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Abstract

Background: Stomata are micropores surrounded by pairs of guard cells, and their opening is finely controlled to
balance water vapor loss as transpiration and CO, absorption for photosynthesis. The regulatory signaling network
for stomatal movement is complicated, and increasing numbers of new genes have been shown to be involved in
this process. Our previous study indicated that a member of the plant putative mitochondrial pyruvate carrier (MPC)
family, NRGA1, is a negative regulator of guard cell abscisic acid (ABA) signaling. In this study, we identified novel
physiological roles of pyruvate and MPC1, another member of the MPC family, in the regulation of stomatal closure
in Arabidopsis.

Results: Loss-of-function mutants of MPCT (mpcl) were hypersensitive to ABA-induced stomatal closure and ABA-
activated guard cell slow-type anion currents, and showed a reduced rate of water loss upon drought treatment
compared with wild-type plants. In contrast, plants overexpressing MPCT showed a hyposensitive ABA response and
increased sensitivity to drought stress. In addition, mpc1 mutants accumulated more pyruvate after drought or ABA
treatment. The increased pyruvate content also induced stomatal closure and activated the slow-type anion channels

of guard cells, and this process was dependent on the function of RbohD/F NADPH oxidases and reactive oxygen

species concentrations in guard cells.

Conclusions: Our findings revealed the essential roles of MPC1 and pyruvate in stomatal movement and plant

drought resistance.
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Background

Drought is probably the most frequently encountered abi-
otic stress that limits plant development and growth [1].
Among the diverse pathways that plants have evolved to
either tolerate or adapt to this stress, the control of stoma-
tal aperture by regulating turgor in the pair of guard cells
surrounding each stoma is perhaps the most import-
ant [2, 3]. Although the stomata are anatomically
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simple, the surrounding guard cells are morphologic-
ally distinct from epidermal cells and exhibit complex
signal transduction networks that influence stomatal
aperture. These features allow rapid modulation of
guard cell turgor in response to a diverse set of biotic
or abiotic stimuli, including light, CO,, pathogen in-
fection, and plant hormones, promoting stomatal
movement at time scales of seconds to hours [4, 5].
Stomatal movement is responsive to the local concen-
tration of the phytohormone abscisic acid (ABA) [6-8].
The ABA-triggered activation of guard cell anion chan-
nels results in the efflux of anions, which in turn reduces
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the turgor of the guard cells to close the stomata [9-11].
In addition, the cytosol reactive oxygen species (ROS) is
elevated in response to ABA accumulation, and is in-
volved in ABA-regulated transmembrane ion trafficking
of guard cells to close stomata [12-15], and the NADPH
oxidases, e.g. RbohD and RbohF, are needed in the ABA
activated ROS production [16]. With regard to the com-
plex signaling networks influencing stomatal aperture,
many novel functional genes, proteins, and factors were
found to be involved in the molecular mechanisms of
ABA signaling and stomatal movement [17].

Recently, we identified Negative Regulator of Guard
cell ABA signaling 1 (NRGA1) as a putative mitochon-
drial pyruvate carrier (MPC) that negatively regulates
ABA-induced guard cell signaling in Arabidopsis [18].
MPC proteins, which were first identified by two inde-
pendent research groups using genetic and bioinformat-
ics approaches in 2012 [19, 20], are highly conserved
from yeast to humans and are necessary for the uptake
of pyruvate in the inner mitochondrial membrane. Pyru-
vate, as the end product of glycolysis, is derived from
sources in the cellular cytoplasm, and the majority is
transported into mitochondria for oxidative metabolism
through the tricarboxylic acid (TCA) cycle [21]. As the
gatekeeper for pyruvate transport, mitochondrial pyru-
vate uptake was shown to be regulated by alteration of
pyruvate carrier complexes between different MPC sub-
units in yeast [22]. Alba also reported that the regulation
of mitochondrial pyruvate uptake is an important deter-
minant of respiration rate and stress resistance in yeast
[23]. In the field of human health, recent molecularly
targeted research of the MPC confirmed its importance
in both gluconeogenesis in diabetes [24] and prolifera-
tion of cancer cells [25, 26].

