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Ubiquitin-related genes are differentially @
expressed in isogenic lines contrasting

for pericarp cell size and grain weight in
hexaploid wheat
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Abstract

Background: There is an urgent need to increase global crop production. Identifying and combining specific genes
controlling distinct biological processes holds the potential to enhance crop yields. Transcriptomics is a powerful
tool to gain insights into the complex gene regulatory networks that underlie such traits, but relies on the availability
of a high-quality reference sequence and accurate gene models. Previously, we identified a grain weight QTL on wheat
chromosome 5A (5A QTL) which acts during early grain development to increase grain length through cell expansion
in the pericarp. In this study, we performed RNA-sequencing on near isogenic lines (NILs) segregating for the 5A QTL
and used the latest gene models to identify differentially requlated genes and pathways that potentially influence
pericarp cell size and grain weight in wheat.

Results: We sampled grains at 4 and 8 days post anthesis and found that genes associated with metabolism,
biosynthesis, proteolysis and the defence response are upregulated during this stage of grain development in
both NILs. We identified a specific set of 112 transcripts differentially expressed (DE) between 5A NILs at either time
point, including eight potential candidates for the causal 5A gene and its downstream targets. The 112 DE transcripts
had functional annotations including non-coding RNA, transposon-associated, cell-cycle control, ubiquitin-related, heat-
shock, transcription and histone-related. Many of the genes identified belong to families that have been previously
associated with seed/grain development in other species. Notably, we identified DE transcripts at almost all
steps of the pathway associated with ubiquitin-mediated protein degradation. In the promoters of a subset of
DE transcripts we identified enrichment of binding sites associated with C2H2, MYB/SANT, YABBY, AT-HOOK
and Trihelix transcription factor families.

Conclusions: In this study, we identified DE transcripts with a diverse range of predicted biological functions,
reflecting the complex nature of the pathways that control early grain development. Few of these are the direct orthologues
of grain size genes in other species and none have been previously characterised in wheat. Further functional characterisation
of these candidates and how they interact will provide novel insights into the control of grain size in cereals.
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Background

Crop production must increase to meet the demands of
a global population estimated to exceed nine billion by
2050 [1]. Indeed, one in nine people currently live under
food insecurity [2]. With limited opportunity for agricul-
tural expansion, increasing yields on existing land could
significantly reduce the number of people at risk of hun-
ger [3]. It is estimated that at least a 50% increase in
crop production is required by 2050 [4, 5], however
current rates of yield increase are insufficient to achieve
this goal [6]. It is therefore critical and urgent that we
identify ways to increase crop yields.

Final crop yield is influenced by the interaction of
many genetic and environmental factors. This complex-
ity hinders its study and has meant that the mechanisms
controlling this trait are not well understood. Grain
weight, however, an important component of final yield,
is more stably inherited and is better understood than
yield itself [7]. Grain weight is mainly determined by
grain size, which itself is controlled by the coordination
of cell proliferation and expansion processes. Studies in
both crop and model species have shown that these pro-
cesses are regulated by a wide range of genes and mo-
lecular mechanisms (reviewed in [8, 9]). Control at the
transcriptional level has been demonstrated, with the
rice transcription factor (TF) OsSPL16 influencing grain
size through cell proliferation [10], whilst a WRKY do-
main TF, TTG2, influences cell expansion in the integu-
ment of the Arabidopsis seed [11]. Important pathways
relating to protein turnover have also been identified, for
example the E3 ubiquitin-ligase, GW2, negatively regu-
lates grain weight and width in rice through the control
of cell division [12]. GW2 orthologues in other species,
including Arabidopsis and wheat, also act as negative
regulators of seed/grain size suggesting that these mech-
anisms may be conserved across species [13, 14].
Other pathways/mechanisms which affect grain size
include microtubule dynamics [15, 16], G-protein sig-
nalling [17, 18] and phytohormone biosynthesis and
signalling [19-21].

Wheat is a crop of global importance, accounting for
approximately 20% of the calories consumed by the hu-
man population [22]. However, our understanding of the
mechanisms controlling grain size remains limited in
wheat, compared to rice and Arabidopsis. Comparative
genomics approaches have provided some insight [13, 23]
and many quantitative trait loci (QTL) associated with
grain size and shape components (grain area, length and
width) have been identified [24—29]. However, none of
these QTL have been cloned and little is understood about
the underlying mechanisms. Previously, we identified a
QTL associated with increased grain weight on wheat
chromosome 5A. Using BC, near isogenic lines (NILs) we
determined that the QTL acts during the early stages of
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grain development to increase grain length through in-
creased cell expansion in the pericarp [29]. This and other
studies suggest that the early stages of grain/ovule devel-
opment are important for determining final grain size/
shape in wheat [13, 30, 31].

Transcriptomics is a powerful tool to gain insights into
the complex gene regulatory networks that underlie spe-
cific traits and biological processes. Several studies have
used transcriptomics approaches to look at the genes
expressed during grain development in wheat [32-38].
However, these studies have mostly focused on the later
stages of grain development, often focusing on starch ac-
cumulation in the endosperm. Additionally, many of these
studies were performed using microarrays [33, 36, 37],
which represent a fraction of the transcriptome and are
unable to distinguish between homoeologous gene copies.
More recent studies have used RNA-sequencing (RNA-
seq) [34, 35], which is an open-ended platform that
provides homoeolog specific resolution. However, the ac-
curacy of RNA-seq is dependent on the availability of a
high-quality reference sequence and accurate gene
models. Until recently, the large (~ 17 Gb) and highly re-
petitive nature of the hexaploid wheat genome meant that
genomic resources were limited and incomplete. However,
this has changed drastically in the last few years with the
release of several whole genome sequences and annota-
tions [39-42]. To date, the RNA-seq grain development
studies have used either expressed sequence tags (ESTSs)
[35, 38] or the Chromosome Survey Sequence (CSS) [34]
as references. However in hindsight, these annotations are
incomplete with respect to the latest gene models [39, 41].
These novel resources provide new opportunities for more
detailed and accurate transcriptomic studies in wheat.

