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Abstract

Background: Understanding how intensification of abiotic stress due to global climate change affects crop yields is
important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses
in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to
abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with

projected changes to environmental conditions predicted for the end of the century, including decreased
precipitation, increased tropospheric ozone concentrations ([Os]), or increased temperature.

Results: All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal
conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of
pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in
the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a
tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression
analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought,

elevated [O3] and elevated temperature, respectively.

Conclusions: Elevated [Os] and drought did not elicit substantive transcriptional changes in the soybean seed coat.
However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different
tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic
processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are
important for cell division and proper seed development were altered in a stressful growth environment.
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Background

Rising global temperature, drought stress and increased
exposure to air pollutants have contributed to decreased
regional and global crop production [1-3] and represent
a challenge for future agriculture [4, 5]. If fossil fuel
emissions continue at their current pace, global land
surface temperatures are projected to increase by 5-9 °C
by the end of the century [6]. Increased demand for soil
moisture imposed by higher temperatures, coupled with
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climate projections of more variable precipitation pat-
terns in the future, will result in increased drought stress
[7, 8]. Higher temperatures will also favor formation of
atmospheric pollutants, including ozone (O3), which sig-
nificantly decreases plant productivity [9].

Genomic approaches have proven powerful tools to
understand the complex relationship among genes,
proteins and metabolites involved in plant responses to
abiotic stress and future climate change [10-14]. In
addition, there is growing awareness of the importance of
investigating the mechanisms of crop response to environ-
mental change in the dynamic field environment where
multiple variables interact [15-23]. Coupling integrated
analyses at the molecular, biochemical, physiological and
agronomic level of crop responses to global climate
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change within a production environment has led to better
understanding of the underlying transcriptomic responses
responsible for complex phenotypes observed across plant
species and stressors [24—26].

Soybean (Glycine max L. Merr.) is the most widely
grown legume worldwide and provides an important glo-
bal source of oil and protein for food and feed [27]. Soy-
bean seeds provide the economic value for the
commodity and have been used as a model system for
identifying genes and gene networks required for seed
development [28, 29]. The soybean seed coat is a critical
tissue that serves as a conduit for water and nutrients
[30, 31], coordinates embryo and endosperm growth
[32], and encapsulates and protects the embryo at ma-
turity [33]. As the link between maternal and filial tissue,
the seed coat plays a critical role in the metabolic con-
trol of seed development, and in turn, successful seed
production [34]. This is achieved, in part, by the activ-
ities of acid invertases (vacuolar and cell wall) and su-
crose synthase, which facilitate sucrose transport by
generating a strong sucrose-to-hexose gradient across
the apoplastic space between the seed coat and the de-
veloping seed [30, 35-37]. It has been demonstrated that
high temperature or drought stress imposed during soy-
bean seed development can cause changes in seed coat
morphology leading to negative effects on seed quality,
seed germination rate, and seedling vigor [38—40].

Global transcriptional profiling studies have described
the genetic events involved in soybean seed development
[28, 29, 41-43], seed coat pigment color [44] and identi-
fied a complex seed coat specific transcriptome [31].
However, the effects of abiotic stress on gene expression
patterns in the seed coat have not been explored. Here,
we investigated the transcriptional response of soybean
seed coat tissue to abiotic stresses including drought, el-
evated O3 concentration ([O3]), or elevated temperature
throughout the growing season in a field setting. Due to
the critical role the seed coat plays in supplying nutri-
ents to developing seeds, we investigated abiotic stress-
mediated transcriptional changes during the pod filling
stage and coupled this with physiological and biochem-
ical activity to identify genes involved in abiotic stress
response in the seed coat.

Results

Photosynthesis, but not photoassimilate transport to the
seed coat, is altered by abiotic stress in soybean
Leaf-level photosynthetic and biochemical measure-
ments were taken to characterize the effects of abiotic
stress on field-grown soybean. Soybeans exposed to
drought, elevated [O3], or elevated temperature had sig-
nificantly lower rates of photosynthesis (A) and stomatal
conductance (gg; Fig. la-f; p-value <0.10). A was reduced
by 20-40% with exposure to abiotic stress, while g5 was
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reduced by 35-56% (Fig. la-f). Leaf total nonstructural
carbohydrate (TNC) content was also significantly de-
creased in the elevated temperature (Fig. 1i, p-value <0.10)
and drought (Fig. 1g, p-value <0.10) treatments, but not in
elevated [O3] (Fig. 1h, p-value >0.10). Average leaf TNC
values for elevated temperature and drought were 1131.9
and 2166.0 umol g DW ™", respectively, representing a 23.1
and 21.2% decrease from control conditions.

