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Abstract

Background: The characterization of major resistance genes (R genes) in the potato remains an important task for
molecular breeding. However, R genes are rapidly evolving and frequently occur in genomes as clusters with complex
structures, and their precise mapping and identification are complicated and time consuming.

Results: Comparative analysis of root transcriptomes of Solanum phureja genotypes with contrasting resistance to
Globodera rostochiensis revealed a number of differentially expressed genes. However, compiling a list of candidate
R genes for further segregation analysis was hampered by their scarce annotation. Nevertheless, combination of
transcriptomic analysis with data on predicted potato NBS-LRR-encoding genes considerably improved the
quality of the results and provided a reasonable number of candidate genes that provide S. phureja with strong

resistance to the potato golden cyst nematode.

Conclusion: Combination of comparative analyses of tissue-specific transcriptomes in resistant and susceptible
genotypes may be used as an approach for the rapid identification of candidate potato R genes for co-segregation
analysis and may be used in parallel with more sophisticated studies based on genome resequencing.

Keywords: NBS-LRR genes, Solanum phureja, Resistance, Globodera rostochiensis

Background

New disease resistance genes (R genes) have been com-
monly introduced into crop plants through intra- and/or
interspecific introgressive hybridization. Both cultivated
and closely related wild species have been used for this
purpose for a long time. Marker-assisted selection is effi-
ciently exploited to facilitate the successful breeding of
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new resistant cultivars and to combine several R genes
into a single genotype [1, 2]. Mapping resistance loci is
commonly performed by phenotyping segregating popu-
lations and genotyping them with a large number of
genetic markers. Some R genes have been cloned and
characterized. It was revealed that nucleotide-binding
site-leucine-rich repeat (NBS-LRR) genes compose the
largest plant resistance gene family, accounting for ~80%
of more than 140 cloned R genes [3]. However, the
search for R gene variants providing plant varieties with
resistance against a specific pathogen or new pathogen
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races is still complicated and time consuming. In many
cases, the responsible R gene remains unidentified, and
genetic markers (if available) are associated with qualita-
tive trait loci (QTLs) containing several (or many) candi-
date genes.

Recently, new approaches in this field were developed
on the basis of genomic data (some recently published
examples are presented below). Genome-wide resequen-
cing and comparison with reference genomes revealed a
number of NBS-LRR candidate genes in common wild
rice [4], Medicago truncatula [5], Arachis duranensis
and A. hypogaea [6]. Comparison of syntenic genomic
regions of related species containing NBS-LRR genes
was found to be a promising way to locate candidate re-
sistance genes in the genomes of various crops (e.g., [7,
8]). Sometimes, R genes in resistant cultivars were not
found in reference genomes; e.g., quantitative trait loci
in Spanish barley landrace on the long arm of chromo-
some 7H provided resistance against powdery mildew
and contained a cluster of NBS-LRR genes absent in the
reference barley genome [9]. Many R gene analogs
(RGAs) have conservative domains and may be
predicted by bioinformatic tools [10] that facilitate their
identification.

Combination of genomic and transcriptomic
approaches provides an efficient way to identify candi-
date R genes for further verification. For example, a
search for ascochyta blight resistance genes located close
to nine QTLs in the chickpea genome revealed approxi-
mately 30 NBS-LRR candidate genes. Further compari-
son of their transcription patterns in resistant and
susceptible genotypes revealed five candidate genes with
genotype—specific expression [11]. The investigation of
QTLs associated with willow resistance against leaf rust
revealed a candidate TIR-NBS-LRR gene whose constitu-
tive expression was considerably lower in the susceptible
genotype before and after inoculation with Melampsora
larici-epitea [12]. Comparative transcriptome analysis of
Gossypium hirsutum genotypes resistant and susceptible
to reniform nematodes revealed a number of candidate
RGAs located close to quantitative trait loci [13]. RNA--
seq of resistant recombinant inbred lines of Arachis
hypogaea at different time points after inoculation with
the nematode Meloidogyne arenaria revealed the mo-
lecular mechanisms of pathogenesis and plant defenses
as well as a constitutively expressed TIR-NBS-LRR gene
that potentially activates an effector-induced immune re-
sponse [14].