A potential drawback of transcriptomic studies is that
comparisons across varieties, tissues or time points can
result in a large number of transcripts being differen-
tially expressed. While this informs our understanding
of the biological mechanisms, it is difficult to prioritise
specific genes for downstream analysis. Comparative
transcriptomic approaches using more precisely defined
genetic material, tissues and developmental time points
can aid in this by defining a smaller set of differentially
regulated transcripts. For example, a comparison of the
flag leaf transcriptomes of wild-type and RNAi knock-
down lines of the Grain Protein Content 1 (GPC) genes
was used to identify downstream targets of the GPC TFs
[43]. Similarly, the transcriptomes of NILs segregating
for a major grain dormancy QTL on chromosome arm
4AL were compared and specific candidate genes under-
lying the QTL were identified [44]. To our knowledge,
no such experiments have been performed on isogenic
lines with a known difference for grain size in wheat.

In this study, we performed RNA-seq on NILs segre-
gating for a major grain weight QTL on chromosome
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arm 5AL. Previously, we showed that the QTL acts dur-
ing early grain development and that NILs carrying the
positive 5A allele (5A+ NILs) have significantly increased
thousand grain weight (TGW; 7%), grain length (4%)
and pericarp cell length (10%) compared to NILs carry-
ing the negative 5A allele (5A- NILs) [29]. The NILs
carry an introgressed segment of ~ 490 Mb and using re-
combinant inbred lines we fine-mapped the grain length
effect to a 75 Mb region on the long arm of chromo-
some 5A according to the IWGSC RefSeq v1.0. The aim
of the present study was to identify biological pathways
that potentially influence grain length and pericarp cell
size by using RNA-seq to identify genes that are differ-
entially regulated between the 5A- and 5A+ NILs.

Results

RNA-sequencing of 5A near isogenic lines

We performed RNA-seq on whole grains from two 5A
NILs which contrast for grain length based on the 2014
growing season [29]. We chose the time point when
NILs show the first significant differences in grain length
(8 days post anthesis (dpa); T2) and the preceding time
point (4 dpa; T1) to capture differences in gene expres-
sion occurring during this period (Fig. 1). We hypothe-
sised that although there was no significant difference in
the grain length phenotype at T1, phenotypic differences
were beginning to emerge and gene expression changes
influencing this may already be occurring. We obtained
over 362 M reads across all 12 samples (two time points,
two NILs, three biological replicates), with individual
samples ranging from 15.0 M to 53.6 M reads and an
average of 30.2 M reads (standard error + 3.5 M reads)
per sample (Table 1).

Comparison between Chinese spring reference transcriptomes
We aligned reads to two different transcriptome se-
quences from the Chinese Spring reference accession,
the IWGSC Chromosome Survey Sequence (CSS) [40]
and TGACvl (TGAC) [41] reference. On average
across samples, 69.8+0.3% of reads aligned to the
CSS reference, whilst 84.4 +0.2% of reads aligned to
the TGAC reference.

We defined a transcript as expressed if it had an aver-
age abundance of > 0.5 transcripts per million (tpm) in
at least one of the four conditions (2 NILsx 2 time
points). This resulted in 64,020 and 101,652 transcripts
being expressed in the CSS and TGAC transcriptomes,
respectively. We defined differentially expressed (DE)
transcripts (q value <0.05) using sleuth [45] and per-
formed four pairwise comparisons: two ‘across time’ and
two ‘between NIL' comparisons. The ‘across time’ ana-
lyses consisted of a comparison between T1 and T2
samples of the 5A- NIL (hereafter symbolised as 5A-11;
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Fig. 1 Differentially expressed genes between 5A NiLs across time.
RNA-seq was carried out on whole grain RNA samples taken in 4 different
conditions from NILs grown in 2014 [29]: 5A- (short grains) and 5A+ (long
grains) NILs at 4 days post anthesis (dpa; T1) and 8 dpa (T2). These were
selected as the time point when the first significant difference (P < 0.01,
asterisks) in grain length was observed between 5A- (grey, dashed line,
short grains) and 5A+ (purple, solid line, long grains) and the preceding
time point. Differentially expressed (DE) transcripts were identified for
four comparisons (g-value < 0.05). Coloured boxes indicate the
numbers of DE transcripts identified for each comparison using
alignments to either the IWGSC Chinese Spring Survey Sequence
(CSS) or the TGACV1 (TGAC) Chinese Spring reference transcriptomes.
Two ‘across time' comparisons: SA—1 (grey box; comparing T1 and T2
samples of the 5A- NIL) and 5A+E (purple box; comparing T1 and T2
samples of the 5A+ NIL), and two ‘between NIL' comparisons: T1247
(orange box; comparing 5A- and 5A+ NILs at T1) and T2247 (green
box; comparing 5A- and 5A+ NiLs at T2)

Fig. 1, grey) and the corresponding comparison for the
5A+ NIL samples (hereafter 5A+1}; Fig. 1, purple). In
both ‘across time’ analyses, transcripts were considered
as upregulated or downregulated with respect to T1 i.e.
increasing or decreasing in expression across time. The
‘between NIL' analyses consisted of a comparison be-
tween the 5A- and 5A+ NILs at T1 (hereafter T1Z47 ;
Fig. 1, orange), and a comparison between the 5A- and
5A+ NILs at T2 (hereafter T2247 ; Fig. 1, green). In all
cases, more DE transcripts were identified in the TGAC
compared with the CSS transcriptome, and similar
trends were observed for both references across the four
comparisons (Fig. 1).

We selected the comparison with the fewest DE tran-
scripts (Tlgﬁ;; 32 and 88 DE transcripts for CSS and
TGAC, respectively) to conduct a more in depth analysis
of the alignments and references. For all DE transcripts
from each alignment we identified the equivalent tran-
script/gene model in the other reference sequence using
Ensembl plants release 35 and compared the gene



Brinton et al. BMIC Plant Biology (2018) 18:22

Table 1 Mapping summary of RNA-seq samples
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CSS gene models

