has 765 interactions in leaf, but no more
than 80 in the other three tissues. We also found
GRMZM2G171912 (HY5), GRMZM2G028438 (SCL8)
and GRMZM2G146020 (VIP1) had much more interac-
tions in root than other tissues (Additional file 11). To-
gether, these indicated the TFs that appeared important
based upon our analyses had other features that were
suggestive of unique roles in each tissue.
TFs with a degree centrality > 2000 were defined as key

TFs in each tissue, and there were relatively small num-
bers of these in each tissue (Fig. 6 & Additional file 12).
There were 110 key TFs in leaf, 53 in root, 88 in SAM and
56 in seed (Additional file 13). A few well-studied exam-
ples included Rough sheath2 (RS2, GRMZM2G403620) in
leaf, Homobox3 (HOX3, GRMZM2G314546) in SAM and
Prolamin-box binding factor1 (PBF1, GRMZM2G146283)
in seed. An overlap visualization (Fig. 6b) showed that
75.90% (233/307) key TFs were unique to one tissue. We
also found 36 key TFs that were shared by at least two
tissues (Additional file 14). In-depth mining using BioMart
(http://plants.ensembl.org) revealed that the homologs
of these 36 TFs were critical for development in
Arabidopsis (Additional file 14). One example is BZIP113
(GRMZM2G445575) which is homologous to TGACG
motif-binding factor (TGA) family in Arabidopsis. It has
been shown that TGA genes involved in flowering [52],
biotic stress [53] and nitrogen signaling [54]. These 36
TFs are candidates for broad transcriptional regulators in

maize. In short, our data suggests that each tissue may use
unique TFs as key regulators that can be identified using
network analysis.

Topological and clustering analysis
To characterize the topology of the tissue-specific GRNs,
each network’s topological characteristics were com-
puted by NetworkAnalyzer [55]. It has been shown that
robust biological networks tend to have scale-free archi-
tectures which fit a power-law distribution [55, 56].
Since GRNs are directed networks (TFs regulate target
genes), only out-node degree distributions were calcu-
lated. For all four tissue GRNs, the connectivity of
out-node distributions fit the power-law with R-squared
values ranging from 0.398 to 0.601 (Additional file 15),
suggesting that our GRNs were robust. These R-squared
values are lower than what was determined for our pre-
vious optimized maize GCN. This is likely related to the
fact that this is a GRN using TFs as regulators, which
tend to have higher numbers of interactions than what
will be predicted by the power-law distribution.
Next, to find functional modules, GRNs were parti-

tioned using the Markov Cluster Algorithm (MCL) [57],
an unsupervised clustering algorithm based on network
topology. This method has been successfully applied to
maize and other plant species [58–61]. The MCL differen-
tiated 604, 737, 844, 399 modules in leaf, root, SAM and
seed, suggesting these were functional modules in these
tissues (Fig. 7). Among those modules, 232 (leaf GRN),
278 (root GRN), 268 (SAM GRN) and 166 (seed GRN) of

a b

Fig. 6 TF interactions in four tissue-specific GRNs. a A heatmap showing the distinct pattern on number of targets for each TF among four
tissue-specific GRNs. The color scale was based on quantile breaks such that each color represents 10% of the data. Hierarchical clustering was
based on Euclidian distances. b An UpSet graph visualizing the set interactions among key TFs in each tissue GRN. Number of key TFs expressed
in each individual or combination of tissues were represented in bar plot (orange). The intersections were represented by connected black dots.
Total number of key TFs expressed in each tissue were represented in blue bar plot. TFs shared by at least two tissues were shaded in light grey
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them had more than 10 genes (Fig. 7) and were therefore
amenable to GO analysis. We did GO enrichment analysis
for these 944 modules using g:profile [62]. We found 156
modules that were enriched for at least one Biological
Process (BP) GO term. In each tissue, the largest module
was enriched for genes that would be likely to support the
biology of that tissue: photosynthesis (leaf), translation
(root), protein catabolic process (SAM) and cellular amino
acid metabolic process (seed). A deeper look at the largest
module in leaf showed enrichment in generation of precur-
sor metabolites and energy (p-value = 7.65E-08), carotenoid
biosynthetic process (p-value = 1.59E-04) and response to
blue light (p-value = 5.87E-04) (Additional file 16). This
indicated that MCL could recover biologically relevant
modules in each tissue. Gene lists of modules in each
tissue and their GO enrichment can be downloaded
from our website.