Analysis of the genomes and transcriptomes of resist-
ant plant genotypes commonly results in a list of candi-
date R genes that should be further tested by
co-segregation analysis or other tools of reverse genetics.
Various experimental approaches were developed to
identify the candidate NBS-LRR genes responsible for
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the recognition of specific pathogens (effectoromics
(defined as a high-throughput, functional genomics
approach that uses effectors for probing the plant germ-
plasm to detect R genes [15]), dsSRNA-mediated suppres-
sion of a candidate gene in a resistant plant [16],
overexpression of NBS-LRR genes in susceptible plants
[17, 18], etc.). However, the search for NBS-LRR genes
of interest is hampered by their natural variability; com-
monly, genomes of cultivated plants contain clusters
with dozens of duplicated and reorganized RGAs with
highly similar structures [19, 20].

One of the potential methods of rapid target gene
identification may be the combination of comparative
transcriptome analysis of resistant and susceptible plant
genotypes with bioinformatic predictions of NBS-LRR-
related transcripts (the predictions could be based on
their conservative NBS domain (e.g., [21, 22]) or other
computational techniques [23]). We applied this
approach to evaluate the number of differentially
expressed NBS-LRR genes on the model of root tran-
scriptomes of two Solanum phureja accessions of differ-
ent origins from the VIR collection. These accessions are
likely to be characterized by different sets of evolved R
genes, and it was found earlier that these genotypes were
at least different in their resistance to the potato wart
Synchytrium endobioticum [24] and to the golden potato
cyst nematode Globodera rostochiensis (Wollenweber)
Behrens (GPCN) [25]. The resistant genotype contains
no genetic markers to the known GPCN strong resist-
ance genes Grol—4 and H1 [25] and possibly bears new
R gene variants. We hypothesize that the usage of
tissue-specific transcriptomes for the prediction of
NBS-LRR-related transcripts results in the rapid identifi-
cation of candidate R genes for further experimental
verification.

Potato cyst nematodes originated in Andean regions of
South America [26]. At present, GPCN is found world-
wide and is one of the most economically important
potato pathogens [27]. Currently, G. rostochiensis occurs
locally in some regions of the European part of Russia,
southern Siberia, and the Far East of Russia [25, 28].
Depending on the potato cultivar, yield losses can range
from 19% to 90% [29], and GPCN eggs can remain dor-
mant and viable within the cyst for 30 years [30]. Most
chemical nematicides are not efficient [31, 32] or are
prohibited in Europe, and the control of GPCN is mainly
based on the deployment of single resistance genes
(R-genes). However, only a few R genes are available,
and their efficacy is threatened by the capacity of nema-
todes to evolve. R genes conferring strong resistance to
the pathotype Rol of G. rostochiensis were introgressed
into commercial potato varieties from Andean potato
species: the HI gene from the cultivated species
Solanum tuberosum subsp. andigenum [33] and the Grol—4
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gene from the Bolivian wild species S. spegazzinii [34, 35].
Since the S. phureja genotypes used in this investigation
contained no markers for HI and Grol-4 genes [25], the
resistant genotype likely contains a new R gene variant.
One of the aims of this study was to compile a set of new
candidate R genes against GPCN for further investigation
and inclusion in potato breeding programs or other bio-
technological approaches for the improvement of plant re-
sistance to pathogens (e.g., [18, 36—39]).