TGAC gene models

Genotype Time point  Replicate  Reads Reads pseudoaligned % reads pseudoaligned  Reads pseudoaligned % reads pseudoaligned
5A - 1 1 24,443,658 17,072,939 69.85 20,549,681 84.07
5A - 1 2 34,441,799 23,349,288 67.79 28,483,090 82.70
5A - 1 3 23462,705 16,220,597 69.13 19,664,859 83.81
5A - 2 1 21333672 14,839,724 69.56 18,052,324 84.62
5A - 2 2 14,967,302 10,632,519 71.04 12,803,552 85.54
5A - 2 3 35,522,754 25491523 71.76 30,297,336 85.29
5A + 1 1 19,267,564 13,520,181 70.17 16,317,352 84.69
5A + 1 2 22,299,102 15,479,234 6942 18,780,525 84.22
5A + 1 3 30,531,539 20,789,582 68.09 25436453 8331
5A + 2 1 51,637,607 36,192,489 70.09 43,739,451 84.70
5A + 2 2 53,575,232 37,956,887 70.85 45,497,914 84.92
5A + 2 3 30,553,421 21,604,895 70.71 25,984,674 85.05
Total 362,036,355 253,149,858 - 305,607,211 -
Mean 30,16969% 21,095,822 69.87 25,467,268 84.41

models (Additional file 1). For 64 of the TGAC DE tran-
scripts we did not identify an equivalent CSS DE tran-
script, either because there was no corresponding CSS
gene model (47 transcripts) or the expression change be-
tween NILs was non-significant for the CSS transcript.
Analogously, eleven CSS DE transcripts did not have an
equivalent TGAC gene model DE, five of which were
due to there being no corresponding TGAC gene model
annotated. Combining both sets, we identified 42 groups
of equivalent gene models, 26 of which were differen-
tially expressed in both alignments. Comparing these 42
groups and taking into account fused and split gene
models within each dataset, there were a total of 97 gene
models across both datasets (50 CSS+47 TGACQC)
(Fig. 2a, Additional file 1). Of these, only six were identi-
cal between the CSS and TGAC references. All other
discrepant gene models fell under categories included
truncations in either reference, gene models that were
split/fused in one reference sequence, and gene models
that differed drastically in their overall structure.

For all discrepant gene models we used transcriptome
read mapping and an interspecies comparison to deter-
mine which gene model seemed most plausible. Fig. 2b
shows an example of the most commonly identified dis-
crepancy where a gene model was truncated in the CSS
reference (pink) relative to the TGAC reference (grey).
The DE TGAC gene model was supported by our tran-
scriptome data as we observed read coverage across the
whole gene model whilst the coverage across the CSS
gene model dropped at the position where an intron is
predicted in the TGAC model. Another common dis-
crepancy was a single gene model in one reference being
split into multiple gene models in the other reference.

Fig. 2c shows an instance where a single DE TGAC gene
model comprised four separate CSS gene models. In this
case, all five gene models had coverage across the entire
gene body, however the single TGAC gene model was
more similar to proteins from other species, suggesting
that this single gene model was most likely correct. The
final example (Fig. 2d) shows two TGAC gene models
that were fused into a single CSS gene model. The
coverage across the CSS gene model was inconsistent,
with most reads concentrated in the 3’ untranslated re-
gion (UTR). The two TGAC gene models had more con-
sistent coverage across the entire gene models and were
both supported by protein alignments with other species.
Interestingly, only the shorter TGAC gene model was
DE (Fig. 2d, grey), suggesting that differential expression
of the CSS gene model was driven by the reads mapping
to the putative 3’ UTR rather than the coding regions of
the transcript (Fig. 2d, pink). Taking together the fact
that a higher percentage of reads mapped to the TGAC
gene models and that many more of the examined
TGAC gene models were supported by interspecies
comparison and expression data than the CSS gene
models, we decided to continue our analysis using the
alignments to the TGAC gene models only.

Many DE transcripts during early grain development are
shared between NILs

We identified 3151 and 2789 DE transcripts across early
grain development in 5A-1) and 5A+1}, respectively
(Fig. 1, Fig. 3a). The DE transcripts were evenly distrib-
uted across the 21 chromosomes, showing no overall

bias towards any chromosome group or subgenome
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(See figure on previous page.)

Fig. 2 Comparison between CSS and TGACV1 gene models. a Discrepancies identified between gene models in the CSS and TGAC reference sequences
and the number of gene models falling into categories. Panels (b), (c) and (d) show specific examples of discrepancies. In each panel, a representation of
the unspliced gene model is shown with exons as coloured boxes, untranslated regions as white boxes, and introns as thin lines. Graphs show the relative
read coverage across the spliced transcript with the structure represented diagrammatically directly above each graph. The number in brackets shows the
maximum absolute read depth for each gene model. > and < in the gene structures indicate the direction of transcription and a ‘DE’ indicates that the

5A-

gene model was differentially expressed in 12" (q value < 0.05). For each panel transcript names are shown in the coloured legends

(Fig. 3b). Approximately 60% (1832) of the DE transcripts
were shared between 5A-T] and 5A+1} (Fig. 3a) and 84%
(1532) of the shared transcripts were upregulated across
time (Fig. 3c). We identified 41 significantly enriched gene
ontology (GO) terms in the upregulated transcripts
(Additional file 2). Sixteen of the GO terms were as-
sociated with biological process and could be grouped
under three parent GO terms: metabolic process
(GO:0008152), defence response (GO:0006952) and

metabolic process we found terms associated with
carbohydrate (GO:0005975) and pyruvate metabolism
(GO:0006090), vitamin E (GO:0010189) and triglycer-
ide biosynthesis (G0:0019432), mRNA catabolism
(GO:0006402), proteolysis (GO:0006508) and phos-
phorylation (GO:0016310). Downregulated transcripts
(300) were enriched for seven GO terms, four of which
were associated with biological process: potassium ion
transport (GO:0006813), signal transduction (GO:0007165),

biological regulation (GO:0065007) (Fig. 3b). Within  phosphorelay signal transduction (GO:0000160) and
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Fig. 3 Overview of differentially expressed transcripts. a Venn diagram of differentially expressed (DE) transcripts (q < 0.05) identified in 4 pairwise
comparisons: T12,, (orange), T2§§; (green), SA{; (grey) and 5A+% (purple). b Number of DE transcripts located on each chromosome for all
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carbohydrate metabolism (GO:0005975). The overlap be-
tween enriched GO terms in the upregulated and downreg-
ulated transcripts (e.g. carbohydrate metabolism) suggests
that different aspects of these processes are being differen-
tially regulated during this early grain development stage.