The abundance of TNCs was also quantified at three
positions along the petiole based on the proximity to
source and sink tissues (Fig. 2). There was a significant
difference between petiole TNC at the leaf position
(source) and stem position (sink) for all treatments (Fig.
2a-c, p-value <0.10). These differences were likely driven
by changes in starch content, as sucrose content did not
differ in different positions of the petiole (data not
shown). No significant effect of drought, elevated [O3],
or elevated temperature on petiole TNC was observed at
any position (Fig. 2a-c) (p-value >0.10), with the excep-
tion of the middle position in the drought treatment,
which saw increased petiole TNC in drought conditions
(Fig. 2a; p-value <0.10). Additionally, a similar high ratio
of seed coat sucrose to cotyledon hexose was maintained
in the seeds of plants grown at elevated [O3] and ele-
vated temperature (Fig. 3) suggesting that sink strength
at the seed coat was not altered by those stresses [35].
The average ratios of seed coat sucrose to cotyledon
hexose concentration in elevated [O;] and elevated
temperature conditions were 5.09 and 4.02, which were
not significantly different from the ratios in ambient
conditions (Fig. 3; p-value >0.10).

At maturity, the number of pods per node was mea-
sured in all experimental plots and total seed yield was
measured in the drought and elevated temperature plots
(Table 1). The total number of pods per node decreased
for all abiotic stress treatments. There were 3.3—-3.4 pods
per node in ambient conditions, and growth under abiotic
stress conditions reduced pod number to 2.7-3.0 pods per
node (Table 1). Seed yield was also reduced by 25.4% in
drought and 20.5% in elevated temperature (Table 1).

Analysis of global changes in expression abundance
across multiple abiotic stress conditions in the soybean
seed coat

The quality of all RNA-Sequencing (RNA-Seq) libraries was
assessed based on mapping alignment statistics (Additional
file 1: Table S1). All libraries except two aligned at >80% to
the reference genome. Analysis of the low mapping libraries
showed some contamination with bean pod mottle virus
(drought treatment replicate 1) and various non-plant con-
taminations (drought treatment replicate 2). Pearson correl-
ation coefficients were calculated between all biological
replicates per treatment. A high correlation was expected
between replicates (per treatment), and replicates with low
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Fig. 1 The effects of abiotic stress on primary metabolism. (a-c) Carbon assimilation rate (4), (d-f) stomatal conductance (g;) and (g-i) foliar total
non-structural carbohydrate content (TNC) of soybeans grown in season-long drought (a, d, g), elevated [Os] (b, e, h) and elevated temperature
(¢, f, i) conditions. A and g, measurements were taken on different days for ozone and temperature treatments and different year for drought
treatment. This was done in order to capture the proper development stage. The light level for A and g; measurements for the drought treatment
s~ for the ozone treatment, and 450 pmol m™
conditions). Asterisks represent significance (* p < 0.05, ** p < 0.01, *** p < 0.001)

257" for the temperature treatment (due to cloudy day

R* values <0.60 were removed from the analysis (Fig. 4)
[45]. Hierarchical clustering of expression data demon-
strated stronger clustering of the temperature treatment
samples, compared to drought and elevated [O3] treatment
samples (Fig. 4).

Differential gene expression analysis revealed relatively
few differentially expressed genes in the soybean seed
coat in response to drought and elevated [O3], as may
have been predicted from the clustering analysis. Only
49 differentially expressed genes in the soybean seed
coat were detected in response to drought, and 148 dif-
ferentially expressed genes in response to elevated [Os]
(FDR p-value <0.10) (Additional file 2: Table S2). In con-
trast, 1576 differentially expressed genes were detected
in the soybean seed coat in response to elevated
temperature (Additional file 2: Table S2). However, as
we only sampled a single time point during soybean pod
fill (R5), we cannot rule out that elevated [Os;] and
drought elicit more substantive transcriptional changes

in other tissues, or at different developmental time
points. Gene ontology (GO) term analysis did not reveal
any enriched terms in the drought and elevated [O3]
treatments; therefore, we focused our transcriptional
analysis on the elevated temperature treatment.