Methods

Plant material

Two accessions of diploid cultivated species S. phureja
k-11,291 (collected in Peru) and k-9836 (from Bolivia)
were selected from the VIR potato collection. Each ac-
cession was represented by one clone (genotype) with
the VIR introduction numbers i-0144787 (k-11,291) and
i-0144786 (k-9836), respectively. These accessions were
characterized by nuclear SSRs, chromosome counts, and
morphological features [40]. According to plastid SSRs
data, these accessions have unequal haplotypes, indicat-
ing different maternal origins [41]. It was previously
found that these genotypes differed in their resistance to
GPCN (pathotype Rol): i-0144786 is susceptible,
whereas i-0144787 is highly resistant but contains no
DNA markers of Grol-4 and HI (TG689, 239E4 left/
Alu I, and Grol-4) [25]. S. tuberosum cultivars ‘Nevsky’
and ‘Red Scarlett’ (susceptible and resistant to GPCN,
respectively) were used as controls.

Evaluation of S. phureja resistance to GPCN
A population of G. rostochiensis (pathotype Rol) from an
infested plot in the Leningrad Region, Russia (Belogorka),
was characterized previously [25] with appropriate
molecular markers [42]. The nematode population was
propagated on the susceptible cultivar ‘Nevsky’ under
greenhouse conditions. Cysts were extracted from soil by
the flotation technique and stored for 4 months at 4 °C.
To stimulate root formation, potato tubers were
placed on sterile watered sand in trays within 2 weeks,
and each tuber was further transferred to 10-cm-dia-
meter plastic pots (500 ml) half filled with sterile soil
and used for inoculation by GPCN. Before inoculation,
in order to estimate the nematode population densities,
cysts were crushed, and the contents of nematode eggs
and juveniles were calculated. Inoculation by GPCN was
performed by spraying 1 ml of water suspension with
approximately 1500 eggs and juveniles on the roots of
one potato tuber. After inoculation, the tubers were cov-
ered with sterile soil, and plants were incubated at
4000 lx, 16 h of light, and 22 °C [25]. Infected roots,
stained with acid fuchsin were scanned for the presence
of nematodes under an AxioScope Al light microscope
(Carl Zeiss, Germany).
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For evaluation of plant resistance to GPCN, cysts were
extracted from the roots by the flotation technique 3
months after inoculation and crushed, and the numbers
of juveniles and eggs were calculated. Then, using the
following standard scoring system (OEPP/EPPO, 2006),
the degree of resistance to GPCN was recorded: scores
of 9-7, highly resistant; scores of 6—4, moderately resist-
ant; and scores of 3—-1, susceptible.

RNA extraction

For RNA-seq, roots were collected 72 h after inocula-
tion. For each genotype, three infected and three control
(water-inoculated) plants were used. The roots of these
plants were thoroughly rinsed with sterile distilled water,
fixed in liquid nitrogen and used for RNA extraction.
Total RNA was extracted with an RNeasy Plant Mini Kit

(Qiagen).

RNA-seq analysis

The quality of RNA samples was evaluated using a
Bioanalyzer 2100 (Agilent). ERCC Spike-In Mix2 was
added to each RNA sample prior to poly-A mRNA extrac-
tion using a Dynabeads mRNA Purification Kit (Ambion).
RNA-seq library preparations were carried out using an
Ion Total RNA-Seq Kit v2 (Life Technologies) according
with the manufacturer’s instructions with modifications.
Chemical 5-min-long RNA fragmentation was used
instead of an enzymatic treatment to increase the repro-
ducibility and proportion of long fragments. Size selection
using Caliper LabChip XT (Perkin-Elmer) was carried out
to obtain library inserts 250—-300 bp long. E-PCR, enrich-
ment and quantification for Ion Torrent sequencing were
performed with One-Touch 2 and One-Touch ES systems
(Life Technologies). Sequencing was carried out on the
Ion PGM (Life Technologies) using Hi-Q View sequen-
cing kits and 318v2 chips. ERCC analysis demonstrated
the absence of significant misrepresentation (R-squared
values, 0.93-0.97).