We also identified many transcripts that were only DE
across early grain development in one of the two geno-
types (i.e. unique to either the 5A-1} or 5A+1] compari-
sons). However, many of these transcripts were
borderline non-significant in the opposite genotype
comparison illustrated by the fact that the distribu-
tions of q-values were skewed towards significance
(Additional file 3). Additionally, the uniquely DE tran-
scripts were enriched for GO terms similar to the
shared transcripts (Additional file 2). Some GO terms,
however, were only enriched in the uniquely DE tran-
scripts, for example, cell wall organisation or biosyn-
thesis (GO:0071554) and response to abiotic stimulus
(G0O:0009628). Overall, these results suggests that al-
though there were some differences between geno-
types, broadly similar biological processes were taking
place in the grains of both the 5A NILs at the early
stages of grain development.

DE transcripts between NILs are concentrated on
chromosome 5A
We identified 88 and 91 DE transcripts between the
NILs in T124; and T2Z47, respectively, many fewer than
identified in 5A-11 or 5A+1]. This was expected as the
NILs are genetically very similar and therefore the differ-
ence in developmental stage between the T1 and T2
time points results in greater changes in gene expres-
sion. For a subset of the DE transcripts, we confirmed
expression changes using qRT-PCR (see Methods for de-
tails). Of the 179 DE transcripts, 67 were common
between T1247 and T223;, whereas 45 DE transcripts
between genotypes were unique and identified only at a
single time point (resulting in 112 DE transcripts be-
tween NILs at any time point; Fig. 3a). No GO terms
were significantly enriched in these groups. Of the 67
common DE transcripts, 54 (80%) were located on
chromosome 5A, whilst in both the T1 and T2 unique
groups less than 50% were located on chromosome 5A
(Fig. 4a). Similar numbers of DE transcripts were more
highly expressed in either genotype, with no distinct pat-
terns observed between the unique or common groups.
We looked specifically at the positions of the 74 DE
transcripts located on chromosome 5A and found that
all were located within the 491 Mbp introgressed region
of the NILs (Fig. 4b). Higher numbers of DE transcripts
were identified in regions of increased SNP density be-
tween the 5A NILs. Previously, we fine-mapped the
grain length effect to a 75 Mbp interval on 5AL
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(between BS00182017 (317 Mbp) and BA00228977 (392
Mbp; [29])) and eight of the DE transcripts were located
within this interval. Three of these transcripts were
more highly expressed in the 5A+ NILs (5A + g tran-
scripts), two of which were transcript variants of the
same gene (a kinesin-like protein; only .2 variant shown
in Fig. 4b). The other 5A + g, transcript was annotated
as a putative retrotransposon protein. One of the five
transcripts more highly expressed in the 5A- NIL (5A—
high transcript) had no annotation and the remaining
four were annotated as a non-coding RNA, a RING/U-
box containing protein, a TauE-like protein and a
DUEF810 family protein.

DE transcripts outside of chromosome 5A are enriched in
specific transcription factor binding sites

As all the DE transcripts on chromosome 5A were lo-
cated within the 491 Mbp introgressed region, it is pos-
sible that the differential expression was a direct
consequence of sequence variation between the NILs
e.g. in the promoter regions. However, the 38 DE tran-
scripts located outside of chromosome 5A have the same
nucleotide sequence as they are identical by descent
(BC4 NILs confirmed with 90 k iSelect SNP marker data
[29]). These 38 DE transcripts are unlikely to represent
false positives (see Methods), so we hypothesised that
these transcripts are downstream targets of DE genes,
such as transcription factors (TFs), located within the
5A introgression.

To assess this, we identified transcription factor bind-
ing sites (TFBS) present in the promoter regions of these
38 DE transcripts. We identified TFBS associated with
91 distinct TF families present in this group of tran-
scripts (Additional file 4), five of which were enriched
relative to all expressed transcripts (Table 2; FDR ad-
justed P < 0.05). The enriched TFBS families were C2H2,
Myb/SANT, AT-Hook, YABBY and MADF/Trihelix.

To determine potential candidates for upstream regu-
lators we identified all TFs located within the intro-
gressed region on chromosome 5A [46]. We identified a
total of 200 annotated TFs, belonging to 35 TF families.
Of these, four families (across 29 genes) overlapped with
enriched TFBS families. Four of the 29 TFs were located
within the fine-mapped grain length region on chromo-
some 5A, including C2H2, MYB and MYB_related TFs
(Additional file 5).

Functional annotation of DE transcripts

Having analysed DE transcripts between NILs based
on chromosome location, we looked at the 112 DE
transcripts based on their functional annotations
(Additional file 6). We identified multiple categories
including transcripts associated with ubiquitin-mediated
protein degradation, cell cycle, metabolism, transport,
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transposons and non-coding RNAs (Table 3). Few categor-  not enriched relative to all expressed transcripts. All
ies were exclusively located on/outside 5A or had exclu- ncRNA transcripts were classed as long non-coding
sively higher expression in the either the 5A- or 5A+ NIL. RNAs (>200 bp, [47]) and we found that four of the

The category with the most DE transcripts was non- ncRNAs overlapped with coding transcripts (two in the
coding RNA (ncRNA, 15 transcripts), although this was  antisense direction) and one ncRNA was a putative
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Table 2 Enriched transcription factor binding sites in promoters of DE transcripts located outside of 5A

TF family Observed in all expressed Expected in outside 5A Observed in outside 5A FDR adjusted p-value
transcripts (n=101,653) DE transcript (n = 38) DE transcripts (n = 38)

C2H2 77,987 29 36 0.021

Myb/SANT 88,575 33 38 0.021

AT-Hook 90,203 34 38 0.028

YABBY 19,447 7 15 0.034

MADF;Trihelix 16,632 6 13 0.042

Values are the number of transcripts in which binding sites associated with the specified transcription factor (TF) family are present

miRNA precursor (Ta-miR132-3p; [48]). We identified
13 transcripts as putative targets of Ta-miR132-3p in the
TGAC reference but none of these target transcripts
were differentially expressed in our dataset. The second
largest transcript category was transposon-associated (14
transcripts; FDR-adjusted p = 0.008), whereas the third
largest category was DE transcripts related to ubiquitin
and the proteasome (12 transcripts; p = 0.008). DE tran-
scripts annotated as homeobox were also enriched (4
transcripts; FDR-adjusted p =0.001). Interestingly, we
identified homeodomain TFBS in 27 of the 38 outside
5A DE transcripts although this was not significantly
enriched (FDR-adjusted p = 0.166, Additional file 4).

