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Spore associated bacteria regulates maize
root K+/Na+ ion homeostasis to promote
salinity tolerance during arbuscular
mycorrhizal symbiosis
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Abstract

Background: The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB)
were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information
about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate
the response of maize plants to co-inoculation of AMF and SAB under salinity stress.

Results: The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and
root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline
in shoots and Na+ in roots. Co-inoculated maize plants also exhibited high K+/Na+ ratios in roots at 25 mM NaCl
concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and
ZmSKOR genes, to maintain K+ and Na+ ion homeostasis. Confocal laser scanning microscope (CLSM) view showed
that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely
associated with the spore outer hyaline layer.

Conclusion: These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental
effects of salinity through regulation of SOS pathway gene expression and K+/Na+ homeostasis to improve maize
plant growth.

Keywords: Arbuscular mycorrhizal fungi, Spore associated bacteria, Plant-microbe interaction, gfp-tagging,
Endophytic localization, Salt stress

Background
The salinity of soil is one of the most important concerns,
which are increasing progressively worldwide. More than
800 million hectares (over 6%) of the world’s total land
area are affected by soil salinity (FAO 2005). Increasing
salinization of arable lands adversely affects crop estab-
lishment, growth, and development contributing to
huge losses in productivity [1, 2]. The high concentra-
tion of salt present in the soil causes both hyper-ionic
and hyper-osmotic stress and leads to plant death [3].
Under prolonged salinity stress, the excessive Na+ and

Cl− ions are taken up by the plant cells causing toxic effects
such as damage to cell organelles and plasma membrane,
disruption of cell organelles, photosynthesis, and protein
synthesis [4, 5]. As the majority of crop plants are glyco-
phytes, their tolerance to salinity level beyond the threshold
level reduces productivity [6]. Maize is the third most
important cereal crop in the world especially in developing
countries [7] and is considered as a salt sensitive cereal
crop [8, 9]. In maize, Na+ is a major ion and under salt
stress, it causes ion toxicity in plants [10].
The interaction between plant roots and salt-tolerant

microorganisms helps plants alleviate the deleterious effects
of salinity. Arbuscular mycorrhizal fungi (AMF) can form a
mutualistic association with the roots of more than 80% of
the terrestrial plants [11]. AMF have been reported to
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enhance plant growth under different salinity levels
[5, 12–14] by enhancing the nutrient acquisition in
host plants. The alleviation of salt stress by AMF has been
reported through increased osmotic balance, increased
activity of anti-oxidant enzymes, increased photosynthetic
activity [15], increased levels of osmoregulant (proline)
[16] and enhanced water uptake in plants [17]. In addition
to the plant, AMF also interacts with many bacterial
species in a natural environment. The interactions between
AMF and bacteria have been shown to improve mutualistic
fungus-host interaction [18] and plant growth [19]. Some
studies have reported the positive effects of co-inoculation
of AMF and plant growth promoting (PGP) bacteria on
plant growth and nutrient uptake under saline stress con-
ditions [20, 21]. Furthermore, many soil microorganisms
and plant endophytic bacteria have been studied and
reported to promote plant growth under various environ-
mental conditions [22–25]. In our recent study [26], we
found that AMF spore associated bacteria significantly
reduced ethylene stress level and improved maize seedling
growth. Co-inoculation of AMF and mycorrhizosphere
bacteria increased maize plant growth by enhancing AMF
hyphal length and facilitating P uptake [27]. However, the
define mechanisms by which the microbes alleviate salt
stress in plants remain unclear.
Due to the similar physiochemical structure of Na+

and K+, under salt stress, the excess of Na+ osmoticum
competes for K+ entry into the symplast, at the transport
sites. The large cytosolic Na+ ions compete for K+ binding
sites and crucially restricts the metabolic activities that
require K+. The K+ ion is a key component in the cytosol
as it plays a critical role in protein synthesis, activation of
enzymes and photosynthesis, turgor maintenance and
stomatal movement [28]. AMF is known to selectively
uptake K+ and Ca2+, which act as osmotic equivalents
as they avoid the uptake of toxic Na+ [29]. However,
the molecular mechanisms of regulation of uptake of K+

and exclusion of Na+ in plants by microbial inoculation
remain to be elucidated. The salt overly sensitive (SOS)
signaling pathway plays a significant role in maintaining
ion homeostasis by regulating Na+ and K+ transport at the
plasma membrane and tonoplast. The key genes respon-
sible for ion homeostasis are SOS1, SKOR, and AKT2 [30].
Among these, SOS1 is widely studied for its ability to
extrude Na+ and control xylem loading for a long-distance
Na+ transport [31, 32]. SKOR is involved in the transloca-
tion of K+ toward shoots through xylem [33]. Further, the
phloem expressing K+ channel, AKT2, is also involved in
the translocation of K+ in shoots [34]. A previous study
conducted by Estrada et al. (2013) reported that these
genes are differentially regulated by AMF regulating ion
homeostasis in plants under salt stress. Moreover, eluci-
dating the gene expression regulated by endophytic
bacteria might provide broad insights into the molecular

mechanism involved in the alleviation of salinity stress in
plants.
Therefore, this study aimed to investigate the effects of

the co-inoculation of AMF and SAB on the growth of
maize plant under salinity stress. The study also evalu-
ated the association of SAB with AMF spore walls and
localization in plant roots; and analyzed the alteration in
the expressions of genes involved in ion homeostasis by
AMF and SAB under salinity stress.

Methods
Strains detail
Pseudomonas koreensis S2CB35, a SAB, was isolated from
the spore walls of AMF (Gigasporaceae) and demonstrated
spore association characteristics as described earlier [35].
The isolated bacterial strain exhibited multiple plant
growth-promoting characteristics, such as reduced ethylene
stress and improved early growth of maize under salt stress
[26]. Two AMF strains, Gigaspora margarita S–23 and
Claroideoglomus lamellosum S–11, were used in the
present study. They were isolated from a salt affected
coastal reclamation land of Saemangeum in South
Korea and propagated for the mass multiplications by a
single spore mass production technique [36]. The detail
of the strains and protein maker used in this study are
given in Table 1.