gRT-PCR
For qPCR, RNA was treated with DNAse (Qiagen
RNase-Free DNase Set). A 0.7 pg aliquot of RNA was
used to prepare single-stranded cDNA by reverse tran-
scription based on a RevertAid™ kit (Thermo Fisher
Scientific Inc., Waltham, MA, USA) and a (dT);5 primer.
Primers were designed using IDT PrimerQuest software
(http://eu.idtdna.com/PrimerQuest/Home/) for ten DEGs.
The [-tubulin gene sequence (Accession number:
609,267) was used as a reference. The following primer
sequences were designed using OLIGO software:
Forward, 5-AGCTTCTGGTGGACGTTATG-3', and
Reverse, 5'-ACCAAGTTATCAGGACGGAAGA-3'. The
subsequent qRT-PCR was based on a SYNTOL SYBR
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Green I kit (Syntol, Moscow, Russia). Three technical
replicates of each reaction were run.

Bioinformatic analysis of RNA-seq data

Library preprocessing The Prinseq tool [43] was used
to assess sequence quality and filter the libraries.
Nucleotide sequences larger than 50 nt and with a mean
Phred quality score greater than 20 were used for further
analysis.

Library mapping We used the S. tuberosum group
Phureja clone DM1-3516 R44 (genome version 3.0.34,
European Nucleotide Archive ID GCA_000226075.1
[44] as a reference. Nucleotide sequences and their
annotations were downloaded from the Ensembl Plants
database [45]. In addition, the locations of 755 predicted
NB-LRR loci [46] were mapped on the reference genome
by aligning their sequences with the aid of the Gmap
tool [47] (positions of potential R genes are listed in
Additional file 1).

To map the filtered libraries in the genome, the
TopHat2 [48] tool was implemented after constructing
genome indexes with Bowtie2 software [49]. Read align-
ments were processed with the Cufflinks pipeline [50].
Numbers of read counts mapped to each genome seg-
ment, either expressed or annotated in the genome
assembly (‘transcripts’), and corresponding RPKM (reads
per kilobase per million mapped reads) values [51] were
used to detect differentially expressed genes (DEGs)
between the S. phureja accessions studied.

DEGs prediction Analysis of differential expression of
S. phureja genes was performed using Cuffdiff utility of
Cufflinks pipeline. Transcripts with total RPKM values
lesser than 12 were discarded. Transcript was considered
differentially expressed in two libraries if it had two-fold
or higher difference in abundance (JlogFC| > 1, signifi-
cance level q<0.05). For functional analysis, up- and
down-regulated transcripts were analyzed separately.

Data on characteristic peptides (peptide IDs) were taken
from annotation in Spud database (http://solanaceae.
plantbiology.msu.edu/data/PGSC_DM_v3.4_g2t2c2p2func
_nonredundant.txt.zip) [52] that provides the links be-
tween the gene and corresponding transcripts, CDS and
peptides. Lists of peptide IDs for significantly up- and
down-regulated genes were processed with AgriGO data-
base [53] to evaluate the enriched gene ontology terms for
these DEGs.

Results

Verification of resistance levels of S. phureja accessions
i-01444786 and i-01444787 to GPCN

Roots of S. phureja accessions i-0144787, i-0144786,
S. tuberosum susceptible cultivar ‘Nevsky’ (10 tubers)
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and resistant cultivar ‘Red Scarlett’ (10 tubers) were
inoculated with GPCN and analyzed at several time
points. Penetration of roots of both S. phureja genotypes
by GPCN juveniles were detected starting from 3 h after
inoculation (Fig. 1). It was detected that GPCN formed a
large number of cysts after 3 months of cultivation on the
roots of both S. phureja i-0144786 and susceptible control
‘Nevsky' (Fig. 2) but not on the roots of S. phureja
i-0144787 or the resistant S. tuberosum cultivar ‘Red
Scarlett’ (Table 1). According to the international
9-score scale [44], S. phureja i-0144786 and cultivar
‘Nevsky” were susceptible (scores of 2 and 1, respectively),
whereas S. phureja i-0144787 and cultivar ‘Red Scarlett’
were resistant (scores of 7 and 9, respectively) (Table 1).
These data confirmed the previously reported results
(i-0144786, score of 2; i-0144787, scores of 7-9 [25]).