Table 3 Categories of DE transcripts between NiLs based on
predicted function

Category number of  Adjusted  5A/not  NIL with higher

transcripts ~ p-value 5A expression:
5A—/5A+

non-coding RNA 15 0.141 10/5 6/9

transposon- 14 0.008 4/10 5/9

associated

ubiquitin 12%* 0.008 10/2 8/4

cell cycle 5 - 5/0 2/3

histone-related 5 - 3/2 3/2

heat shock 5 - 3/2 2/3

protease 4 - 3/1 3/1

transport 4 - 3/1 2/2

metabolism 5 - 5/0 4/1

homeobox 4 0.001 3/1 1/3

cell wall 3 - 2/1 2/1

transcription 3 - 2/1 0/3

non-translating 2 - 0/2 1

peroxisome 2 - 0/2 0/2

other* 20 - 14/6 11/9

No annotation 8 - 4/4 5/3

Adjusted p-values displayed are based on an enrichment test of the functional
categories relative to all expressed transcripts. - indicates that an enrichment
test was not performed as categories were based on bespoke annotations
*includes transcripts with annotations that could not be grouped by function
with other transcripts

**only the 7 transcripts that were annotated as ubiquitin-related in the TGAC
annotation were used in the enrichment test (see methods)

The DE transcripts related to ubiquitin were of par-
ticular interest as ubiquitin-mediated protein turnover
has previously been associated with the control of seed/
grain size in wheat [13] and other species including rice
and Arabidopsis [12, 14, 49]. The pathway acts through
the sequential action of a cascade of enzymes (see Fig. 5a
legend) to add multiple copies of the protein ubiquitin
(ub) to a substrate protein that is then targeted for deg-
radation by the proteasome. We identified differential
expression of transcripts at almost all steps of this path-
way (excluding E1): two ubiquitin proteins and one
ubiquitin-like protein, one E2 conjugase, six potential E3
ligase components and two putative components of the
proteasome (Fig. 5). In addition to these, we also identi-
fied four DE transcripts annotated as proteases (Fig. 5),
which are known substrates regulated by this pathway
[50-52] and that influence organ size through the regu-
lation of cell proliferation. Most of the components of
the ubiquitin pathway that were differentially expressed
were more highly expressed in the 5A- NIL (11/16, in-
cluding proteases) (Fig. 5b).

Discussion

In this study, we performed RNA-seq on the grains of
5A NILs with a known difference in pericarp cell size,
grain length and final grain weight. We previously deter-
mined that the first phenotypic differences between NILs
arose during early grain development [29]. We hypothe-
sised that differences in gene expression between NILs
during these early stages would allow us to identify spe-
cific genes and pathways that affect pericarp cell size
and grain size at the transcriptional level.

The importance of a high-quality reference sequence

We initially mapped the RNA-seq data to two different
reference transcriptomes: CSS and TGAC. We found
that TGAC outperformed the CSS transcriptome both in
term of the number of reads that aligned and in the gene
models themselves. This was most likely due to the sig-
nificant improvement in terms of sequence contiguity of
the TGAC reference over the CSS (N50=88.8 vs<
10 kb, respectively), allowing more accurate prediction
of gene models. Our study highlights the practical
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the fine-mapped region of the 5A grain length QTL (Fig. 4b; RING/U-box superfamily protein)

importance of this improvement as we detected 64 more
DE transcripts using the TGAC reference, in most cases,
due to the absence of a corresponding gene model in the
CSS reference (46 transcripts). We also identified cases
where incorrect gene models in the CSS reference led to
misleading results. For example, in the CSS fused gene
model case study (Fig. 2d) a single DE transcript from
the CSS reference had a large accumulation of reads
mapping to the 3° UTR. This gene was the orthologue of
Arabidopsis NPY1, which plays a role in auxin-regulated
organogenesis [53] and could therefore be related to the
control of grain size. However, in the TGAC reference,
in addition to the NPYI orthologue, an alternative gene
model was annotated in place of the 3° UTR. This

alternative gene model was differentially expressed
whilst the NPY1 orthologue was expressed at a very low
level and was not differentially expressed.

The improvements in scaffold size, contiguity and gene
annotation open up new opportunities in wheat re-
search. Here we used the new physical sequence to as-
sign locations to 107 of 112 DE transcripts identified
between NILs, allowing us to determine which DE tran-
scripts were located within the QTL fine-mapped inter-
val. Likewise, the analysis of promoter sequences
enabled new hypothesis generation for this specific bio-
logical process and will also aid in the understanding of
how promoter differences across genomes affects the rela-
tive transcript abundance of the different homoeologs.
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This exemplifies the importance of correctly annotated
gene models and improved genome assemblies in gaining
a more accurate view of the underlying biology.

Differential expression analysis provides an insight into the
biological processes occurring in early grain development
We sampled grains at 4 and 8 dpa to encompass the de-
velopmental stage at which the first significant difference
in grain length between 5A NILs is observed. During
this stage, increases in grain size are largely driven by
cell expansion in the pericarp [54, 55], consistent with
our previous finding that increased pericarp cell size un-
derlies the difference in final grain length. These time
points are also relatively early compared to other grain
related RNA-seq studies which have focused on later
grain filling processes [34-36]. The ‘across time’ compar-
isons (5A-T1 and 5A+1]) identified >2700 DE tran-
scripts in each NIL, and there was a large overlap in the
biological processes being differentially regulated. We
found that most DE transcripts were upregulated over
time and many of these were associated with metabolism
and biosynthesis consistent with grains undergoing a
period of rapid growth and the start of endosperm cellu-
larisation at this stage of development [32]. Transcripts
associated with proteolysis and mRNA catabolism were
also upregulated across time consistent with increases in
specific proteases and other hydrolytic enzymes at this
stage of grain development [56]. These could be indica-
tive of programmed cell death which occurs in both the
nucellus and pericarp of the developing grain up to 12
dpa [54]. We also identified an upregulation of tran-
scripts associated with defence response and oxidation-
reduction process, consistent with previous reports of
accumulation of proteins associated with defence against
both pathogens and oxidative stress during the early-
mid stages of grain development [57]. Transcriptional
studies always have the caveat that changes in gene ex-
pression may not translate to changes in protein level
[58]. However, proteomic analyses of similar stages of
grain development have identified the differential regula-
tion of similar ontologies [57, 59] suggesting that these
transcriptional changes are reflective of overall protein
status in the grain.