Genes that showed the largest increase in expression (log
fold-change) in the elevated temperature treatment in-
cluded peroxidase proteins, sugar transporter proteins,
MYB-domain and leucine-rich repeat domain proteins, and
long-chain-alcohol oxidase proteins (Additional file 2:
Table S2). Additionally, genes with the highest overall ex-
pression in the elevated temperature treatment, represented
as the normalized fragment per kilobase of transcript per
million mapped reads (FPKM), included BURP domain-
containing proteins, peroxidase family proteins, extension-
like proteins, senescence-associated genes, and seed storage
albumin superfamily proteins (Additional file 3: Table S3).

Differentially expressed genes in elevated temperature
were related to chlorophyll biosynthetic processes, DNA
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Fig. 2 Carbohydrate gradient along the leaf petiole. TNC content of
the petiole lengths at three positions along the petiole (leaf
adjacent, middle and stem adjacent) for (a) drought, (b) elevated
[Os] and (c) elevated temperature. Different letters represent
significant differences at p <0.10

replication, and nucleosome assembly, based on GO
analysis (Additional file 4: Figure S1). Functional analysis
of genes with GO terms related to DNA replication
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identified twelve minichromosome maintenance (MCM)
family protein genes (Table 2). MCM proteins are licens-
ing factors and part of the pre-replicative complex (pre-
RC) in eukaryotes, playing an essential role in cell division
[46]. MCM2 to MCM7 encode subunits of the MCM(2—
7) hexamer helicase that is recruited to replication origins
[47]. In our study, two genes from each of the MCM fam-
ilies 2 through 7 were significantly increased by growth at
elevated temperature. To further understand the role of
MCM genes in response to elevated temperature in the
soybean seed coat additional analyses were completed.

MCM genes may play a role in maintaining proper DNA
replication in the soybean seed coat under elevated
temperature stress

Multiple sequence alignment of all twelve differentially
expressed MCM genes in the soybean seed coat was
completed with the sequences of known MCM genes in
Arabidopsis (AtMCM2-7), maize (ZmMCM2-7), pea
(PsMCM2-7), and two Brassica species (B. oleracea
BoMCM2-7, B. rapa BrMCM2-7) (Additional file 5:
Figure S2). Soybean MCM2 and MCM?7 genes had be-
tween ~76-84% amino acid identity with both B. olera-
cea and B. rapa MCM genes, while soybean MCM4, 5
and 6 genes showed higher amino acid sequence similar-
ity with B. rapa MCM genes (Additional file 6: Table S4),
ranging from ~73-78% identity. Soybean MCMS3
(GmMCM3) genes Glyma05g25980 and Glyma08g08920
had 76-77% identity with BoOMCM3 and BrMCM3_2,
but 32% identity with BrMCM3_1. Soybean MCM6
(GmMCMS6) genes Glyma09g05240 and Glymal5g16570
had 75.0 and 74.7% amino acid identity with ZmMCMS6,
and 84.1 and 84.7% amino acid identity with PsMCM6
(Additional file 6: Table S4). Both GmMCM?2 genes Gly-
ma07g36680 and Glymal7g03920 had ~76% amino acid
identity with AtMCM2 (Additional file 6: Table S4). The
high sequence similarity with known MCM genes in
Arabidopsis, maize, pea and Brassica species may sug-
gest a similar role of soybean MCM genes in proper de-
velopment under abiotic stress. Additionally, analysis of
expression of these twelve MCM genes in the soybean
expression atlas (https://soybase.org) found high expres-
sion in young leaf tissue (Additional file 7: Table S5).
This indicates that the MCM expression in the soybean
seed coat is not unique to that tissue, most likely due to
their general role in DNA replication.

Discussion

Reductions in primary metabolism and yield are common
responses to abiotic stress [21, 22, 48-51], and our study
confirmed that drought, elevated [O3] and elevated
temperature reduce photosynthesis and seed yield. We also
predicted that photoassimilate available for translocation to
developing reproductive tissues would be diminished.
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However, despite decreased leaf-level CO, assimilation in
soybeans grown under drought, elevated [O3], and elevated
temperature treatments (Fig. 1), translocation of photoassi-
milate was not altered. Additionally, a high sucrose:hexose
ratio between the seed coat and cotyledon was maintained
(Fig. 2), which is one possible indicator that the sink
strength of individual seeds was not affected by abiotic
stress treatments [35], despite a net reduction in sink
strength at the whole plant level. To further understand the
effects of abiotic stresses on the soybean seed coat, we per-
formed transcriptomic analysis.