For transcriptome analysis, samples of roots of S. phureja
accessions i-0144786 and i-0144787 were obtained after
72 h of inoculation with either nematode or water
(pooled from 3 plants per library). In total, 12 samples
were obtained (three technical replicates) for i-0144786/
water (Sus_cont), i-0144787/water (Res_cont), i-0144786/
GPCN (Sus_nem), and i-0144787/GPCN (Res_nem).

Library preprocessing

Twelve libraries of pooled reads, containing a total of
48,059,222 short reads comprising 7.44 gigabases, were
produced as raw sequencing data. Filtering resulted in
47,310,018 short reads that comprised 7.31 gigabases of
sequences after the removal of 1.5% of short reads
(Table 2).

Differential gene expression in the roots of resistant and
susceptible S. phureja genotypes
Analysis of S. phureja transcriptomic data with the aid
of the Cufflinks pipeline revealed 45,171 genome
fragments corresponding to both annotated genes and
unannotated genome segments in the reference genome
assembly of S. tuberosum [45]. RPKM values were
counted, and the amounts of DEGs in S. phureja
accessions i-0144786 and i-0144787 are listed in Table 3
(a detailed description is available in Additional file 2).
To verify the RNA-seq results, transcripts of 10 DEGs
that were more abundant in the S. phureja-resistant
genotype transcriptomes were selected. The log,(FC)
values predicted by RNA-seq data and the experimental
log,(FC) values for verified genes as well as the
sequences of primers and other technical information
are shown in Additional file 3. The NBS-LRR-encoding
genes were preferentially used for verification. This list
included S. phureja DEGs similar to the following genes
from the reference genome: late blight resistance protein
Rpi-blb2 (PGSC0003DMG400004561), TMV resistance
protein N (PGSC0003DMG400020722), Tospovirus
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(b) (3 h after inoculation; arrows mark the juveniles)

Fig. 1 GPCN juvenile penetration into the root tissues of the susceptible S. phureja accession i-0144786 (a) and resistant S. phureja accession i-0144787

resistance protein C (PGSC0003DMG402016602), Rpi
protein (PGSC0003DMG400023288), late blight resist-
ance protein (PGSC0003DMG400005970), Cc-nbs-lrr
resistance protein (PGSC0003DMG400026666), disease
resistance protein R3a (PGSC0003DMG402027402),
disease resistance protein (PGSC0003DMG400018464),
Nbs-Irr resistance protein (PGSC0003DMG400013308),
and HJTR2GH1 protein (PGSC0003DMG400011517).
The results of the qPCR supported the RNA-seq data. In

all cases, the target transcripts were more abundant in
transcriptomes of resistant genotypes, and in 8 cases, the
difference was larger than twofold and statistically sig-
nificant (Additional file 4).

Since these DEGs were revealed by the alignment
to the annotated reference potato genome, we carried
out a Gene Ontology term search for genes up- and
down-regulated in the GPCN-resistant genotypes. For
down-regulated genes, the enriched GO terms

Fig. 2 Images of roots with cysts of GPCN after 3 months of inoculation of the susceptible S. phureja accession i-0144786 (a), the susceptible S.
tuberosum cultivar Nevsky (b), and the resistant S. phureja accession i-0144787 (c)
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Table 1 Resistance of two S. phureja accessions to pathotype
Ro1 G. rostochiensis