Green fluorescent protein (gfp)-tagging of the bacterial
strain
In order to monitor the activity of SAB, the strain was
tagged with GFP before inoculation. The insertion of the
mini-Tn5 gusA::gfp cassette into pB10 was performed by
introducing Escherichia coli gene Tn5 gusA gfp cassette
(pFAJ1820) [37] into strain P. koreensis S2CB35 by
triparental mating with the helper plasmid pRK2013 of
E. coli HB101. The transformants were selected on a
half-strength nutrient agar medium supplemented with
kanamycin at 50 μg mL− 1. The presence of GFP in the
purified transformants was confirmed by PCR amplifica-
tion using following primers: YL065 (F) 5’ GCGATGTTA
ATGGGCAAAAA-3′ and YL066 (R) 5’-TCCATGCCA
TGTGTAATCCT-3′. The thermal cycling program for
the amplification consisted of initial denaturation at 94 °C
for 3 min, followed by 35 cycles at 94 °C for 30 s,
annealing at 56 °C for 1 min, and extension at 72 °C for
1 min, with the final extension at 72 °C for 10 min [38].
The resulting amplicon of 650-bp was confirmed by gel
electrophoresis. The relative fluorescence activity of
gfp-mutant derivatives was analyzed using a flow cytometer
(FACScalibur) equipped with an air-cooled argon-ion laser
emitting at 488 nm (15 mW) [39]. Single gfp-derivative
of P. koreensis S2CB35 was differentiated based on cell
morphology, colony appearance, and growth rate char-
acteristics of the wild type.
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Soil analysis and seedling preparation
The soil sample was collected from low salt affected
reclamation land of Saemangeum, South Korea. The
physicochemical properties of soil were analyzed using
the standard laboratory protocols. The pH of soil was 6.0,
with electrical conductivity (EC) value of 0.34 dS/m, organic
matter of 5.5 g/kg, available phosphorus of 40.66 mg/kg,
and with content of K, Ca, Mg, and Na measured as 0.56,
1.0, 2.2, and 0.79 cmolc/kg, respectively. The soil texture
was sand 76%, silt 23.2% and clay 0.8%. The maize
seeds (Zea mays L.) were surface sterilized using 70%
ethanol for 1 min, treated for 5 min with 6% NaOCl,
and washed seven times with sterile distilled water. For
the bacterial treatment, the surface-sterilized seeds were
imbibed in 10 mL of 0.1 M phosphate buffer (pH 6.8)
containing 1 × 108 cfu/mL of P. koreensis (S2CB35) for
4 h before the seeds were sown in a seedling tray. For
the control and AMF-alone treatments, the seeds were
treated with 0.1 M phosphate buffer (pH 6.8) with sterile
bacteria.

Inoculation treatments and salt stress conditions
In order to study the effects of AMF and SAB on maize
growth under NaCl stress, we designed six treatments
groups designated as T1 for non-treatment control and
T2, T3, T4, T5, and T6 for treatments with G. margarita,
C. lamellosum, SAB, G. margarita + SAB and C. lamello-
sum + SAB, respectively, and each one irrigated with three
different concentrations of NaCl (0 mM, 25 mM, and
50 mM). The pot experiment was performed in a com-
pletely randomized block design with four replications.
Each pot was filled with 2.5 kg of soil, and the mycorrhizal
treatment pots received 75 g (3%) of AMF inoculum (each
AMF inoculum containing approximately 200 spores
and 30 root bits), which was added 1 cm below the soil
surface. The control and SAB treatments received 75 g
of autoclaved AMF inoculum to maintain the same nutrient
content. In addition, to maintain the similar bacterial popu-
lation in all of the treatments, control, and SAB treatments
received 70 mL of soil extract of each AMF inoculum,

which was obtained from 75 g of non-autoclaved AMF
inoculum, whereas G. margarita inoculated pots received
extracts of C. lamellosum and vice versa. Equally grown
7-day-old maize seedlings were transplanted into pots
containing 2.5 kg of soil and maintained for 44 days after
transplantation (DAT). Each plant was supplemented with
100 mL of modified Hoagland’s nutrient solution [40]
regularly.
For molecular gene expression analysis and confocal

laser scanning microscopy (CLSM), a separate set was
prepared with the same treatments. The microbial inocu-
lation was applied in the same ratio in 600 mL pots
containing the same soil with an exception that the soil
was autoclaved for 3 days consecutively to destroy all
the microbes present in the soil. Both the experiments were
conducted simultaneously under the same environmental
conditions.
For seed bacterization, the maize seeds were soaked in

0.1 M phosphate buffer (pH 6.8) containing 1 × 108 cfu/mL
of SAB for 2 to 4 h. In addition to seed bacterization,
5 mL of 0.1 M phosphate buffer (pH 6.8) containing
1 × 108 cfu/mL of SAB was added to the SAB and
co-inoculation treatment pots at 10 and 30 DAT. The
control and AMF-alone treatments received the same
amount of bacterial culture with the exception that it
was autoclaved at 121 °C for 15 min before inoculation.
Salt stress was produced with three different NaCl
concentrations (0 mM, 25 mM, and 50 mM) at 23
DAT. To avoid osmotic shock, NaCl stress was induced
gradually by adding 10 mM and 15 mM to each pot after
every alternate day, and the desired salt concentration was
achieved after 5 days. Leaching of water from the pots was
prevented by maintaining the soil water to a level below
the field capacity at all the times. The maize plants were
grown for another 15 days under the salt stress condition
and then harvested. The soil EC value measured at the
time of harvest for NaCl stress of 0 mM, 25 mM, and
50 mM were 0.49 ± 0.09 dS/m, 2.52 ± 0.35 dS/m, and
4.50 ± 0.12 dS/m, respectively. At the end of the experiment,
the plants were harvested carefully, washed in distilled water,