Comparative transcriptomics as a method to identify
candidate genes underlying QTL

The relative ease and low-cost of performing RNA-seq
on highly isogenic material compared with high reso-
lution genetic mapping makes it an attractive method
for identifying candidate genes underlying QTL and bet-
ter understanding the associated traits. This is particu-
larly true for species with large genomes, such as wheat,
for which the cost of whole genome sequencing remains
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high. A potential drawback of transcriptomics approaches,
however, is the large scale gene expression changes often
observed when comparing different varieties or develop-
mental stages. The use of highly isogenic lines can be used
to address this by defining very specific chromosome in-
tervals which differ between lines. The use of the 5A NILs
in our study exemplified this by allowing the direct com-
parison of the effect of the 5A introgression on gene
expression at two time points during grain develop-
ment (T1347 and T22{7). This resulted in a defined
set of 112 DE transcripts between genotypes. The ma-
jority of T1247 and T2247 DE transcripts were located
on chromosome 5A and all of these were located
within the 5A introgression. This is expected given
that the sequence variation in the NILs was restricted
to the chromosome 5A region.

DE transcripts located within the fine-mapped interval
on chromosome 5A represent good candidates for fur-
ther characterisation. The kinesin-like gene and RING/
U-box superfamily protein are particularly strong candi-
dates based on their functional annotations. Previous
studies have demonstrated that Kinesin-like proteins can
regulate grain length and cell expansion through in-
volvement with microtubule dynamics [15, 16, 60]. The
RING/U-box protein is a putative E3 ligase, a class of
enzymes which have been associated with the control of
grain size (discussed in more detail later; [12, 13]).

However, caution should be exercised when speculat-
ing on the identity of a causal gene(s) based solely on
differential expression of transcripts. In the case of the
5A NILs, it is difficult to predict whether DE transcripts
in the fine-mapped interval are truly associated with the
effect of the 5A QTL or are simply a consequence of se-
quence variations between the parental cultivars, i.e.
‘guilt by association’. A relevant example was the recent
use of transcriptomics to define a candidate gene under-
lying a grain dormancy QTL (PMI19) [44]. Subsequent
studies showed that a different gene in close physical
proximity (TaMKK3) [61] was responsible for the nat-
ural variation observed [62]. The mis-interpretation of
the transcriptomics data was due to complete linkage
disequilibrium between the DE PMI19 gene and the
causal TaMKK3 gene in the germplasm used in the
original study.

An additional consideration is that the causal gene(s)
underlying a QTL may not be differentially expressed.
The phenotypic effects of the QTL could be a result of
allelic variation that alters the function of the underlying
gene independent of expression level. Indeed, coding re-
gion sequence polymorphisms can be identified using
RNA-seq data [63]. These polymorphism can be con-
verted into genetic markers to further fine map the gene,
although we did not pursue this strategy in our study.
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It could be argued that resources would be better fo-
cussed on fine-mapping and cloning the gene underlying
the QTL before performing further studies using
methods such as RNA-seq. Indeed, direct manipulation
of a causal gene through TILLING or gene editing allows
precise interrogation of gene function and how it relates
to the trait of interest (reviewed in [64]). However, aside
from the identification of the causal gene itself, we
would argue that comparative transcriptomics using
highly isogenic material is a valuable method for under-
standing the underlying biology of the trait. This is be-
coming increasingly commonplace with the relatively
low cost of performing RNA-seq (two sequencing lanes
in this study), the improved genome assemblies now
available in multiple species [65], and the improved soft-
ware (e.g. [66, 67]) which facilitate downstream analyses
of data. Combining insight from transcriptomic studies
with prior fine-mapping and phenotypic characterisation
allows the selection of candidates for functional charac-
terisation, which can proceed alongside further fine-
mapping of the QTL. In the case of this study, genes
found to be associated with differences in grain size
components would be interesting novel candidates for
grain size control in wheat, regardless of whether they
are the causal gene underlying the 5A QTL. The case of
PM1I9 again provides a relevant example, as direct ma-
nipulation of PMI19 in transgenic lines resulted in a grain
dormancy phenotype despite the fact it was not the
causal gene underlying the grain dormancy QTL in
question [44, 62].

Ultimately, in the case of the 5A QTL, further fine-
mapping of the locus will be required to identify the
underlying gene. However, we would consider the use of
transcriptomics to be a complementary approach to
fine-mapping both by providing additional SNPs and
insight into the biological mechanisms underlying the
QTL trait.

DE transcripts outside chromosome 5A are candidates for
downstream targets of the 5A QTL

We considered DE transcripts outside of chromosome
5A as candidates for downstream targets of genes lo-
cated in the 5A introgression because the differential
expression could not have arisen through sequence
variation. These included genes located on all three ge-
nomes implying that there is cross-talk at the transcrip-
tional level between the A, B and D genomes. We
identified, in the promoters of these genes, enrichment
of TF binding sites associated with TF families which
have all previously been shown to play diverse roles in
the control of organ development [68, 69]. For example
YABBY genes, a plant specific family of TFs, play a crit-
ical role in patterning and the establishment of organ
polarity [70] and fruit size [71]. Another example are the
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C2H2 TFs, NUBBIN and JAGGED, which are involved
in determining carpel shape in Arabidopsis [72]. AT-
Hook TFs play roles in floral organ development in both
maize and rice [73, 74] and modulate cell elongation in
the Arabidopsis hypocotyl [75]. Few of these transcrip-
tion factor families have been characterised in wheat,
and although these interactions need to be experimen-
tally validated, they could be potential targets for the
manipulation of grain size.