VIR catalog VIR Characteristic of resistance

number introduction Score Resistance
number

S. phureja 9836 i-0144786 2 S

S. phureja 11,291 i-0144787 7 R

cv. Nevsky (susceptible control) 1 S

cv. Red Scarlett (resistant control) 9 R

included ‘translation’ (p = 0.0011), ‘nucleosome assem-
bly’ (p=9.17-10"", ‘nucleosome’ (p=5.6-10"*) and
‘structural constituent of ribosome’ (p=2.4-107%).
Since the inoculation of plant roots with either water
or nematode resulted in tissue wounding, the inhib-
ition of the expression of house-keeping genes likely
reflects the response to this stressful condition
(Additional file 5). For up-regulated genes, the most
enriched GO terms included ‘response to oxidative stress’
(p=5.7210""°) and ‘peroxidase activity’ (p =3.05-107'°)
(Additional file 6). These terms reflect the non-specific
cellular responses to stressful conditions commonly
resulting in generation of ROS (reactive oxygen species)
and oxidative stress (sometimes followed by programmed
cell death as a hypersensitive response), as well as the
synthesis of peroxidases for cell wall modification. In
general, GO term enrichments corresponded to the
expected transcriptome reprogramming in the frame of a
combined non-specific response to the root wounding
and the onset of a specific response to the GPCN infest-
ation (72 h after inoculation).

Closer inspection of the DEG list revealed a remark-
able difference between the genotypes. One may see that

Table 2 Metrics of S. phureja short-read sequenced libraries®

Library Clean reads, min  Mean length, nucl.  Mapped reads, %
Sus_cont0  1.28 164 526
Sus_contl 59 140 61.2
Sus_cont?2 448 153 64.0
Sus_nem0 529 169 39.7
Sus_nem1  3.16 152 520
Sus_nem2 457 159 557
Res_cont0 46 160 58.1
Res_contl 298 152 54.0
Res_cont2  3.86 169 56.9
Res_nem0  4.15 143 512
Res_nem1 405 162 415
Res_nem2  2.89 127 508

2Sus_cont - i-0144786/water; Sus_nem - i-0144786/GPCN; Res_cont - i-0144787/
water; Res_nem - i-0144787/GPCN; 0, 1, and 2 — the number of
technical replicates
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the transcriptomes of the resistant S. phureja genotype
is characterized by higher content of the transcripts
similar to various potato defense-related genes according
to their annotation ([52, 54] ‘description’ field)
(Additional file 2). Since the aim of this study concerns
the identification of major R genes providing strong
resistance to GPCN, the most probable candidates are
likely to belong to the NBS-LRR family. However, anno-
tation of S. tuberosum genes is frequently scarce, and
only a very few DEGs revealed in this study contained
the specific term ‘NBS-LRR’ or a similar term in the
‘description’ field, whereas non-specific terms such as ‘dis-
ease resistance’ were more abundant (Additional file 2).
Thus, we used additional information on 755 NB-LRR loci
predicted in the potato genome [46]. This analysis
revealed approximately 330 S. phureja root transcripts po-
tentially coding for NBS-LRR related proteins
(Additional file 7). This list of DEGs was ranked on the
basis of the following simple description (Additional file 8):
Group 1 contained the most probable candidate genes
with either no or very little mRNA representation in roots
of the susceptible S. phureja genotype but represented in
the roots of the resistant i-0144787 genotype (2 genes).
Group 2 contained S. phureja mRNAs with either no or
little representation in the water-inoculated roots of the
susceptible genotype and large presentation in the water
inoculated roots of the resistant variety (17 genes). Finally,
Group 3 contained mRNAs represented in both re-
sistant and susceptible accessions but several times
more abundant in the resistant genotype (11 genes)
(Additional file 8).

Discussion

The identification of new major resistance loci in popu-
lations of potato and closely related wild species is an
important step of breeding. R loci mapping is commonly
performed by phenotyping segregating populations and
genotyping them with a large number of genetic
markers. However, the identification of R genes is fre-
quently hampered by their nature. It was detected that
complex clusters of the NBS-LRR genes in plant
genomes are rapidly evolving; plant varieties are com-
monly characterized by both high levels of copy number
variation and disproportionately large SNP accumulation
in these genes [5, 19].