Table 1 Bacterial strains and plasmids used in the present study

Plasmid/strain Genotype or other relevant characteristics Reference

Escherichia coli S17–1 Vector for plasmid pFAJ1820 Xi et al. [37]

Escherichia coli HB101 Helper bacteria containing pRK2013 plasmid Xi et al. [37]

P. koreensis S2CB35 PGP-SAB (Genbank number: KM507143) Selvakumar et al. [26]

P. koreensis S2CB35-gfp gfp-tagged mutant representative of P. koreensis S2CB35 This study

Gigaspora margarita S-23 Propagated AMF (Genbank number: KP677599) Selvakumar et al. [36]

Claroideoglomus lamellosum S-11 Propagated AMF (Genbank number: KP677595) Selvakumar et al. [36]

pRK2013 Mobilizing plasmid Figurski & Helinski [74]

pFAJ1820 pUT mini Tn5gusA-pgfp Xi et al. [37]
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separated into leaves, shoots, and roots and were used for
the analysis of different parameters.

Determination of mineral nutrients
The biomass or dry weight of the shoots was determined
after oven drying at 70 °C for at least 48 h. The proline
content of the leaf was estimated according to the
method described by Bates et al. [41]. The total nitrogen
accumulation in the plants was measured using a Kjeldahl
analyzer (K9860 Kjeldahl Analyzer, Hanon Instruments).
The available phosphorus was determined using the
vanadate-molybdate method, and the Ca, Mg, Na and K
concentrations were estimated using inductively coupled
plasma optical emission spectrometry (ICP-OES).
Chloride anions were determined in an aqueous

extraction obtained from 0.4 g of dry plant material using
20 mL of deionized water. The extract was shaken for 2 h
and then filtered through a Whatman number 2 filter
paper and a 0.45 μm nylon membrane filter (Millipore).
The diluted filtrate was then injected into an ion-exchange
chromatography system (Metrohm) packed with anion
separation column Metrosep A Supp 5.

Mycorrhizal development
The root samples were washed with tap water to remove
the adhering soils, and the roots were cut into the pieces of
1 cm length and stained with 0.05% trypan blue as per the
method described by Phillips & Hayman [42]. The mycor-
rhizal root colonization (M%), colonization frequency (F%)
and arbuscules abundances in the whole root system (A%)
were calculated according to Trouvelot et al. [43]. The
isolation of AMF spores from 50 g of soil was carried
out by wet sieving and decanting method [44].

Quantitative real time PCR
The maize root samples collected from the 600 mL pot
experiment plants were washed under running water
and then rinsed three times with distilled water and frozen
in liquid nitrogen, ground and stored at − 80 °C. Total
RNA was extracted using the RNeasy plant mini kit
(Qiagen, Valencia, CA, USA) from the root samples stored
at − 80 °C. cDNA was synthesized using Superscript III first
strand synthesis system (Invitrogen). The gene expression
analyses were carried out by quantitative reverse transcrip-
tion (qRT)-PCR using CFX96 Real-Time System (Bio-Rad
Laboratories, München, Germany) with SYBR Green
master mix (iQ SYBR Green Supermix, Bio-Rad). Specific
primers were designed by Estrada et al. [9] and used to
analyze the genes: ZmAKT2, For (5′-CCTCAAGCATC
AGGTCGAGA-3′) and ZmAKT2, Rev. (5′-CTCTGTAAT
CTTCCTGGACG-3′), ZmSKOR, For (5′-TCAGATCCA
AGATGTCCCAG-3′) and ZmSKOR, Rev. (5′-TTCGTA
TCCTCTTAACGCAG-3′), ZmSOS1, For (5′-GCTTGTC
ACATACTTCACAG-3′) and ZmSOS1, Rev. (5′-ACTT

GTCCACTTCACTACAC-3′). cDNAs that originated
from three different biological samples were used for each
gene analysis. Alpha tubulin (gi:450292) and polyubiquitin
(gi:248338) were used as the internal controls for the
normalization of data. All experiments were done in tripli-
cate with three repeats.

Preparation of plant root and spore samples for confocal
microscopy
For confocal scanning laser microscopy (CLSM), the
root and soil samples were used from the 600 mL pot
experiment. The fresh root samples removed from SAB
treated plant were washed in sterile distilled water and
dried on a blotting paper. The roots were surface-steril-
ized and aseptically sectioned with sterile scalpel blades.
The sections were mounted on a slide using fluores-
cence mounting medium under a coverslip. For the
spores, the isolated spores were either mounted directly
or after surface sterilization with 2% chloramine T and
100 μg/mL streptomycin for 30 min. The microscopic ob-
servation of root and spore samples were performed using
a Leica TCS SP2 confocal system (Leica Microsystems Hei-
delberg GmbH) equipped with an Ar laser (gfp:
excitation, 488 nm; emission filter BP, 500 to 530). Image
acquisitions were performed under the objectives 20× and
40× (N.A. approximately 0.75) and were processed using
the Zen lite 2012 (blue edition).

Statistical analysis
The data were statistically analyzed using analysis of
variance (ANOVA) for a completely randomized block
design with SAS package 9.4 software and the differences
in means were determined by the least significant differ-
ences (LSD). Duncan’s multiple-range test was performed
at P ≤ 0.05 on each of the significant variables measured.
P values less than 0.05 were considered as statistically
significant.