Website design
To share our results, we constructed a user-friendly web
portal, Maize tissue-specific Gene Regulatory Network
(mGRN, http://www.bio.fsu.edu/mcginnislab/mgrn) using
MySQL and PHP. It provides search, visualization and
download services (Fig. 8). Users can search for TF regu-
lated targets (as TF) or TF regulators (as target) for query
genes in four tissues-specific GRNs (Fig. 8a). By default, a
summary table of number of predicted regulatory interac-
tions is provided (Fig. 8b). Double clicking the numbers
will link to the gene IDs in each category. If there are two
to four intersections, double clicking the tissue or genes
will launch an interactive Venn diagram (Fig. 8c). Overlap
gene IDs and number of genes can be retrieved from the
plot. A detailed tutorial is provided on how to visualize our
network result in Cytoscape and R (Additional file 17).
The top target genes with detailed information can be

fetched on web (Fig. 8d). The TF regulator with pre-
dicted targets are the first two columns. To better

understand gene functions, targets or regulators gene
positions and descriptions based on AGPv3.31, as well
as the best matched Arabidopsis gene annotation from
BLASTP are provided. Double clicking “Regulator”,
“Targets” or “A.thaliana” gene IDs redirects to GRASSIUS
[5], MaizeGDB [63] or Araport [64] respectively for easy
mining. All search result as well as whole networks can be
downloaded from the website for further analysis. So far,
our database only accepts maize version 3 gene IDs. An
“ID Convert” tool is set up for converting between maize
version 4 gene IDs and version 3 gene IDs.

Discussion
The maize gene expression atlas [34] describes some
level of tissue-specific expression for over half of the
genes in maize. This suggests that tissue specificity of
gene expression is biologically important. In this study,
we have constructed maize GRNs from RNA-Seq ex-
pression data for leaf, root, SAM and seed tissue using a
machine learning algorithm, GENIE3. There are other
GRN construction methods, but GENIE3 was selected
for analysis because it only requires gene expression data
and does not require assumptions on the data distribu-
tion. Bayesian-based methods, such as BNFinder [65],
need delicate genetic perturbation or time-series design.
Both are hard to obtain from public data. GENIE3 also
has the ability to reveal non-linear relationships between
TF and target where Pearson correlation coefficient
(PCC) and Spearman correlation coefficient (SCC) based
methods detect linear relationships [66]. Third, unlike
Bayesian methods, GENIE3 can discover feedback loops
which are prevalent in biological networks. For example,
the feedback loop between CLAVATA and WUSCHEL in
controlling SAM development has been reported in both
Arabidopsis and maize [67–69]. Unlike correlation and
mutual information (MI) based methods GENIE3 pre-
dicts the direction of the regulations since it generates

a b

Fig. 7 A summary of Markov Cluster Algorithm (MCL) clustering. a Total number of clusters discovered by MCL in each tissue-specific GRN.
b Number of clusters with more than 10 genes. Clusters with at least one significant Gene Ontology (GO) term in Biological Process (BP) were
colored dark blue. Clusters without significant Gene Ontology (GO) term in Biological Process (BP) were colored light blue
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two values for modeling gene i to j and j to i. The
GENIE3 authors showed their methods were significant
better than MRNET and CLR when taking directionality
into account [24], and GENIE3 was the best performer
of the DREAM5 challenge based on the unbiased evalu-
ation from an independent group of evaluators [25].
When we compared GENIE3 with two MI-based
methods, MRNET and CLR, there were minor differences
in AUROC and AUPR values (Additional file 3) which did
not outweigh the advantages to using GENIE3.
Using publicly available RNA-Seq data, we predicted

tissue-specific TF interactions at a similar positive rate
with an atlas GRN study [27]. Our GRNs performed well
based upon evaluation with TF ChIP-Seq data. This
study generated GRNs with 2241 TFs and provided a
high enough level of resolution to reveal the spatial vari-
ation of gene regulation.
In our analysis, we found 80% of interactions are

unique to one tissue in maize although over 80% of
genes and over 50% of TFs are expressed in all four tis-
sues. Furthermore, TF expression did not correlate with
the number of interactions. This indicates that interac-
tions between genes may provide a mechanism for
tissue-specific functions that cannot be explained with
variability in gene expression alone. This correlates well
with a recent study in human suggesting that TFs have
uniform expression but differential binding targets to
support tissue-specific functions [70]. It has been previ-
ously reported that transcriptional regulatory networks
in humans can be cell-type specific [71].

Compared with previous large-scale studies in maize,
we utilized networks to elucidate gene regulation among
multiple tissues and confirmed known functional pat-
terns that had been previously published for some
transcription factors [3, 72]. For example, the TF
Myb-related protein-1 (MRP-1) was only included in our
seed-specific GRN, and our network included 51 of the
93 genes predicted to be regulated by MRP-1 in another
study [4].This confirms that network analysis can be
used to discover tissue-specific TF interactions. We also
compared our network predictions with PlantRegMap
and found they were both enriched for ChIP-confirmed
targets. By inferring GRNs from expression data, we do
not rely on high-quality PWMs as PlantRegMap does,
and so predictions can be extended to a larger number
of TFs. Moreover, by using expression data from mul-
tiple libraries, we can focus on spatial and/or temporal
specific regulatory interactions.