Differential gene expression analysis revealed far fewer
genes differentially expressed in the drought and ele-
vated [Oz] treatments compared to the elevated
temperature treatment (Additional file 2: Table S2). This
suggests that different abiotic stresses do not elicit com-
mon transcriptional responses in the soybean seed coat,
which supports other transcriptional and metabolomic
experiments done with Arabidopsis [52]. However, our
analysis was limited to a single time point during the
pod filling stage (R5), and it cannot be ruled out that
drought and elevated [O3] induce more substantive tran-
scriptional responses at other development time points,
or in tissues other than the seed coat.

Genes involved with DNA replication showed increased
expression in seed coats of soybeans exposed to elevated
temperature. In particular, twelve MCM family genes
showed greater expression at elevated temperature. MCM
proteins form a heterohexomeric complex (MCM2-7)
that is a key part of the initiation and elongation steps in
eukaryotic DNA replication [46, 47]. MCM proteins also
ensure DNA replication occurs only once during the S
phase of the cell cycle [53]. How MCM genes control
DNA replication, however, is less well understood in
plants [46, 47, 54—56]. Previous work in Arabidopsis and
maize has found MCM genes are preferentially expressed
in young tissues with large numbers of replicating cells
[57-63], and in Arabidopsis MCM subunits are coordi-
nately expressed across tissue types and development [54].
MCM proteins are also critical components of plant re-
productive development. Work done in Arabidopsis has
identified MCM genes essential for embryo development
[64], and MCM proteins required for proper cytokinesis
during seed development [57, 58, 61]. Work done in maize
found ZmMCMS6 is an essential protein for both vegeta-
tive and reproductive growth [63], and transgenic maize
plants with minor antisense transcript amounts of
ZmMCMG6 had an overall reduced size and were unable to

Table 1 Whole plot seed yield and number of pods per node (PPN) in response to three abiotic stress treatments and their

respective control

Treatment Ambient Seed Treatment Seed % Yield =~ Ambient PPN Treatment PPN PPN p-value PPN df. Optimal a Optimal 3
Yield (g m™)  Yield (g m~2) Decrease

Drought 337.7+£159 251.8+340 254 34+03 27+ 0.1 0.181% 2 038 0.40

Elevated [O5] - - - 34402 28+ 02 0.120% 3 033 039

Elevated Temperature 3736+ 15.2 2972+179 20.5 33+02 30+ 0.1 0.144% 3 033 0.39

Values represent the mean + the standard error
PPN = pods per node; d.f. = degrees of freedom from each pod per node data
# =significant based on optimal a analysis (See Methods section)
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develop cobs to maturity [63]. We found high sequence
similarity with known MCM genes in Arabidopsis, maize,
pea and two Brassica species (Additional file 6: Table S4),
which may indicate a similar functional role of MCM
genes in the soybean seed coat.

There is growing evidence that MCM proteins also
play a role in plant response to abiotic stress. For ex-
ample, work in pea (P. sativum) has shown MCMS6 is as-

sociated with salinity tolerance

[46].

Furthermore,

constitutive expression of PsMCM6 in tobacco seedlings
increased salinity tolerance. Findings from Dang et al.
[46] indicate that MCM proteins may interact with pro-
teins that are related to stress tolerance, and/or are in-
volved in transcriptional regulation of stress response
genes through their function as helicases. Recently, it
was demonstrated that different MCM family genes were
up-regulated in B. oleracea and B. rapa in response to
cold and salt stress, suggesting some degree of species-

Table 2 Minichromosome maintenance (MCM) genes with increased expression under elevated temperature

Gene LogFC Average FPKM Elevated Temperature Functional Annotation
Glyma03g37770 0.93 11.33 MCM7
Glyma05g25980 0.98 8.90 MCM3
Glyma07g36680 0.90 1891 MCM2
Glyma08g08920 070 879 MCM3
Glyma09g05240 1.00 1049 MCM6
Glyma11g12110 1.03 1438 MCM4
Glyma12g04320 0.94 597 MCM4
Glyma13g22420 093 11.96 MCM5
Glyma15g16570 0.72 1067 MCM6
Glyma17g03920 0.84 11.06 MCM2
Glyma17g11220 1.06 10.07 MCM5
Glyma19g40370 1.05 12.56 MCM7