Results
Plant growth, proline content and mycorrhizal
parameters
Microbial inoculation effect on maize plant growth was
assessed. A significantly negative effect of salinity on
growth of the plant was observed in all the treatments
and a more prominent effect was evident at the highest
salt concentration of 50 mM NaCl. Treatments with
AMF and SAB significantly increased the dry weight of
the maize as compared to the control in all salt concen-
tration (Fig. 1a). Among the microbial treatments, co-
inoculation of C. lamellosum with SAB significantly
increased plant dry weight at 25 and 50 mM NaCl. Further,
with increasing salt concentration, the corresponding
increase in proline content was observed in all the treat-
ments (Fig. 1b). However, at 0 mM NaCl, no significant
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differences in leaf proline content were observed between
treatments and control. At 25 mM NaCl, co-inoculation
with AMF and SAB or C. lamellosum alone treatment
significantly reduced the proline content. At 50 mM NaCl,
co-inoculation of C. lamellosum with SAB and only SAB
treatments significantly reduced the proline content.
The effect of salinity on mycorrhizal spore count is shown

in Fig. 1c. The increase in salinity reduced AMF spore
count. At 0 mM NaCl, the co-inoculation of AMF and
SAB significantly increased spore count than AMF alone
treatment. However, no significant differences were
observed between the AMF and AMF co-inoculation with
SAB treatments at 25 and 50 mM of NaCl concentration.
Mycorrhizal colonization in maize roots was negatively
affected by increasing salinity (Fig. 1d). A significantly
high mycorrhizal colonization was observed with co-in-
oculation of AMF and SAB in all salt concentrations
compared to AMF alone treatment. Likewise, co-inoculation
of AMF and SAB exhibited significantly high colonization
frequency and arbuscules abundance than AMF alone
treatment (Additional file 1: Figure S1).

Nutrient accumulation
The efficiency of nutrient uptake by plants under salt
stress shows the degree of plant response to such stress.
The highest salinity at 50 mM of NaCl concentration
significantly lowered the nutrient uptake by plants in all
the treatments. However, a significantly increased nutrient

uptake in both shoot and root of maize was estimated
with microbial treatments in all salt levels (Tables 2
and 3). Single and co-inoculation of AMF and SAB
significantly increased total-N and phosphorous in both
shoot and root at all salt levels. A significantly higher
potassium uptake was observed for co-inoculation of
AMF and SAB in both shoot and root tissues; however, at
50 mM of NaCl, G. margarita with SAB co-inoculation in
shoot and C. lamellosum with SAB co-inoculation in root
were not significantly different from control. A significantly
higher calcium accumulation in shoots was observed for
AMF and SAB co-inoculated plants at 0 and 50 mM NaCl.
In root, co-inoculation of AMF and SAB significantly
improved calcium accumulation at 0 and 50 mM NaCl.
Furthermore, co-inoculation treatment showed signifi-
cantly higher magnesium accumulation in shoots except at
50 mM NaCl, whereas in roots, co-inoculation treatment
significantly improved magnesium accumulation at all salt
levels except for C. lamellosum with SAB co-inoculation
treatment at 50 mM NaCl.

Sodium and chloride uptake
Under salt stress, plants take up more sodium ion than
potassium. A significant increase in sodium accumula-
tion in maize shoots was observed with the increase in
salinity (Fig. 2a). At 0 and 25 mM NaCl, no significant
difference was observed between the treatments and
control. However, at 50 mM NaCl, the co-inoculation of

a c

b d

Fig. 1 AMF and SAB co-inoculation effect on plant growth and mycorrhizal development. a Plant dry weight, b Leaf proline content, c AMF
spore count d Mycorrhizal colonization. T1 – control, T2 - Gigaspora margarita S-23, T3 – Claroideoglomus lamellosum S-11, T4 – Pseudomonas
koreensis S2CB35, T5 – T2 + T4, T6 – T3 + T4. Plants were subjected to 0 (0.5 dS/m), 25 (2.5 dS/m) or 50 mM NaCl (4.5 dS/m). Different letters
indicate significant differences (P < 0.05) among the treatments at each salt level (a, b, c, d, e, f) or among salt levels for each treatment: T1 (A, B, C), T2
(D, E, F), T3 (G, H, I), T4 (J, K, L), T5 (M, N, O) or T6 (P, Q, R). Each value represents the mean of four replicates ± standard error (SE)
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C. lamellosum with SAB significantly enhanced sodium
accumulation in a shoot. In root tissues, the sodium
accumulation was higher at 25 and 50 mM NaCl com-
pared to 0 mM NaCl (Fig. 2b). However, no significant
differences were observed between 25 and 50 mM NaCl
in control plants. At 25 mM NaCl, only the co-inoculation
of C. lamellosum with SAB showed a significantly reduced
sodium accumulation in root tissues than all other
treatments.
The accumulation of chloride ions was significantly in-

creased in maize shoot tissues with the increase in salinity
(Fig. 2c). In shoot tissues, at 0 and 25 mM NaCl, all the
treatments showed an increased chloride accumulation
except with G. margarita. However, at 50 mM NaCl, no
significant differences were observed among the treat-
ments. In contrast, root tissues exhibited lower chloride
accumulation than control at 0 mM NaCl in all the treat-
ments (Fig. 2d). At 25 mM NaCl, a single inoculation of
AMF and SAB enhanced accumulation of chloride ions
than control and the co-inoculation treatments showed
lower chloride accumulation than control. However, at
50 mM NaCl, only co-inoculation of C. lamellosum
with SAB showed lower chloride accumulation, other
treatments exhibited no significant differences as com-
pared to control.

K+/Na+ ratios
In both shoots and roots of maize, the K+/Na+ ratio was
negatively affected by salinity at all the concentration.
The effect was more prominent in shoots, where the
differences between non-saline treatment and either of
the salt treatments were highly significant (Fig. 3a).
However, microbial treatments did not show significant
differences from control at 0 and 25 mM NaCl. At
50 mM NaCl, only the co-inoculation of C. lamellosum
with SAB showed lower K+/Na+ ratio. In root tissues, at 0
and 50 mM NaCl, no differences were observed between
the treatments, whereas at 25 mM NaCl, co-inoculation
treatments showed significantly higher K+/Na+ ratio
(Fig. 3b).