DE transcripts have functions related to the control of
seed/organ size

Studies in species such as rice and Arabidopsis have
shown that seed size is regulated by a complex network of
genes and diverse mechanisms, ultimately through the co-
ordination of cell proliferation and expansion (reviewed in
[8, 9]). 5A+ NILs have significantly longer pericarp cells,
suggesting that the underlying gene influences cell expan-
sion [29]. Genes that physically modify the cell wall have
been shown to directly control cell expansion (reviewed in
[76]) and we identified three DE transcripts that have po-
tential roles in cell wall synthesis and remodelling. We
also identified a number of DE transcripts associated with
the cell cycle and the control of cell proliferation. During
seed development, a number of cell cycle types in addition
to the typical mitotic cycle are observed. One such alter-
native cycle type is endoreduplication, characterised by
the replication of chromosomes in the absence of cell div-
ision, which is associated with cell enlargement (reviewed
in [77]). Two of the DE transcripts were the closest wheat
orthologues of Arabidopsis genes that have specific roles
in organ development: a GRF-interacting factor (GIF) and
SEUSS (SEU). In Arabidopsis, the GIF genes interact with
the GROWTH-REGULATING FACTOR (GRF) TFs and
act as transcriptional co-activators to regulate organ size
through cell proliferation [78]. Conversely, SEU acts a
transcriptional co-repressor and interacts with important
regulators of development to control many processes, in-
cluding floral organ development [79].

Seed development requires the coordination of pro-
cesses across multiple tissues, namely the seed coat,
endosperm and embryo. The development and growth
of these tissues is inherently interlinked, and it has been
proposed that the mechanical constraint imposed by the
maternal seed coat/pericarp places an upper limit on the
size of the seed/grain [29, 30, 80]. Epigenetic regulation
appears to play an important role in the cross talk and
coordination of these tissues [81]. The differential ex-
pression of 34 non-coding transcripts, transposons and
histone-related transcripts between NILs could suggest a
difference in epigenetic status associated with the con-
trol of pericarp cell size. Additional work to characterise
these non-coding RNAs would be warranted to establish
their role in grain development.
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The ubiquitin-mediated control of seed/grain size has
been documented in a number of species (reviewed in
[82]), including wheat [13, 83]. DE transcripts associated
with the ubiquitin pathway were significantly enriched in
the 5A NILs, although only one was located within the
fine-mapped interval. The pathway tags substrate proteins
with multiple copies of the ubiquitin protein through the
sequential action of a cascade of enzymes: E1 (Ub activat-
ing), E2 (Ub conjugases) and E3 (Ub ligases). The ubiquiti-
nated substrate proteins are then targeted to the 26S
proteasome for degradation [84]. GW2, a RING-type E3 lig-
ase, negatively regulates cell division and was identified as
the causal gene underlying a QTL for grain width and
weight in rice [12].The Arabidopsis orthologue, DA2, acts
via the same mechanism to regulate seed size in Arabidop-
sis [14]. Another E3 ligase, EODI1/BB also negatively regu-
lates seed size in Arabidopsis [49]. In general, the E3 ligase
determines the specificity for the substrate proteins [84]
and DA2 and EODI may have different substrate targets,
however they converge and both target the ubiquitin-
activated protease DAI. DAI also negatively regulates cell
proliferation and acts synergistically with both DA2 and
EOD1, although it is not clear whether the two E3 ligases
act via independent genetic pathways or as part of the same
mechanism [14, 50, 85]. UBPIS5 (a ubiquitin specific prote-
ase) is a downstream target of this pathway and conversely
acts as a positive regulator of seed size through the promo-
tion of cell proliferation [51]. Other ubiquitin-associated
regulators of organ/grain size have been identified, includ-
ing components of the 26S proteasome, enzymes with deu-
biquitinating activity and proteins that have been shown to
bind ubiquitin in vitro [52, 86, 87]. The DE transcripts asso-
ciated with this pathway are not direct homologs of these
previously characterised genes. As such the functional char-
acterisation of these putative novel components could pro-
vide new insights into the ubiquitin-mediated control of
grain size in cereals.

Conclusions

In this study we have both generated candidates for the
causal gene underlying the 5A QTL, and have also iden-
tified potential downstream pathways controlling grain
size. A subset of these candidates is being tested func-
tionally using TILLING mutants [88] and other ap-
proaches to provide novel insights into the control of
grain size in cereals. Ultimately identifying the individual
components and pathways that regulate grain size and
understanding how they interact will allow us to more
accurately manipulate final grain yields in wheat.

Methods

Plant material

The 5A BC, NILs used in this study have been described
previously [29]. Briefly, the NILs were generated from a
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doubled haploid population between the UK cultivars
‘Charger’ and ‘Badger’ using Charger as the recurrent
parent. The NILs differ for an approximately 491 Mbp
interval on chromosome 5A. We used one genotype
each for the 5A- (Charger allele, short grains) and 5A+
NIL (Badger allele, long grains). Plants were grown in
11x6 m plots (experimental units) during the 2014
growing season in a complete randomised block design
with five replications, and spikes were tagged at full ear
emergence [29]. The three blocks with the most similar
flowering time were used for sampling. Plants were sam-
pled at 4 (time point 1: T1) and 8 (time point 2: T2) days
post anthesis (dpa) based on the 2014 developmental
time course outlined in [29]. For each genotype, we sam-
pled three grains from three separate spikes from differ-
ent plants within the experimental unit. Each biological
replicate, therefore, consisted of the pooling of nine
grains per genotype. Grains were sampled from the
outer florets (positions F1 and F2) from the middle sec-
tion of each of the three spikes. Grains were removed
from the spikes in the field, immediately frozen in liquid
nitrogen and stored at -80 °C. In total, three biological
replicates (from the three blocks in the field) were sam-
pled for each NIL at each time point.

RNA extraction and sequencing

For each biological replicate, the nine grains were pooled
and ground together under liquid nitrogen. RNA was ex-
tracted in RE buffer (0.1 M Tris pH 8.0, 5 mM EDTA
pH 8.0, 0.1 M NaCl, 0.5% SDS, 1% [B-mercaptoethanol)
with Ambion Plant RNA Isolation Aid (Thermo Fisher
Scientific). The supernatant was extracted with 1:1 acidic
Phenol (pH 4.3):Chloroform. RNA was precipitated at
-80 °C by addition of Isopropanol and 3 M NA Acetate
(pH 5.2). The RNA pellet was washed twice in 70% Etha-
nol and resuspended in RNAse free water. RNA was
DNAse treated and purified using RNeasy Plant Mini kit
(Qiagen) according to the manufacturer’s instructions.
RNA QC, library construction and sequencing were per-
formed by the Earlham Institute, Norwich (formerly The
Genome Analysis Centre). Library construction was per-
formed on a PerkinElmer Sciclone using the TruSeq
RNA protocol v2 (Illumina 15,026,495 Rev.F). Librar-
ies were pooled (2 pools of 6) and sequenced on 2
lanes of a HiSeq 2500 (Illumina) in High Output
mode using 100 bp paired end reads and V3 chemis-
try. Initial quality assessment of the reads was per-
formed using fastQC [89].