Recent development of NGS (next-generation sequen-
cing) techniques has resulted in the accumulation of
genomic nucleotide sequences and has provided new
opportunities in this field. Resequencing of the genomes
of resistant plant genotypes facilitates the identification
of R genes of interest (e.g., [4—6]). Potential NBS-LRR
genes may also be predicted in genomes with the aid of
bioinformatic tools (e.g., [21-23]), and application of
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Table 3 Numbers of DEGs between the root transcriptomes of S. phureja genotypes resistant (Res) or susceptible (Sus) to GPCN
infection (cont — inoculation with water; nem — inoculation with GPCN)

DEGs Sus_cont vs Res_cont Sus_nem vs Sus_cont Res_nem vs Res_cont Sus_nem vs Res_nem
Up-regulated 638 234 353 285
Down-regulated 463 203 253 180

these tools for genome analysis may provide large lists of
potential RGAs [10].

Despite the application of various NGS-based
approaches providing a wide range of new opportunities,
the identification of R genes of interest is a complex and
time-consuming process. It is likely that a combination
of comparative analysis of tissue-specific transcriptomes
of susceptible and resistant plant genotypes with bio-
informatic predictions of potential NBS-LRR-encoding
genes may provide a rapid way to compile a list of candi-
date RGAs for the genotyping of segregating popula-
tions. Since most pathogens commonly infect specific
tissues, transcriptome analysis skips both non-specific
functional R genes and non-transcribed pseudogenes an-
notated in the reference genomes. In turn, prediction of
NBS-LRR-encoding mRNAs may substantially improve
the annotation of related genes in the nucleotide se-
quence databanks.

To test this approach, we selected two different acces-
sions of S. phureja from the VIR collection that likely bear
various sets of functional R genes. It was demonstrated
previously that these accessions were contrasted in their
resistance to the important pathogen G. rostochiensis
(pathotype Rol) [25], and we evaluated the number of
differentially expressed NBS-LRR genes in their root
transcriptomes.

GPCN infestation and major resistance genes

The penetration of roots by juveniles of root-knot nema-
todes and their migration to the vascular bundle to ar-
range a feeding site were similar during both compatible
and incompatible interactions (Fig. 1). It is likely that
specific nematode recognition occurs after the nema-
todes inject their esophageal gland secretions to initiate
the formation of the feeding site. If the interaction is in-
compatible, the hypersensitive response can occur as
early as 24 h after inoculation and can be identified by a
zone of cell death cutting nematode juveniles from the
nutrient supply [55]. However, resistance can also be ini-
tiated later. G. rostochiensis or G. pallida can establish
the syncytium and become sedentary in resistant tomato
and potato plants bearing NBS-LRR resistance genes
(Hero and Gpa2, respectively), but surrounding plant
cells further become necrotic, which prevents the com-
pletion of the nematode lifecycle. Delayed HR may result
from either weak recognition or the late appearance of a
nematode effector [55]. Another important feature of

nematode inoculation is significant tissue damage result-
ing in a non-specific wounding stress response induced
by plant cell wall fragments. This non-specific wounding
response may overlap with the specific response to
GPCN or be an integral part of it [56].

A number of quantitative trait loci derived from other
cultivated species or their wild relatives were previously
identified in Solanaceae with partial resistance to potato
cyst nematodes [57]. Several major genes suitable for po-
tato breeding were found. The HI locus confers hyper-
sensitive resistance to GPCN (pathotypes Rol and Ro4)
and was exploited in breeding very actively [33]. Grol—4
is a member of the Grol locus, which confers nearly ab-
solute resistance to all pathotypes of G. rostochiensis,
and it is therefore considered a useful resistance gene
[58]. Broad-spectrum resistance to G. rostochiensis and
G. pallida is conferred by the GrpI gene [59]. Only two
G. rostochiensis resistance genes were characterized at
the molecular level: Gpa2 from S. tuberosum ssp.
andigena [60] and Grol-4 from S. spegazzinii [58].
Gpa2 and Grol-4 genes and a resistance gene from
tomato (Hero) belong to the NBS-LRR family.