LogFC =log fold-change, FPKM = Fragment per Kilobase per Million Mapped reads
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specific response [65]. These previous analyses have sug-
gested that subunits of the MCM complex are not chan-
ging in concert in response to stress, and that perhaps
different subunits of the MCM complex can respond in-
dependently. In our study of soybean seed coats, two
transcripts from each of the MCM families 2 through 7
increased expression in elevated temperature stress
(Additional file 2: Table S2). We hypothesize that the co-
ordinated increase in expression allowed for greater DNA
replication and cell cycle activity mediated by
the MCM(2-7) helicase in the soybean seed coat under
high temperature stress, possibly due to acceleration of
seed development in the temperature stress conditions.

Conclusions

This study investigated the transcriptomic response of
the soybean seed coat to multiple climate change factors
in a field environment. Soybean plants exposed to
drought, elevated [Os], and elevated temperature showed
decreased carbon assimilation and stomatal conduct-
ance, leading to decreased leaf TNC in drought and ele-
vated temperature treatments. At maturity, soybean
yield was also decreased in drought and elevated
temperature. While decreased carbon assimilation was
observed, there was no observed decrease in photoassi-
milate transport from source to sink tissue, as measured
by petiole TNC abundance at three positions along the
petiole. Additionally, sink strength was maintained in
the soybean seed coat; a high seed coat sucrose-to-
cotyledon hexose ratio was maintained in the soybean
seed coat exposed to drought, elevated [O3] and elevated
temperature. Transcriptomic analysis found elevated
temperature caused increased expression of genes re-
lated to DNA replication, cell cycle and microtubule
motor family proteins, in particular MCM genes. This
indicates greater cell cycle and DNA replication activity
in seeds exposed to elevated temperature, and represents
a possible acceleration of the completion of seed devel-
opment due to elevated temperature stress.

Methods

Experimental site and plant growth conditions

Soybean (Glycine max cv. Pioneer 93B15) was grown in
drought conditions (n=3) at the 32-hectacre Soybean
Free Air Concentration Enrichment (SoyFACE; https://
soyface.illinois.edu) experimental field site in the sum-
mer of 2011 and in elevated [O3] (7 =4) and elevated
temperature conditions (n=4) in the summer of 2012.
Soybeans were planted on 8 June 2011 and 15 May
2012, at 0.38 m row spacing. Soybean and maize (Zea
mays) are rotated each year at the experimental facility,
and the soybean crop was not fertilized or irrigated. For
each stress, soybean plants were grown in control and
treatment plots nested within the 32 ha field. Each
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ozone plot was 21 m in diameter, with control and treat-
ment plots separated by minimum of 100 m. The ele-
vated [O3] fumigation system described in [66] increased
[Os3] to 100 nL L™ from ~10:00 to 17:00, except when
leaves were wet. In 2012, the season-long 8-h average
ambient [O3] was 50.6 nL Lfl and the 8-h season-long
elevated [O3] was 69.7 + 1.3 nL L™". Drought was estab-
lished by employing modified Solair motorized retract-
able fabric awnings (Glen Raven, Inc., Glen Raven, NC,
http://www.glenraven.com) mounted 25-50 cm above
the plant canopy to intercept nighttime rainfall (de-
scribed in [67]), resulting in a 35% reduction in total
growing season precipitation (control precipitation,
274 mm; reduced precipitation, 179 mm). The drought
plots were 8 m long and 4 m wide. The elevated
temperature treatment was produced using infrared
heaters (Salamander Aluminum Extrusion Reflector As-
sembly Housing for Ceramic Infrared Heaters; Mor Elec-
tric Heating Assoc., http://www.morelectricheating.com)
fitted with four heating elements (Mor-FTE 1000-W,
240-V heaters; Mor Electric Heating Assoc., http://
www.morelectricheating.com) mounted 1.2 m above the
plant canopy (described in [21]). The growing season
mean increase in temperature was 2.71 °C + 0.4 °C in the
temperature plots.

Photosynthetic gas exchange, tissue sampling,
biochemical analyses and harvest

Gas exchange measurements were taken at mid-day
using the middle trifoliate of fully expanded leaves at the
5th node down from the shoot apex during the pod fill-
ing stage (R5). This stage is characterized by nutrient ac-
cumulation and synthesis of storage proteins [42]. A
portable infrared gas analyzer (LI-6400; Licor Biosci-
ences, Inc., Lincoln, NE, http://www.licor.com) was used
to take measurements of leaf photosynthesis (A) and sto-
matal conductance (g;) by setting the chamber condi-
tions to reflect the ambient light intensity, temperature
and relative humidity in the field. Three leaves from dif-
ferent plants were measured for each treatment and con-
trol plot.