Conclusions
In this study, we constructed four tissue-specific GRNs
for maize, including leaf, root, SAM and seed. The qual-
ity of these GRNs was assessed using comparisons with
experimental data and biological functional enrichment.
These assessments suggest that the tissue-specific GRNs
predict high-confidence TF regulatory targets. We pro-
vided examples of TF-target interactions predicted to
have tissue-specific function. Functional modules were
also identified and can provide gene cluster information
at the tissue level. To our knowledge, this is the first

Fig. 8 Website screenshots. a Search page with all selectable parameters. b Summary table queried by KN1(GRM2G017087), FEA4 (GRMZM2G133331)
and O2 (GRMZM2G015534). c Screenshot of interactive Venn diagram. d Screenshot of table with details showing top 6 targets from each tissue
queried by KN1, FEA4 and O2
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systematic study in maize on TF regulatory networks in
different tissues, and it demonstrates that using statis-
tical methods to infer GRNs can expand our knowledge
of gene regulation and circumvent the limitations of
some genomic techniques in plants. To make our
findings more accessible, a mGRN web database
(http://www.bio.fsu.edu/mcginnislab/mgrn) was built
that includes gene functions and links to other web portals.
We hope our results can facilitate further gene regulatory
research. Moreover, our framework to construct
tissue-specific GRNs could also be applied to other organ-
isms with abundant genome-wide expression data.

Methods
RNA-Seq data collection and process
The RNA-Seq libraries were processed as described pre-
viously [33]. In brief, RNA-Seq samples were down-
loaded from NCBI SRA [73] and converted to fastq
format by fastq-dump command in SRA Toolkit 2.5.2.
Adapters were trimmed by Cutadapt 1.8.1 [74]. Then
reads were aligned to maize genome AGPv3 (Ensembl
Plant release 31) by HISAT2 v2.0.4 [75]. Gene-level ex-
pression were measured by FeatureCounts 1.5.0 [76],
then normalized by Trimmed Mean of M-values (TMM)
[77] and reported in log2 normalized Counts Per Million
(CPM). In summary, 394 (leaf ), 176 (root), 406 (SAM)
and 159 (seed) libraries were analyzed for each tissue.

Network construction
To filter lowly expressed genes, genes with less than 1
CPM in more than 10% of libraries in each tissue were
excluded. The GEne Network Inference with Ensemble
of trees (GENIE3) algorithm [24] was used to construct
tissue-specific Gene Regulatory Networks (GRNs), more
specifically, the version that implemented in R and C.
2587 TFs in maize genome from GRASSIUS [5] were
specified as candidate regulators.

ChIP-Seq identified targets and network evaluation
For KN1 and FEA4, the ChIP-Seq targets were down-
loaded from their original papers [41, 42]. For O2, the
ChIP-Seq summit file was downloaded from Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo)
under accession number GSE39161. To keep the criteria
the same as KN1 and FEA4, genes within 10 kb of peak
summits were defined as ChIP-Seq identified targets.
We used Area Under an ROC Curve (AUROC) and

Area Under a Precision-Recall Curve (AUPR) to evaluate
network quality. KN1, FEA4 and O2 ChIP-Seq identified
targets were used as positive set. Values were calculated
by PRROC package in R [78]. To generate random net-
works, target genes were permuted 10,000 times and the
correspondent AUROC and AUPR values were averaged.
One-tail Fisher’s exact tests were calculated using

fisher.test() function in R. The atlas mRNA and protein
GRNs were downloaded from the original paper [27].
The list of KN1 targets predicted by PlantRegMap was
downloaded from its website (http://plantregmap.cbi.
pku.edu.cn). Venn diagrams were plotted by Venn
(http://bioinformatics.psb.ugent.be/webtools/Venn/).
UpSet graphs were plotted by Intervene [79].

Gene ontology enrichment and homology analysis
GO enrichment was analyzed by Gene Group Functional
Profiling (GOST) tool from g:Profiler (version Ensembl
Genomes 31) [62]. P-values were calculated from Fisher’s
one-tail test and corrected by Set Counts and Sizes (SCS)
method for multiple testing. Only GO terms with P-values
less than 0.05 were reported. Arabidopsis homologs were
retrieved from BioMart (Ensembl Genomes 31).

Module detection and characterization
Network topological characterization for tissue GRNs (top
1 million edges) were computed by NetworkAnalyzer [55]
in Cytocscape [80]. Modules were detected by Markov
Cluster Algorithm (MCL) [57] with inflation values set to
2.5. List of genes were read into R and analyzed by
gProfileR (https://cran.r-project.org/web/packages/gProfileR)
package for GO enrichment.

Website design
The web database (https://www.bio.fsu.edu/mcginnislab/
mgrn/) is built using MySQL and PHP. The maize gene
description was retrieved from BioMart on Ensembl Plant
release 31. Gene symbol is based on annotation on
MaizeGDB. The Arabidopsis gene description was down-
loaded from TAIR10. BLASTP was done using local
BLAST+ 2.2.28 [81]. The maize gene ID conversion was
downloaded from Gramene (ftp://ftp.gramene.org/pub/
gramene/archives/PAST_RELEASES/release-56/gff3/zea_-
mays/gene_id_mapping_v3_to_v4/). All data and source
code is available at Github (https://github.com/timedrea-
mer/maize_tissue-specific_GRN).