Ion transporter gene expression analysis
Ion analysis suggest that microbial colonization affect
tissue K+ and Na+. We therefore tested whether SOS
genes expression are regulated by AMF and SAB
colonization. AMF colonization significantly altered the
K+ and Na+ accumulation in plants. We have tested the
membrane transporters responsible for K+ uptake and
translocation along with Na+ deposition. Our result
showed that the expression of ZmAKT2 gene was
differentially affected by single and co-inoculation of

Table 2 Effect of AMF and SAB co-inoculation on maize shoot nutrient accumulation under different salinity levels

Salt concentration Treatments Total N P K Ca Mg

mg / plant

0 mM T1 819.6 ± 64.3c, A 68.3 ± 6.8c, A 470.4 ± 46.3b, A 40.0 ± 4.9c, A 32.9 ± 1.5b, A

T2 1368.4 ± 247.1bc, D 115.3 ± 11.2b, D 544.5 ± 50.4b, D 45.9 ± 7.0bc, DE 41.4 ± 5.1b, DE

T3 1362.9 ± 185.3bc, G 113.1 ± 9.9b, G 499.4 ± 74.1b, G 41.1 ± 6.5bc, H 42.6 ± 6.1b, G

T4 1342.7 ± 101.9bc, J 133.0 ± 16.9b, J 597.2 ± 137.8ab, J 42.0 ± 11.9bc, JK 36.9 ± 7.1b, K

T5 1997.7 ± 311.2a, M 174.4 ± 15.4a, M 838.0 ± 49.3a, M 69.4 ± 5.7b, M 64.3 ± 3.3a, M

T6 1921.7 ± 68.9ab, P 180.1 ± 9.1a, P 817.0 ± 57.6a, P 96.3 ± 11.2a, P 69.6 ± 2.2a, P

25 mM T1 808.3 ± 40.5c, AB 66.3 ± 1.1d, A 425.2 ± 11.0d, A 47.0 ± 5.7b, A 46.2 ± 2.3b, A

T2 1415.6 ± 96.6ab, D 101.8 ± 7.8bc, D 470.1 ± 63.5cd, D 63.3 ± 8.6ab, D 58.7 ± 8.2ab, D

T3 1218.6 ± 142.3b, G 98.3 ± 3.2c, G 566.4 ± 28.9bcd, G 82.1 ± 13.8a, G 66.9 ± 9.4ab, G

T4 1441.1 ± 133.9ab, J 129.8 ± 10.5b, J 617.8 ± 44.3abc, J 67.3 ± 7.3ab, J 66.8 ± 5.8ab, J

T5 1729.2 ± 117.8a, M 130.6 ± 5.7b, N 697.1 ± 77.9ab, N 75.4 ± 5.3ab, M 71.0 ± 7.0a, M

T6 1765.1 ± 123.7a, P 161.5 ± 16.5a, P 757.1 ± 70.0a, P 87.4 ± 10.1a, P 78.4 ± 5.7a, P

50 mM T1 553.4 ± 78.9b, B 50.4 ± 2.2d, B 295.4 ± 31.4b, B 30.5 ± 3.9b, A 42.0 ± 12.5a, A

T2 768.4 ± 24.3b, E 67.8 ± 4.4c, E 287.2 ± 23.3b, E 31.1 ± 2.2b, E 31.9 ± 1.8a, E

T3 764.1 ± 71.2b, H 72.6 ± 2.9bc, H 274.1 ± 18.8b, H 30.2 ± 1.3b, H 50.3 ± 17.8a, G

T4 734.2 ± 98.9b, K 69.7 ± 5.7c, K 304.6 ± 20.7b, K 29.8 ± 4.2b, K 33.2 ± 4.6a, K

T5 1066.9 ± 21.5a, M 87.5 ± 4.1b, O 352.3 ± 12.2b, O 50.6 ± 3.7a, N 46.1 ± 1.6a, N

T6 1265.4 ± 170.4a, Q 110.5 ± 11.6a, Q 467.4 ± 40.8a, Q 63.4 ± 10.8a, P 60.7 ± 8.6a, P

T1 – control, T2 - Gigaspora margarita S-23, T3 – Claroideoglomus lamellosum S-11, T4 – Pseudomonas koreensis S2CB35, T5 – T2 + T4, T6 – T3 + T4. Plants were
subjected to 0 (0.5 dS/m), 25 (2.5 dS/m) or 50 mM NaCl (4.5 dS/m). Different letters indicate significant differences (P < 0.05) among the treatments at each salt
level (a, b, c, d, e, f) or among salt levels for each treatment: T1 (A, B, C), T2 (D, E, F), T3 (G, H, I), T4 (J, K, L), T5 (M, N, O) or T6 (P, Q, R). Each value represents the
mean of four replicates ± standard error (SE)
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Table 3 Effect of AMF and SAB co-inoculation on maize root nutrient accumulation under different salinity levels

Salt concentration Treatments Total N P K Ca Mg

mg / plant

0 mM T1 78.8 ± 2.8d, A 13.9 ± 0.9e, A 51.5 ± 5.3b, A 5.6 ± 0.7c, AB 4.2 ± 0.3d, AB

T2 165.7 ± 26.1cd, D 22.1 ± 3.1cd, D 53.5 ± 7.4b, D 9.7 ± 0.7c, E 6.4 ± 0.2cd, E

T3 250.4 ± 39.6bc, G 19.2 ± 3.2de, G 80.3 ± 17.0ab, G 17.0 ± 1.7b, G 8.9 ± 0.8bc, G