Following gas exchange measurements, tissue was col-
lected from the 5th node at dusk (approximately 18:00—
20:00) for carbohydrate and gene expression measure-
ments. Leaf discs (1.34 cm?) were excised from fully ex-
panded leaves, flash-frozen in liquid N, and then stored
at -80 °C. Leaf discs were also collected and dried at
55 °C for one week to assess specific leaf weight. Petioles
were removed and sectioned into 2.0 cm lengths based
on proximity to the leaf, the stem and at a distance mid-
way between the leaf and stem. The seed coat was har-
vested from detached pods by making a small incision
into the seed coat of the seed with a scalpel and separat-
ing the seed coat from the cotyledons. Seed coat tissue
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was collected from several pods per plant in order to fill
a 2 mL tube. Seed coats were flash-frozen in liquid N
and stored at -80 °C. Seed coat tissue was collected
from ~10-20 plants per plot and pooled in order to ob-
tain sufficient tissue for subsequent analyses.

Total non-structural carbohydrate content was calcu-
lated from sequential determination of glucose, fructose
and sucrose content using the methods of [68]. The pel-
lets remaining after the ethanol extraction were then sol-
ubilized by heating to 95 °C in 0.1 M NaOH for
subsequent determination of starch content. The NaOH
solution was acidified to pH 4.9 and starch content was
determined from glucose equivalents [69].

Seed yield from whole-plots was determined at matur-
ity (R8) in the drought and elevated temperature treat-
ments. Seed yield for ambient and treatment plots was
measured as total seed weight per area (g m~2). At ma-
turity (R8), the number of pods per node was counted at
the same node where physiological measurements were
made. In 2011 the drought yield was obtained by har-
vesting all plants within 4, 1 m rows per plot, giving a
sampling area of 1542 m” In 2012, the elevated
temperature yield was obtained by harvesting all plants
inside a single 1 m row per plot, giving a sampling area
of 0.762 m?. Final yield for the elevated [O3] plots was
not measured in 2012.

Statistical analysis of physiological and biochemical data

All model assumptions of normality and homogeneous
error (NID, 0, 0%) were examined for each parameter (A,
g, TNC, and hexose/sucrose concentrations). Assump-
tions of normality were tested using the Shapiro-Wilk
test, and the assumption of homogeneous variance was
examined by plotting the residual versus the predicted
value for each variable. A linear mixed model was used
to assess the impact of the fixed effect of treatment
(drought, elevated [O3], or elevated temperature) com-
pared to the control with block as a random factor in
the model. The dependent variables leaf TNC, and seed
hexose and sucrose concentrations were fit separately. A
repeated measures analysis was used for petiole TNC
data, due to the correlation in space. For yield data ana-
lysis, optimal a values for the pod per node data were
analyzed according to [70]. This method minimizes the
average of Type I and Type II errors, therefore minimiz-
ing the overall error rate. This method avoids unneces-
sarily high rates of Type II error and is appropriate in
studies where Type I and Type II errors are considered
to have equal importance [70]. Degrees of freedom were
taken from each data set (drought, elevated [Os] and ele-
vated temperature) and Cohen’s % were input into R (ver.
3.0.2; www.r-project.org) using code provided by [70].
Cohen’s £ of 0.35 was chosen a priori based on previous
literature [71, 72]. Based on the degrees of freedom from
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each data set the traditional optimal « value to analyze the
pod per node data was higher than the standard o = 0.05.
All analyses were conducted in SAS (SAS Institute, Ver-
sion 9.3, Cary, NC, http://www.sas.com/).