Additional files

Additional file 1: RNA-Seq libraries used in this analysis. (XLSX 71 kb)

Additional file 2: GO enrichment analysis for tissue-specific genes in
four tissue GRNs. (XLSX 23 kb)

Additional file 3: Evaluation of tissue GRNs generated by MRNET and
CLR. (XLSX 9 kb)

Additional file 4: A Venn diagram showing the overlap among top 1
million edges of each tissue-specific GRN. (PDF 55 kb)

Additional file 5: The 353 TFs and 1657 targets included in the 2679
edges shared by four tissue GRNs. (XLSX 70 kb)

Additional file 6: GO enrichment analysis for 1657 conserved targets in
four tissue GRNs. (XLSX 22 kb)

Additional file 7: GO enrichment analysis for KN1, FEA4 and O2 targets
in four tissue GRNs. (XLSX 19 kb)
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Additional file 8: Predicted TF target overlap with ChIP-Seq confirmed
binding genes for KN1, FEA4 and O2. The leaf, root, SAM and seed refer
to our tissue GRNs. “Protein” and “RNA” refer to protein GRN and RNA
GRN from Walley et al. (2016) dataset. “Large network” used top 10 million
edges in KN1, FEA4 and O2 networks. “Medium network” used top 1 million
edges, while “Small network” used top 100,000 edges. “Atlas GRN medium”
used top 1 million edges from Walley et al. (2016) dataset while “Atlas GRN
small” used top 100,000 edges. (XLSX 13 kb)

Additional file 9: Comparison of tissue-specific GRNs and atlas GRNs on
percentage of overlap between GRN predicted targets and ChIP-Seq
identified targets. Leaf, root, SAM and seed GRNs are networks in this study.
mRNA and protein networks were constructed by Walley et al. Medium
networks (light grey) are the targets within top 1 million edges. Small
networks (dark grey) are the targets within top 100,000 edges. (PDF 77 kb)

Additional file 10: Effect of gene expression (calculated by CPM) on the
number of interactions for TFs in (A) Leaf GRN, (B) Root GRN, (C) SAM
GRN, (D) Seed GRN. Linear regressions were plotted in blue lines with a
grey band as the 95% confidence intervals. R2 and p-values were
calculated from the linear models by lm() function in R. (PDF 914 kb)

Additional file 11: Predicted TF targets from top 1 million edges in
each tissue. “max _tissue” means which tissue has the highest number of
interactions. “CV” is the coefficient of variance. (XLSX 76 kb)

Additional file 12: Degree centrality (Number of targets) of top 1 million
edges for TFs in (A) Leaf GRN, (B) Root GRN, (C) SAM GRN and (D) Seed
GRM. Red lines showing TF with degree centrality > 2000. (PDF 338 kb)

Additional file 13: Key TFs in four tissues. (XLSX 12 kb)

Additional file 14: Homologs of shared TF by more than two tissues in
Arabidopsis. Genes without homologs identified by BioMart were left
blank. (XLSX 11 kb)

Additional file 15: Average neighborhood connectivity for four tissue
GRNs. The average neighborhood connectivity distribution of all TFs was
plotted against number of neighbors. In each network, the top 1 million
edges were selected. Red curves show the power-law fitted distribution.
R2 values indicate the fitness with the power-law model. (PDF 2647 kb)

Additional file 16: GO enrichment analysis for the largest module in
leaf detected by MCL. (XLSX 17 kb)

Additional file 17: A short tutorial on visualize mGRN data in Cytoscape
and R. (HTML 3228 kb)

Abbreviations
AUPR: Area under the precision-recall curves; AUROC: Area under the
receiver operator characteristic curves; ChIP-Seq: Chromatin
immunoprecipitation with sequencing; CLR: Context likelihood of relatedness;
CPM: Counts per million; CV: Coefficient of variation; DAP-seq: DNA affinity
purification sequencing; GENIE3: Gene network inference with ensemble of
trees; GO: Gene ontology; GRASSIUS: Grass regulatory information services;
GRN: Gene regulatory networks; MCL: Markov cluster algorithm; mGRN: Maize
tissue-specific gene regulatory network; MI: Mutual information;
MRNET: Minimum redundancy network; PBM: Protein binding microarrays;
PCC: Pearson correlation coefficient; PWM: Position weighed matrix; SAM: Shoot
apical meristem; SCC: Spearman correlation coefficient; SELEX: Systematic
evolution of ligands by exponential enrichment

Acknowledgements
We thank Alexander Study and Joshua M. McCoy from Computer Support
Facility in Department of Biological Science for setting up computing and
web server environment.

Funding
This work was made possible by funding from National Science Foundation,
BIO-MCB-035919 to Karen M. McGinnis.

Availability of data and materials
All data generated and and/or analyzed in this study are included in this article
or can be downloaded from mGRN website (https://www.bio.fsu.edu/
mcginnislab/mgrn/). Source code and data are available at Github
(https://github.com/timedreamer/maize_tissue-specific_GRN).

Authors’ contributions
JH and KMM designed the experiments; JH conducted experiments. JH and
YH analyzed the data; JH, KMM, and YH interpreted the data; JZ and JH
made the website; JH and KMM wrote the article. All authors have read and
approved the manuscript.