T4 196.1 ± 18.8bcd, J 36.7 ± 0.9a, J 106.1 ± 18.6a, J 20.9 ± 2.6ab, J 11.2 ± 1.2b, J

T5 303.6 ± 27.5ab, M 28.6 ± 2.3bc, M 77.8 ± 17.9ab, M 21.2 ± 2.2ab, M 9.9 ± 1.2b, MN

T6 384.7 ± 80.7a, P 30.3 ± 3.0ab, P 107.4 ± 17.3a, P 28.1 ± 4.2a, P 16.5 ± 1.4a, P

25 mM T1 83.6 ± 4.7c, A 7.2 ± 0.5d, B 12.4 ± 3.8c, B 6.9 ± 1.9a, A 5.3 ± 1.8b, A

T2 213.6 ± 42.1b, D 14.4 ± 1.0c, E 34.1 ± 3.7b, E 14.7 ± 1.3a, D 11.5 ± 1.3a, D

T3 206.9 ± 47.5b, G 16.2 ± 3.3bc, GH 21.9 ± 4.5bc, H 25.0 ± 13.3a, G 8.8 ± 0.8ab, G

T4 183.9 ± 14.8b, JK 20.1 ± 1.8bc, K 33.6 ± 8.7b, K 6.7 ± 1.4a, K 5.6 ± 1.0b, K

T5 341.3 ± 33.3a, M 28.1 ± 2.9a, M 60.1 ± 10.0a, M 18.9 ± 1.3a, MN 11.3 ± 1.3a, M

T6 275.5 ± 20.3ab, PQ 22.4 ± 1.9ab, P 32.0 ± 2.9b, Q 12.5 ± 1.9a, Q 5.2 ± 1.2b, Q

50 mM T1 62.8 ± 3.0b, B 4.6 ± 0.7c, C 5.3 ± 0.9b, B 2.7 ± 0.3c, B 1.4 ± 0.2b, B

T2 139.2 ± 21.9a, D 10.5 ± 1.3ab, E 13.7 ± 2.1ab, F 5.4 ± 1.1c, F 2.4 ± 0.5b, F

T3 127.3 ± 30.3a, G 8.3 ± 0.8bc, H 9.5 ± 2.2b, H 3.5 ± 0.8c, G 1.8 ± 0.5b, H

T4 139.5 ± 19.9a, K 10.9 ± 1.5ab, L 18.5 ± 4.9ab, K 4.5 ± 0.6c, K 3.0 ± 0.5b, K

T5 173.1 ± 22.0a, N 14.0 ± 1.6a, N 24.5 ± 7.0a, N 13.6 ± 1.9a, N 7.2 ± 2.2a, N

T6 134.8 ± 12.6a, Q 11.8 ± 1.4ab, Q 16.3 ± 7.3ab, Q 10.0 ± 1.1b, Q 3.5 ± 0.6a, Q

T1 – control, T2 - Gigaspora margarita S-23, T3 – Claroideoglomus lamellosum S-11, T4 – Pseudomonas koreensis S2CB35, T5 – T2 + T4, T6 – T3 + T4. Plants were
subjected to 0 (0.5 dS/m), 25 (2.5 dS/m) or 50 mM NaCl (4.5 dS/m). Different letters indicate significant differences (P < 0.05) among the treatments at each salt
level (a, b, c, d, e, f) or among salt levels for each treatment: T1 (A, B, C), T2 (D, E, F), T3 (G, H, I), T4 (J, K, L), T5 (M, N, O) or T6 (P, Q, R). Each value represents the
mean of four replicates ± standard error (SE)

a

b

c

d

Fig. 2 Sodium (Na+) and Chloride (Cl−) content in maize plants. a Na+ content in shoot, b Na+ content in root, c Cl− content in shoot d Cl− content in
root. See legend for Fig. 1. Each value represents the mean of four replicates (Na+) or three replicates (Cl−) ± standard error (SE)
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AMF and SAB with increasing salinity (Fig. 4a). At
0 mM NaCl, plants inoculated with SAB alone showed
significantly lower gene expression compared to control
and other microbial treatments. At 25 and 50 mM NaCl,
no significant differences were observed between the
treatments. When compared to the salt concentrations,
only plants treated with the co-inoculation of C. lamello-
sum and SAB exhibited increased gene expression (39%)
at 25 mM NaCl from 0 mM NaCl; however, the expres-
sion was reduced significantly at 50 mM NaCl.
The expression of ZmSOS1 and ZmSKOR were nega-

tively affected by salinity (Fig. 4b, c). No significant
difference in the gene expression of both the genes was
observed among different salt concentrations. Each
treatment exhibited different gene expression at all salt
concentration for both ZmSOS1 and ZmSKOR genes.
Only plants treated with co-inoculation of C. lamellosum
and SAB showed significantly higher expression at
25 mM NaCl for ZmSOS1. The higher expression
of ZmSKOR was observed in plants treated with
co-inoculation of C. lamellosum and SAB at 25 mM NaCl
compared to 0 mM NaCl.