S. phureja model

It was known that accession i-0144786 was susceptible,
whereas i-0144787 was highly resistant to GPCN [25],
and these degrees of resistance were confirmed in the
present research (Figs. 1 and 2; Table 1). It may be as-
sumed that the root transcriptome of i-0144787 plants
contains mRNAs coding for NBS-LRR genes that are
not transcribed (or transcribed at significantly lower
levels) in the roots of i-0144786 plants. To test this
hypothesis, the root transcriptomes of resistant and sus-
ceptible genotypes collected 72 h after inoculation with
either G. rostochiensis or water were sequenced. The lists
of DEGs were compiled, and GO term analysis revealed
the enrichment of house-keeping genes in down-
regulated groups and stress-related genes in up-
regulated groups (Table 3; Additional file 2). This result
reflects the typical response to either tissue wounding
alone (inoculation with water) or a combination of tissue
wounding and nematode infestation (inoculation with
GPCN). It was also found that only one corresponding
gene in the reference S. tuberosum genome was anno-
tated as belonging to the NBS-LRR family, which com-
plicates the selection of candidate R genes for further
analysis. This finding likely resulted from a stringent
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significance threshold of a standard pipeline and a scarce
annotation. Thus, we used additional information on
755 NB-LRR loci predicted in the S. tuberosum genome
[46]. This information revealed approximately 300 tran-
scripts in the root transcriptomes of S. phureja geno-
types potentially encoding NBS-LRR-related proteins.

Interestingly, genotypes i-0144786 and i-0144787 were
characterized by different subsets of expressed
NBS-LRR-like RGAs (Additional file 8). These acces-
sions evolved under different conditions and pathogenic
pressure. In our opinion, systemic comparison between
the differential expression of RGA subsets with pheno-
typic screening of the resistance to various pathogens
may be considered a prospective source for the identifi-
cation of new candidate R genes. In this study, four tran-
scriptomes were compared (roots of resistant and
susceptible genotypes taken 72 h after inoculation with
either water or nematodes). The nematode juveniles sig-
nificantly damage tissues during the penetration process,
resulting in non-specific wounding stress. The procedure
of inoculation itself also damages root tissues. Thus, the
transcriptome of water-inoculated roots may be consid-
ered an appropriate control to reveal the biotic stress re-
sponse components. To select the potential R genes, the
NBS-LRR-like genes were divided into three groups
(Additional file 8). The first group contained two tran-
scripts of S. phureja genes present in the roots of the re-
sistant genotype i-0144787 and either absent or present
in a very small amount in the susceptible i-0144786. The
second group contained 17 transcripts absent or present
in small amounts in the root transcriptome of water-ino-
culated susceptible plants. Strong resistance to G. rosto-
chiensis is commonly based on the rapid hypersensitive
response followed by the programmed cell death of the
neighboring plant cells, and it is likely that efficient
NBS-LRR genes should be expressed before nematode
infestation (e.g., [12, 14]). We hypothesized that low ex-
pression of NBS-LRR receptor genes in the absence of
GPCN infestation results in a delay of the hypersensitive
response and may provide time for successful nematode
progression. Finally, the third group includes transcripts
present in the roots of both genotypes but considerably
more abundant in the i-0144787 accession.

Conclusion and perspectives

Comparative analysis of the root transcriptomes of
Solanum phureja genotypes with additional computational
predictions of mRNAs coding for NBS-LRR-like proteins
revealed a reasonable number of candidate R genes for
further co-segregation analysis. In our opinion, this ap-
proach provides a rapid method of candidate gene selec-
tion and may be used in parallel with more sophisticated
studies based on genome resequencing. If successful, this
approach considerably accelerates the time it takes to
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identify resistance genes for targeted breeding. It should
also be mentioned that in addition to the source of new
genes, S. phureja is the donor of fertile-type cytoplasm,
which is very promising for the genetic improvement of
the common potato S. tuberosum [61].
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