Ethics approval and consent to participate
Not applicable

Competing interests
Karen M. McGinnis is an associate editor of BMC Plant Biology. The other
authors declare no competing interests.

Author details
1Department of Biological Science, Florida State University, Tallahassee,
Florida 32306, USA. 2School of Life Sciences, Tsinghua University, Beijing
100084, China. 3Department of Statistics, Florida State University, Tallahassee,
Florida 32306, USA.

Received: 31 January 2018 Accepted: 24 May 2018

References
1. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A.

Reverse engineering of regulatory networks in human B cells. Nat Genet.
2005;37:382–90. Nature Publishing Group

2. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci National Acad Sciences. 2010;107:6286–91.

3. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. The
developmental dynamics of the maize leaf transcriptome. Nat Genet Nature
Research. 2010;42:1060–7.

4. Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, et al. RNA
sequencing of laser-capture microdissected compartments of the maize
kernel identifies regulatory modules associated with endosperm cell
differentiation. Plant Cell. 2015;27:513–31. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/25783031.

5. Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, et al.
GRASSIUS: a platform for comparative regulatory genomics across the
grasses. Plant Physiol Am Soc Plant Biol. 2009;149:171–80.

6. Burdo B, Gray J, Goetting-Minesky MP, Wittler B, Hunt M, Li T, et al. The
maize TFome - development of a transcription factor open reading frame
collection for functional genomics. Plant J. 2014;80:356–66.

7. Zhu G, Wu A, Xu X-J, Xiao P, Lu L, Liu J, et al. PPIM: a protein-protein
interaction database for maize. Plant Physiol. 2016;170:15.01821. Available
from: http://www.plantphysiol.org/content/early/2015/11/30/pp.15.01821.
abstract.

8. Wang LY, Wang P, Li MJ, Qin J, Wang X, Zhang MQ, et al. EpiRegNet:
constructing epigenetic regulatory network from high throughput gene
expression data for humans. Epigenetics. Taylor & Francis. 2011;6:1505–12.

9. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der
Lee R, et al. JASPAR 2018: update of the open-access database of
transcription factor binding profiles and its web framework. Nucleic Acids
Res. 2017;46;260–66. https://www.ncbi.nlm.nih.gov/pubmed/29140473.

10. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P,
et al. Determination and inference of eukaryotic transcription factor
sequence specificity. Cell. 2014;158:1431–43. Elsevier.

11. Chen X, Ernst K, Soman F, Borowczak M, Weirauch MT. CressInt: a
user-friendly web resource for genome-scale exploration of gene regulation in
Arabidopsis thaliana. Curr plant Biol. 2015;3:48–55. Elsevier.

12. Consortium EP. An integrated encyclopedia of DNA elements in the human
genome. Nature NIH Public Access. 2012;489:57.

13. Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K, Doherty CJ, et al. A
genome-scale resource for the functional characterization of Arabidopsis
transcription factors. Cell Rep. 2014;8:622–32. Elsevier.

14. Ou B, Yin K-Q, Liu S-N, Yang Y, Gu T, Hui JMW, et al. A high-throughput
screening system for Arabidopsis transcription factors and its application
to Med25-dependent transcriptional regulation. Mol Plant.
2011;4:546–55. Elsevier.

Huang et al. BMC Plant Biology  (2018) 18:111 Page 12 of 14

https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://doi.org/10.1186/s12870-018-1329-y
https://www.bio.fsu.edu/mcginnislab/mgrn
https://www.bio.fsu.edu/mcginnislab/mgrn
https://github.com/timedreamer/maize_tissue-specific_GRN
http://www.ncbi.nlm.nih.gov/pubmed/25783031
http://www.ncbi.nlm.nih.gov/pubmed/25783031
http://www.plantphysiol.org/content/early/2015/11/30/pp.15.01821.abstract
http://www.plantphysiol.org/content/early/2015/11/30/pp.15.01821.abstract
https://www.ncbi.nlm.nih.gov/pubmed/29140473


15. Omranian N, Eloundou-Mbebi JMO, Mueller-Roeber B, Nikoloski Z. Gene
regulatory network inference using fused LASSO on multiple data sets.
Sci Rep Nature. 2016;6:20533. Publishing Group

16. Yang F, Li W, Jiang N, Yu H, Morohashi K, Ouma WZ, et al. A maize gene
regulatory network for phenolic metabolism. Mol Plant. 2017;10:498–515.

17. Chai C, Xie Z, Grotewold E. SELEX (systematic evolution of ligands by
EXponential enrichment), as a powerful tool for deciphering the protein–DNA
interaction space. Plant Transcr Factors Methods Protoc. 2011:249–58. Springer.
https://link.springer.com/protocol/10.1007/978-1-61779-154-3_14.

18. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R.
DNA-binding specificities of plant transcription factors and their potential
to define target genes. Proc Natl Acad Sci National Acad Sciences.
2014;111:2367–72.

19. O’Malley RC, Huang S shan C, Song L, Lewsey MG, Bartlett A, Nery JR, et al.
Cistrome and Epicistrome features shape the regulatory DNA landscape.
Cell. 2016;166:1598. Available from: http://dx.doi.org/10.1016/j.cell.2016.04.
038 Elsevier Inc.

20. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al.
Impact of cytosine methylation on DNA binding specificities of human
transcription factors. Science. 2017;356:eaaj2239. (80-. ). American
Association for the Advancement of Science

21. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al. PlantTFDB 4.0: toward
a central hub for transcription factors and regulatory interactions in plants.
Nucleic Acids Res. 2017;45:D1040–5. Available from: https://academic.oup.
com/nar/article/45/D1/D1040/2290936.

22. Chow C-N, Zheng H-Q, Wu N-Y, Chien C-H, Huang H-D, Lee T-Y, et al.
PlantPAN 2.0: an update of plant promoter analysis navigator for
reconstructing transcriptional regulatory networks in plants. Nucleic Acids
Res Oxford University Press. 2016;44:D1154–60.

23. Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA
elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27:297–300.
Oxford Univ Press

24. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory
networks from expression data using tree-based methods. PLoS One.
2010;5:1–10.

25. Marbach D, Costello JC, Küffner R, Vega NNM, Prill RJ, Camacho DM, et al.
Wisdom of crowds for robust gene network inference. Nat Methods.
2012;9:796–804.

26. Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V,
et al. The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol
Am Soc Plant Biol. 2017:01086.

27. Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, et al. Integration
of omic networks in a developmental atlas of maizeScience (80-. ).
American association for theAdvancement of Science. 2016;353:814–8.
Available from: http://science.sciencemag.org/content/353/6301/814.

28. Loh W. Classification and regression trees. Wiley Interdiscip Rev Data Min
Knowl Discov. 2011;1:14–23. Wiley Online Library.

29. Hastie T, Robert Tibshirani JF. The elements of statistical learning: data
mining, inference, and prediction, second edition (springer series in
statistics). 2nd ed: Springer; 2009. https://www.springer.com/us/book/
9780387848570.

30. Geurts P. dynGENIE3: dynamical GENIE3 for the inference of gene networks
from time series expression data. Sci Rep Nature Publishing Group.
2018;8:3384.

31. Aibar S, González-Blas CB, Moerman T, Imrichova H, Hulselmans G,
Rambow F, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. 2017;14:1083. Nature Publishing Group

32. Banf M, Rhee SY. Enhancing gene regulatory network inference through
data integration with markov random fields. Sci Rep. 2017;7:41174. Nature
Publishing Group.

33. Huang J, Vendramin S, Shi L, McGinnis KM. Construction and optimization
of a large gene Coexpression network in maize using RNA-Seq data. Plant
Physiol. 2017;175:568 LP–583. Available from: http://www.plantphysiol.org/
content/175/1/568.abstract.

34. Sekhon RS, Lin H, Childs KL, Hansey CN, Robin Buell C, De Leon N, et al.
Genome-wide atlas of transcription during maize development. Plant J.
2011;66:553–63.

35. Nardmann J, Ji J, Werr W, Scanlon MJ. The maize duplicate genes narrow
sheath1 and narrow sheath2 encode a conserved homeobox gene function
in a lateral domain of shoot apical meristems. Development The Company
of Biologists Ltd. 2004;131:2827–39.

36. Hetz W, Hochholdinger F, Schwall M, Feix G. Isolation and characterization
of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J.
1996;10:845–57. Wiley Online Library.

37. Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and
mutant phenotype of teosinte branched1 correlate with growth
suppression in maize and teosinte. Genetics Genetics Soc America.
2002;162:1927–35.

38. McCarty DR, Carson CB, Stinard PS, Robertson DS. Molecular analysis of
viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell Am Soc
Plant Biol. 1989;1:523–32.

39. Meyer PE, Kontos K, Lafitte F, Bontempi G. Information-theoretic inference
of large transcriptional regulatory networks. EURASIP J Bioinforma Syst Biol.
2007;8–8. https://www.ncbi.nlm.nih.gov/pubmed/18354736.

40. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.
Large-scale mapping and validation of Escherichia coli transcriptional
regulation from a compendium of expression profiles. PLoS Biol.
2007;5:0054–66.

41. Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O’Connor D, Grotewold E,
et al. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes
Dev. 2012;26:1685–90. [cited 2014 Feb 5]

42. Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C, et al. FASCIATED
EAR4 Encodes a bZIP Transcription Factor That Regulates Shoot Meristem Size
in Maize. Plant Cell Online. 2015;2 tpc.114.132506. Available from: http://www.
plantcell.org/lookup/doi/10.1105/tpc.114.132506.

43. Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, et al. Genome-wide
characterization of cis-acting DNA targets reveals the transcriptional
regulatory framework of Opaque2 in maize. Plant Cell. 2015;27:1–15.

44. Stelpflug SC, Rajandeep S, Vaillancourt B, Hirsch CN, Buell CR, De LN,
et al. An expanded maize gene expression atlas based on RNA-
sequencing and its use to explore root development. Plant Genome.
2015:314–62.

45. Grewal SIS, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8:35–46.
Nature Publishing Group

46. Law J a, Jacobsen SE. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet . Nature
Publishing Group; 2010 [cited 2014 Jul 9];11:204–220.