Confocal scanning microscopy
The roots of harvested maize plants were observed under
CLSM to confirm the localization of the gfp-tagged SAB
strain, P. koreensis. Fluorescent bacterial cells were
observed to be absent in uninoculated control plants
(Fig. 5a). However, plants inoculated with gfp-tagged
SAB showed that the fluorescent bacterial cells were
localized on the surface of the roots (Additional file 2:
Figure S2). Several SAB were also able to move and
colonize to inter and intracellular spaces (Fig. 5b and c).
SAB P. koreensis S2CB35 efficiently colonized the rhizo-
plane, moved into root tissues, and localized themselves
to intercellular spaces of root tissues. Furthermore, the
ability of SAB to associate with the spore walls were also
observed (Fig. 5d-i). No SAB colonization was observed
on the spore walls of AMF isolated from pots treated with
C. lamellosum or G. margarita alone (Fig. 5d, g). Clear
fluorescent bacterial cells were observed on the spore
walls of AMF isolated from co-inoculation of AMF and
SAB treatment pots (Fig. 5e, h, Additional file 3: Figure S3
and Additional file 4: Figure S4). However, surface ster-
ilized and the broken spores exhibited no endosporic

a

b

Fig. 3 K+/Na+ ratio in maize plants. a K+/Na+ ratio in shoot, b K+/Na+

ratio in root. See legend for Fig. 1

a

b

c

Fig. 4 Gene expression analysis in maize roots by real-time quantitative
PCR. a ZmAKT2, b ZmSOS1, c ZmSKOR. See legend for Fig. 1
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colonization of SAB (Fig. 5f, i) suggesting that the SAB
was limited to the outer surface of AMF spore walls.

Discussion
Plant-microbe symbiosis is an important component for
plant’s ability to cope with the adverse environmental
conditions. Previous studies have demonstrated important
mechanisms employed by AMF to promote plant growth
under salinity stress [17, 45]. However, these experiments
were based on the inoculation of AMF alone. In a recent
report by Berta et al. [46], it was demonstrated that the
co-inoculation of AMF and soil rhizobia markedly pro-
moted the growth of maize plant in field conditions than
as a single inoculation. Although mycorrhizal colonization
is considered nonspecific, it can be enhanced by co-inocu-
lation with mycorrhizal helper bacteria [19, 27]. In the
present work, we analyzed the significance of application of
two indigenous AMF isolates with a bacterium isolated
from the surface of AMF spore walls on maize. It has been
reported that salinity negatively affects the plant growth

and development [47, 48]. Several studies have reported
that salinity reduced growth, leaf area, chlorophyll content,
nutrient uptake and photosynthesis [15, 49, 50]. In this
study, dry weight of maize plant decreased with the
increase in salinity. However, the co-inoculation of
AMF and SAB significantly increased plant dry weight
under salinity stress. Our results indicate that under
salinity, microbial inoculation plays a significant role in
promoting plant growth.
Proline is an important osmoprotectant osmolyte and

is known to play a vital role in protecting plants from
various environmental stresses [51]. Our results demon-
strate that under salinity stress, maize plants accumulated
a higher amount of proline. However, co-inoculation of
AMF and SAB significantly reduced proline accumulation
in plants under salinity stress. Previous reports also
suggested that microbial inoculation decreased the proline
accumulation in plants [16, 40] under stressful environment.
Mycorrhizal colonization was reported to reduce under
salinity [52]. Similarly, in the present study, mycorrhizal

a b c

d e f         

g h i         

Fig. 5 SAB Pseudomonas koreensis S2CB35-gfp colonization in maize plant roots and association on AMF spore walls. a – control, b – intercellular
colonization of SAB, c – Intra cellular colonization of SAB. d, e, f - Claroideoglomus lamellosum S-11, g, h, i - Gigaspora margarita S-23. d and
g – Control, e and h – SAB colonization on AMF surface, f and i – No endosporic association. Arrow indicates the gfp-tagged SAB
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colonization was reduced under salt stress; however, the
co-inoculation of SAB with AMF increased mycorrhizal
colonization in all the salt concentration than AMF
treatment alone. Our results are in accordance with
Hashem et al. [53], they reported that the co-inoculation
of AMF with endophytic bacteria increased the mycor-
rhizal colonization in Acacia gerrardii under salt stress.
Although mycorrhizal helper bacteria is known to im-
prove fungal growth and colonization efficiency, we found
SAB had no positive influence on spore production under
salinity stress.
Soil salinity affects the nutrient uptake by plants and

transport to shoots [54]. Our results indicate that salinity
decreased the nutrient uptake by plants. Nitrogen is an
essential constituent of plant chlorophyll, amino acids,
and in the energy transfer compound of ATP (adenosine
triphosphate). Increased salinity reduced the uptake of
nitrogen; however, inoculation/co-inoculation treatments
significantly increased the nitrogen uptake by plants, in
the present study. The phosphate (P) solubilizing microor-
ganisms (PSM) are capable of transforming insoluble P
into a plant accessible soluble form. AMF is well known
for their capability to enhance P uptake by plants. Further,
PSM have been reported to increase P uptake by a plant
[55]. An increased P uptake by plants was observed in our
study with the use of P solubilizing SAB P. koreensis
S2CB35; nevertheless, no difference was observed between
AMF alone treatment and SAB alone treatment. How-
ever, a higher P accumulation in plants treated with
co-inoculation suggests that the plants might have
benefited from both AMF and SAB. A similar study by
Battini et al., [27] also reported that co-inoculation of
AMF and SAB significantly increased maize plant growth
by facilitating the P uptake.
Furthermore, plants also accumulate inorganic solutes

such as potassium to maintain osmotic or the turgor
pressure in addition to organic solute like proline [56]
under salinity stress. A higher level of Na+ ions present in
the soil competes with K+ ions resulting in an increased
accumulation of Na+ ions in plants [57]. K+ is required for
the osmotic balance, has a role in the opening and closing
of the stoma, and is an essential factor in protein biosyn-
thesis. Giri et al. [58] reported that these functions of K+

cannot be substituted with Na+ ions accumulated in the
cytosol. In this study, the co-inoculation enhanced the
accumulation of K+ in both root and shoot under salinity
stress. According to Estrada et al. [9], root tissues have
a higher accumulation of Na+ than shoots. Cantrell &
Linderman [59] reported that the accumulated Na+ in
mycorrhizal roots may compartmentalize in cell vacuoles
and in AMF hyphae to prevent translocation to the
shoots. The co-inoculation treatments at 25 mM NaCl
and C. lamellosum alone treatment at 50 mM NaCl
showed a lower Na+ accumulation in roots. High ratios of