Read alignment and differential expression analysis

Reads were aligned to two reference sequences from the
same wheat accession, Chinese Spring: the Chromosome
Survey Sequence (CSS; [40] downloaded from Ensembl
plants release 29) and the TGACv1 reference sequence [41].
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The CSS reference consists of 124,201 high confidence tran-
scripts, from which a single transcript was selected based on
Ensembl plants release 29 (resulting in 102,503 total tran-
scripts). However, the TGACv1 transcriptome included
transcript variants from both high and low confidence gene
models (164, 623 and 109,116, respectively), equating to
273,239 total transcripts. We performed read alignment and
expression quantification using kallisto-0.42.3 [66] with de-
fault parameters, 30 bootstraps (-b 30) and the —pseudo-
bam option. Kallisto has previously been shown to be
suitable for the alignment of wheat transcriptome data in a
homoeolog specific manner [90].

Differential expression analysis was performed using
sleuth-0.28.0 [45] with default parameters. Tran-
scripts with a false-discovery rate (FDR) adjusted
p-value (q value) < 0.05 were considered as differen-
tially expressed. Transcripts with a mean abundance
of <0.5 tpm in all four conditions were considered
not expressed and were therefore excluded from further
analyses. We also randomised samples to determine the
expected number of false positives arising from the differ-
ential expression analysis. We grouped opposite samples
for both genotype and time points and found a mean of
1.83 transcripts differentially expressed under this sce-
nario (standard error = 0.32, n = 130).

For each condition the mean tpm of all three bio-
logical replicates was calculated. All heatmaps display
mean expression values as normalised tpm, on a scale of
0 to 1 with 1 being the highest expression value of the
transcript. Read coverage for gene models was obtained
using bedtools-2.24.0 genome cov [91] for each pseudo-
bam file and then combined to get a total coverage value
of each position. Coverage across a gene model was plot-
ted as relative coverage on a scale of 0 to 1, with 1 being
equivalent to the highest level of coverage for the gene
model in question.

We also measured the expression of a subset of five
DE transcripts from the ‘between NIL comparisons
using quantitative reverse transcription PCR (qRT-PCR).
Expression values obtained using qRT-PCR were highly
consistent with the expression values obtained using
RNA-seq (Additional file 7). For qRT-PCR, the same
twelve RNA samples used for RNA-seq were used (i.e.
three biological replicates per NIL per time point) and
c¢DNA was made using M-MLV Reverse Transcriptase
(Life Technologies). Transcript levels were determined
using genome specific forward and reverse primers for
each transcript (Additional file 8). Primer efficiencies
were determined using pooled ¢cDNA from all twelve
samples (all > 88%). qRT-PCR reactions were performed
using LightCycler 480 SYBR Green I Master Mix with a
LightCycler 480 instrument (both Roche Applied Sci-
ence, UK) and the following conditions: 5 min at 95 °C;
45 cycles of 10 s at 95 °C, 15 s at 60 °C, 30 s at 72 °C.
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The specificity of the primers were determined by dis-
sociation curve analysis (from 60 to 95 °C). All reactions
were performed with three technical replications. Rela-
tive expression levels were calculated relative to actin
[92] and linearised values determined using the (1 + Effi-
ciency) 2" method [93].

GO term enrichment

We used the R package GOseq v1.26 [94] to test for en-
richment of GO terms in specific groups of DE tran-
scripts. We considered over-represented GO terms with
a Benjamini Hochberg FDR adjusted p-value of < 0.05 to
be significantly enriched.

Functional annotation

Functional annotations of transcripts were obtained
from the TGACvl annotation [41]. Additionally, for
coding transcripts we performed BLASTP against the
non-redundant NCBI protein database and conserved
domain database, in each case the top hit based on
e-value was retained. In cases where all three annota-
tions were in agreement, the TGAC annotation is re-
ported. In cases where the three annotations produced
differing results, all annotations are reported. Ortholo-
gues in other species such as Arabidopsis and rice were
obtained from Ensembl plants release 36. Eight of the
112 DE transcripts had no annotation or protein se-
quence similarity with other species. We manually cate-
gorised the remaining 104 DE transcripts based on their
predicted function. Transcripts that fell into a category
of size 1 were classed as ‘other’. For the non-coding
transcripts, we used BLASTN to identify potential
miRNA precursors using a set of conserved and wheat
specific miRNA sequences obtained from Sun et al,
2014 [48]. We used the -task blastn-short option of
BLAST for short sequences and only considered hits of
the full length of the miRNA sequence with no mismatches
as potential precursors. We used the psRNAtarget tool
(http://plantgrn.noble.org/psRNATarget/) to determine the
miRNA targets.

Identification of transcription factor binding sites

We extracted 1000 bp of sequence upstream of the
cDNA start site to search for transcription factor bind-
ing sites (TFBS). Transcripts with < 1000 bp upstream in
the reference sequence were not used in the analysis.
We used the FIMO tool from the MEME suite (v 4.11.4;
[95]) with a position weight matrix (PWM) obtained
from plantPAN 2.0 (http://plantpan2.itps.ncku.edu.tw/;
[96]). We ran FIMO with a p value threshold of <le-4
(default), increased the max-stored-scores to 1,000,000
to account for the size of the dataset, and used a —motif-
pseudo of 1e-8 as recommended by Peng et al. [97] for
use with PWMs. We generated a background model
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using the fasta-get-markov command of MEME on all
extracted promoter sequences.

Enrichment testing

To test for enrichment of different categories of tran-
scripts relative to all expressed transcripts we performed
Fisher’s exact test using R-3.2.5. For functional annota-
tion categories, enrichment testing was only performed
on categories that could be extracted using GO terms
and key words based on their annotation in the TGAC
reference. Only DE transcripts that could be extracted
using this method were used in the enrichment tests.
For example, we identified 12 DE transcripts associated
with ubiquitin. The annotation of these transcripts was
obtained through a combination of the TGAC annota-
tion and manual annotation. However, only seven of
these transcripts could be extracted using GO terms and
key words from the whole reference annotation. There-
fore, only seven transcripts were used for the enrich-
ment test.
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