47. Huang J, Lynn JS, Schulte L, Vendramin S, McGinnis K. Chapter two-epigenetic
control of gene expression in maize. Int Rev Cell Mol Biol. 2017;328:25–48.
Elsevier.

48. Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT, Sabo PJ, et al.
Mapping and dynamics of regulatory DNA and transcription factor networks
in A. thaliana. Cell Rep. 2014;8:2015–30. Elsevier Available from: http://dx.doi.
org/10.1016/j.celrep.2014.08.019

49. De Witte D, Van De Velde J, Decap D, Van Bel M, Audenaert P, Demeester P,
et al. BLSSpeller: exhaustive comparative discovery of conserved
cis-regulatory elements. Bioinformatics. 2015;31:3758–66.

50. Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA
regulated SBP-box genes SPL9 and SPL15 control shoot maturation in
Arabidopsis. Plant Mol Biol Springer. 2008;67:183–95.

51. Li Z, Li B, Shen W, Huang H, Dong A. TCP transcription factors interact with
AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J.
2012;71:99–107. Wiley Online Library

52. Song YH, Song NY, Shin SY, Kim HJ, Yun D-J, Lim CO, et al. Isolation of
CONSTANS as a TGA4/OBF4 interacting protein. Mol Cells (Springer Sci. Bus.
Media BV). 2008;25:559–65.

53. Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, et al.
The Arabidopsis NPR1 disease resistance protein is a novel cofactor that
confers redox regulation of DNA binding activity to the basic domain/
leucine zipper transcription factor TGA1. Plant Cell Am Soc Plant Biol.
2003;15:2181–91.

54. Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras-López O, Tamayo KP, et al.
Systems approach identifies TGA1 and TGA4 transcription factors as
important regulatory components of the nitrate response of Arabidopsis
thaliana roots. Plant J. 2014;80:1–13.

55. Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis
and interactive visualization of biological networks and protein structures.
Nat Protoc. 2012;7:670–85. Nature Publishing Group;Available from:
http://www.ncbi.nlm.nih.gov/pubmed/22422314.

56. Barabasi A-L, Oltvai ZNZN, Barabási A-L. Network biology: understanding the
cell’s functional organization. Nat Rev Genet.2004;5:101–13. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/14735121.

Huang et al. BMC Plant Biology  (2018) 18:111 Page 13 of 14

https://link.springer.com/protocol/10.1007/978-1-61779-154-3_14
http://dx.doi.org/10.1016/j.cell.2016.04.038
http://dx.doi.org/10.1016/j.cell.2016.04.038
https://academic.oup.com/nar/article/45/D1/D1040/2290936
https://academic.oup.com/nar/article/45/D1/D1040/2290936
http://science.sciencemag.org/content/353/6301/814
https://www.springer.com/us/book/9780387848570
https://www.springer.com/us/book/9780387848570
http://www.plantphysiol.org/content/175/1/568.abstract
http://www.plantphysiol.org/content/175/1/568.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18354736
http://www.plantcell.org/lookup/doi/10.1105/tpc.114.132506
http://www.plantcell.org/lookup/doi/10.1105/tpc.114.132506
http://dx.doi.org/10.1016/j.celrep.2014.08.019
http://dx.doi.org/10.1016/j.celrep.2014.08.019
http://www.ncbi.nlm.nih.gov/pubmed/22422314
http://www.ncbi.nlm.nih.gov/pubmed/14735121


57. Van Dongen S. Graph Clustering by Flow Simulation. PhD thesis. University
of Utrecht; 2000. https://micans.org/mcl/index.html?sec_thesisetc.

58. Li L, Briskine R, Schaefer R, Schnable PS, Myers CL, Flagel LE, et al.
Co-expression network analysis of duplicate genes in maize (Zea mays
L.) reveals no subgenome bias. BMC Genomics. 2016;17:875. Available
from: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-
016-3194-0.

59. Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT, et al. Gene
coexpression network analysis of oil biosynthesis in an interspecific
backcross of oil palm. Plant J. 2016:1–19. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/27145323.

60. Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell’Acqua M, et al.
Correlation analysis of the transcriptome of growing leaves with mature leaf
parameters in a maize RIL population. Genome Biol. 2015;16:168. Available
from: http://genomebiology.com/2015/16/1/168.

61. Wong DCJ, Sweetman C, Ford CM. Annotation of gene function in citrus
using gene expression information and co-expression networks. BMC Plant
Biol. 2014;14:186. Available from: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=4108274&tool=pmcentrez&rendertype=abstract.

62. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:
profiler—a web server for functional interpretation of gene lists (2016
update). Nucleic acids res. 2016;44:W83–9. Oxford University Press

63. Andorf CM, Cannon EK, Portwood JL, Gardiner JM, Harper LC, Schaeffer ML,
et al. MaizeGDB update: new tools, data and interface for the maize
model organism database. Nucleic acids res. 2015;44:D1195–201. Oxford
University Press.

64. Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD.
Araport11: a complete reannotation of the Arabidopsis thaliana reference
genome. Plant J. 2017;89:789–804.