RNA extraction and library preparation

Total RNA was isolated from each biological replicate of
frozen seed coat tissue (pooled from multiple plants) fol-
lowing standard protocols. Briefly, seed coats were
ground to a fine powder in liquid N using a mortar and
pestle. RNA was extracted using the PureLink Plant
RNA Reagent (Ambion, by Life Technologies Corp.,
Grand Island, NY, USA, http://www lifetechnologies.-
com) and genomic DNA contamination was removed
from RNA samples using TurboDNase treatment (Ap-
plied Biosystems by Life Technologies, Austin, TX, USA,
http://www.lifetechnologies.com) according to the man-
ufacturer’s protocols. RNA quantity was determined with
a spectrophotometer (Nanodrop 1000, Thermo Fisher
Scientific, Waltham, MA, USA, http://www.thermo-
fisher.com) and RNA quality was assessed using the Agi-
lent 2100 bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA, http://www.alliedelec.com/). cDNA li-
braries were prepared using the Illumina TruSeq Sample
Prep kit (Illumina Inc. San Diego, CA, USA, http://
www.illumina.com) according to the manufacturers
protocol. Library fragments were barcoded and multi-
plexed for sequencing to obtain 100 nt single-end reads.
Library preparation and sequencing was performed at
the Roy J. Carver Biotechnology Center using the Illu-
mina Genome HiSeq 2000 (Illumina Inc. San Diego, CA,
USA, http://www.illumina.com) and Cassava pipeline
1.8. FASTQ files from all sequencing runs are located on
the Small Read Archive (http://www.ncbinlm.nih.gov/
sra), SRA089043, BioProject number PRINA207354.

Transcriptome analyses

Sequencing adapters were removed from the raw
FASTQ files using Cutadapt (ver. 1.8) [73]. A quality
cutoff of 20 was used to trim low-quality bases. Only
reads with a minimum length of 36 nt after trimming
were retained. Trimmed RNASeq reads were aligned to
the soybean reference genome (ver 1.1) using TopHat
(ver. 1.4.1) [74]. A minimum intron length of 5 and a
maximum intron length of 60,000 bp was used. Frag-
ments Per Kilobase of Exon Model per Million mapped
read (FPKM) values were determined using Cufflinks
(ver. 1.3.0) [75]. Differentially expressed genes were de-
termined using edgeR [76] from count data generated
from HTSeq [77]. Due to underlying heterogeneity
among all plots across the entire field experiment, genes
were considered significantly differentially expressed
when they had an FDR-adjusted p-value less than 0.1.
The soybean genome (ver 1.1) functional annotation was
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used for all gene annotations (https://phytozome.jgi.-
doe.gov/pz/portal.html). Gene ontology (GO) enrich-
ment was performed using single enrichment analysis
from Agrigo (http://bioinfo.cau.edu.cn/agriGO/) with
Glycine max (ver. 1.1) reference.

Multiple sequence alignment

Multiple sequence alignment was performed using Clustal
Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) [78]. Pep-
tide sequences for the analysis were downloaded from the
following public databases and can be found in Additional
file 8: Table S6.

Additional files

Additional file 1: Table S1. Mapping statistics for all libraries used in
the RNA-Seq analysis. Reads were trimmed with Cutadapt v1.8 [73] and
aligned to the soybean reference genome v1.1 with TopHat v.1.4.1 [74]
(XLSX 31 kb)

Additional file 2: Table S2. Significantly differentially expressed genes
in the soybean seed coat to elevated temperature. Genes were
considered differentially expressed with a FDR-adjusted p-value of <0.10.
logFC =log fold-change; logCPM = log counts per million; FDR = false dis-
covery rate (XLSX 141 kb)

Additional file 3: Table S3. Fragment per Kilobase per Million Mapped
(FPKM) reads for all abiotic stress treatments. FPKM values were
generated using Cufflinks v1.3.0 [75] (XLSX 13221 kb)

Additional file 4: Figure S1. GO enrichment of genes with significantly
increased expression in elevated temperature compared to control. Figure
generated with Agrigo (http://bioinfo.cau.edu.cn/agriGO/) (PNG 410 kb)

Additional file 5: Figure. S2. Multiple sequence alignment output for
MCM genes in soybean, Arabidopsis and maize. Analysis output from
Clustal Omega [78] (PDF 451 kb)

Additional file 6: Table S4. Percent identity matrix for multiple sequence
alignment of MCM peptide sequences. Values represent percent amino acid
identity. Values generated using Clustal Omega [78] (XLSX 52 kb)

Additional file 7: Table S5. Expression values of soybean MCM genes
from the soybean RNASeq expression atlas. Values generated from
https://soybase.org (XLSX 48 kb)

Additional file 8: Table S6. Reference sequences used in multiple
sequence alignment. Alignment completed with Clustal Omega [78]
(XLSX 50 kb)
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