K+/Na+ were found in our study, suggesting that microbial
treatments had a significant impact on K+/Na+ ratio than
non-inoculated plant roots under salinity stress. It has
been suggested that the maintenance of high K+/Na+

ratios in shoots of glycophytes is an important mechanism
to cope with the salinity stress [60]. In contrast to previous
reports [9, 29], our result indicates that microbial treatments
inhibited Cl− uptake by plants. Co-inoculation treatments
exhibited lower Cl− uptake by plant roots under salinity
stress. A recent study by Elhindi et al. [61] demonstrated
that mycorrhizal treated plants showed lower Cl− accumula-
tion. Although, a slight increase in Ca2+ and Mg2+ was
recorded at 25 mM NaCl. The increase in salinity reduced
the accumulation of these ions. The negative impact of soil
salinity on Ca2+ and Mg2+ uptake was also reported earlier
[47, 52], which is in concordance with our findings.
Previous reports showed that the inoculation of symbiotic

microbes improves salt tolerance in plants by improving
nutrient uptake [62], antioxidant activity [63], and increased
synthesis of photosynthetic pigments [53]. Moreover, ion
homeostasis is maintained by plants to resist salinity stress.
It has also been reported that Na+/H+ antiporter overex-
pression affects both salinity tolerance and K+ nutrition
[64]. AKT belongs to the family of plant K+ inward channel
and is responsible for the uptake of K+. AKT2 plays a role
in sugar loading of the phloem in long distance transport
[65]. On the other hand, the SKOR channel influences the
xylem loading of K+ [30]. Our results showed that different
treatments had different effects on expression of these
genes. A highly significant difference was observed at
25 mM NaCl where the plants treated with co-inoculation
of C. lamellosum and SAB considerably increased the
expression of AKT and SKOR. The Na+ antiporter SOS1
has been shown to be involved in the extrusion of Na+

[32]. We found a higher expression of ZmSOS1 gene at
25 mM NaCl in plants co-inoculated with C. lamellosum
and P. koreensis S2CB35 which correlates with the low
Na+ content in the root tissues. Mmycorrhizal treated
plants showed a considerably higher gene expression than
non-inoculated plants and SAB alone.
SAB P. koreensis S2CB35 was able to effectively

colonize maize root tissues and migrate to inter- and
intracellular spaces of root cells. Kost et al. [66] also
found that bacteria by utilizing key constituents malate
and oxalate of root exudates as sole carbon source were
able to effectively colonize the root surfaces. The strain
used in the present study was able to utilize malate as a
sole carbon source; however, it was not able to utilize
oxalate. The bacterial species, P. koreensis was initially
isolated from farming soils in Korea [67]. P. koreensis
was also reported to exist in various environmental
conditions such as in extreme oligotrophic sites [68],
plant endophytes [69], and heavy metal contaminated
sites [25]. In the present study, the strain P. koreensis
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S2CB35 was isolated from the surface of AMF spores.
CLSM view of AMF spore showed that gfp-tagged SAB
was effectively associated with spore walls of both the
AMF strains. The localization of bacteria on spore have
previous been studied [70, 71] and reported to have positive
effect on AMF germination. In addition, diverse bacterial
communities were identified to be associated with AMF
spores and shown to have multifunctionality [72, 73].

Conclusions
In conclusion, our study indicates that co-inoculation of
AMF and SAB improved the growth and salt tolerance
of maize. Mycorrhizal and bacterial treatments increased
nutrient uptake by plants and increased ratios of K+/Na+

in root and shoot tissues under salinity stress. A significant
positive alteration in gene expression of ion homeostasis
genes was demonstrated by mycorrhizal treatments. Co-
inoculation of AMF and SAB exhibited an improved
capability to alleviate inhibitory effects of salinity than
AMF or SAB alone treatments. SAB was found to be
associated with the spore walls of AMF and was local-
ized in inter- and intra-cellular spaces of maize roots.
These results highlight the importance of considering
co-inoculation to effectively alleviate detrimental effects
of salinity and improve plant growth in salinized soils.
Further, the understanding of molecular mechanisms
involved in the association between AMF and bacteria are
likely to provide benefits to the use of effective microbial
consortium in sustainable agricultural practices.

Additional files

Additional file 1: Figure S1. AMF and SAB co-inoculation effect on
mycorrhizal colonization frequency and arbuscules abundance. (A)
Colonization frequency (B) Arbuscules abundance. T1 – control, T2 - Gigaspora
margarita S-23, T3 – Claroideoglomus lamellosum S-11, T4 – Pseudomonas
koreensis S2CB35, T5 – T2 + T4, T6 – T3 + T4. Plants were subjected to 0
(0.5 dS/m), 25 (2.5 dS/m) or 50 mM NaCl (4.5 dS/m). Different letters
indicate significant differences (P< 0.05) among the treatments at each salt
level (a, b, c, d, e, f) or among salt levels for each treatment: T1 (A, B, C), T2 (D,
E, F), T3 (G, H, I), T4 (J, K, L), T5 (M, N, O) or T6 (P, Q, R). Each value represents
the mean of four replicates ± standard error (SE). (TIF 5431 kb)

Additional file 2: Figure S2. SAB Pseudomonas koreensis S2CB35-gfp
colonization in maize plant roots. Arrow indicates the gfp-tagged SAB.
(TIF 15878 kb)

Additional file 3: Figure S3. SAB Pseudomonas koreensis S2CB35-gfp
colonization on Claroideoglomus lamellosum S-11. Arrow indicates the
gfp-tagged SAB. (TIF 14024 kb)

Additional file 4: Figure S4. SAB Pseudomonas koreensis S2CB35-gfp
colonization on Gigaspora margarita S-23. Arrow indicates the gfp-tagged
SAB. (TIF 9889 kb)
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