65. Wilczyński B, Dojer N. BNFinder: exact and efficient method for learning
Bayesian networks. Bioinformatics. 2008;25:286–7. Oxford University Press

66. de Siqueira Santos S, Takahashi DY, Nakata A, Fujita A. A comparative
study of statistical methods used to identify dependencies between
gene expression signals. Brief Bioinform. 2013;15:906–18. Oxford
University Press

67. Somssich M, Je B. Il, Simon R, Jackson D. CLAVATA-WUSCHEL signaling in
the shoot meristem. Development. 2016;143:3238–48. Oxford University
Press for The Company of Biologists Limited.

68. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of
stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.
Science (80-. ). 2000;289:617–9. American association for the Advancement
of Science.

69. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T. The stem
cell population of Arabidopsis shoot meristems is maintained by a
regulatory loop between the CLAVATA and WUSCHEL genes. Cell Elsevier.
2000;100:635–44.

70. Sonawane AR, Platig J, Fagny M, Chen C-Y, Paulson JN, Lopes-Ramos CM, et al.
Understanding Tissue-Specific Gene Regulation. Cell Rep. 2017;21:1077–88.
ElsevierCompany.;Available from: http://linkinghub.elsevier.com/retrieve/pii/
S2211124717314183.

71. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E,
Stamatoyannopoulos JA. Circuitry and dynamics of human transcription
factor regulatory networks. Cell. 2012;150:1274–86. Elsevier Inc.; Available
from: http://dx.doi.org/10.1016/j.cell.2012.04.040.

72. Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, et al. Dynamic
transcriptome landscape of maize embryo and endosperm development.
Plant Physiol. 2014;166:252–64. Available from: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=4149711&tool=pmcentrez&rendertype=
abstract.

73. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic
Acids Res. 2010;gkq1019 Oxford Univ Press

74. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17:10.

75. Kim D, Langmead B, Salzberg SLHISAT. A fast spliced aligner with low memory
requirements. Nat Methods. 2015;12:357–60. Nature Publishing Group.

76. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30:923–30. Oxford Univ Press.

77. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139–40. Oxford Univ Press

78. Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing
precision-recall and receiver operating characteristic curves in R.
Bioinformatics. 2015;31:2595–7. Oxford University Press

79. Khan A, Mathelier A. Intervene: a tool for intersection and visualization of
multiple gene or genomic region sets. BMC bioinformatics. BioMed Central.
2017;18:287.

80. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
a software environment for integrated models of biomolecular interaction
networks. Genome Res Cold. 2003;13:2498–504. Spring Harbor Lab.

81. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC bioinformatics. 2009;10:421.

82. Tai H, Opitz N, Lithio A, Lu X, Nettleton D, Hochholdinger F. Non-syntenic
genes drive RTCS-dependent regulation of the embryo transcriptome
during formation of seminal root primordia in maize (Zea mays L.).
J Exp Bot. 2016;68:403–14. Oxford University Press UK

83. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize.
Nature. 1997;386:485. Nature Publishing Group.

84. Suzuki M, Ketterling MG, Li Q-B, McCarty DR. Viviparous1 alters global gene
expression patterns through regulation of abscisic acid signaling. Plant
Physiol. Am Soc Plant Biol. 2003;132:1664–77.

85. Zhang Z, Zheng X, Yang J, Messing J, Wu Y. Maize endosperm-specific
transcription factors O2 and PBF network the regulation of protein
and starch synthesis. Proc. Natl. Acad. Sci. National Acad Sciences.
2016;201613721.

86. Muñiz LM, Royo J, Gómez E, Barrero C, Bergareche D, Hueros G. The maize
transfer cell-specific type-a response regulator ZmTCRR-1 appears to be
involved in intercellular signalling. Plant J. 2006;48:17–27. Wiley Online Library.

Huang et al. BMC Plant Biology  (2018) 18:111 Page 14 of 14

https://micans.org/mcl/index.html?sec_thesisetc
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3194-0
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3194-0
http://www.ncbi.nlm.nih.gov/pubmed/27145323
http://www.ncbi.nlm.nih.gov/pubmed/27145323
http://genomebiology.com/2015/16/1/168
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4108274&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4108274&tool=pmcentrez&rendertype=abstract
http://linkinghub.elsevier.com/retrieve/pii/S2211124717314183
http://linkinghub.elsevier.com/retrieve/pii/S2211124717314183
http://dx.doi.org/10.1016/j.cell.2012.04.040
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4149711&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4149711&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4149711&tool=pmcentrez&rendertype=abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Maize transcription factors show tissue-specific expression patterns
	Gene regulatory network construction for four tissues
	GRN analysis can be used to predict tissue-specific regulation by TFs
	GRN analysis can be used to identify central functionality of TFs in distinct tissues
	Topological and clustering analysis
	Website design

	Discussion
	Conclusions
	Methods
	RNA-Seq data collection and process
	Network construction
	ChIP-Seq identified targets and network evaluation
	Gene ontology enrichment and homology analysis
	Module detection and characterization
	Website design

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Author details
	References