In contrast to the known functions of MPC in humans
and yeast, only one MPC2-like protein, NRGAL1, has been
shown to be involved in stomata ABA signaling in Arabi-
dopsis [18]. In addition to NRGAI, the A. thaliana gen-
ome encodes four other MPC candidates, but little is
known regarding their functions [27]. Here, the Arabidop-
sis MPC1 (Gene ID: 832,131) was shown to interact with
NRGAL1 and to play roles in regulation of stomatal move-
ment and pyruvate content. Moreover, these findings sug-
gested that pyruvate could also be a cellular signal
involved in anion channel activation and thus promotion
of stomatal closure in a ROS-dependent manner, and they
provided a possible mechanism by which AtMPC1 con-
trols stomatal movement and the drought response.

Methods

Plant materials and growth conditions

Columbia-0 (Col-0) A. thaliana was used as the wild-
type strain in this study; Col-0 is also the background of
the T-DNA insertion mutant mpcl (SALK_008945,
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obtained from ABRC, http://www.abrc.osu.edu). The
double mutant mpcl/nrgal was obtained by
hybridization between mpcl and nrgal (SALK_ 050950,
obtained from ABRC, http://www.abrc.osu.edu). Seeds
were surface-sterilized with 75% ethanol for 3 min,
followed by 95% ethanol for 1 min, and finally air-dried
before use. The surface-sterilized seeds were subse-
quently plated on agar-solidified half-strength Murashige
and Skoog (1962) medium (1/2 MS), maintained for
3 days at 4 °C, and then cultured for approximately
1 week in a growth chamber under an 8-h photoperiod
(100 pumol m~2s™* light), ~70% relative humidity, and a
temperature regime of 22 °C + 2 °C/18 °C = 2 °C.
Thereafter, the seedlings were potted in soil.

The zygosity of the mpcl mutant was examined by PCR
using the primer pairs MPCI-LP/-RP, MPCI-LP/LBb1.3,
and MPCI-RP/LBb1.3 (sequences given in Additional file 1:
Table S1). To generate AtMPCI-overexpressing (OE)
lines, the AtMPCI coding sequence was amplified
from cDNA of Col-0 using the primer pair MPCI1-OE-F/R
(Additional file 1: Table S1) and then inserted into the
pB2GW7.0 plasmid using Gateway™ recombination ligase
(Invitrogen, Carlsbad, CA, USA). The construct was intro-
duced into Agrobacterium tumefaciens strain GV3101 and
transformed into Col-0 using the floral dip technique [28].
MPC1/mpcl complementation (C) lines were generated
by replacing the GUS sequence in the plasmid proMPC1::-
GUS (described below) with the AtMPCI coding sequence
amplified from Col-0 cDNA using the primer pair MPCI-
C-F/R (Additional file 1: Table S1) to generate
proMPC1:MPC1. The construct was introduced into the
mpcl mutant by agroinfection as described above.

Measurement of stomatal aperture

Stomatal aperture assay was performed as described [18].
After incubation of detached leaves from 4-week-old
plants in closure buffer (1 mM CaCl,, 20 mM KCl, 5 mM
MES-KOH, pH 6.15) for 2.5 h in light, various concentra-
tions of either ABA (1, 10, and 50 uM) or pyruvate (10,
100, and 1000 uM) were added, and the leaves were incu-
bated for a further 2.5 h. Ethanol and water were used as
controls for the ABA and pyruvate treatments, respect-
ively. Abaxial epidermal strips were then peeled and
photographed under a light microscope. The stomatal
pore widths and lengths were measured using Image] v.
1.37 (https://imagej.nih.gov/ij/), and the stomatal aperture
was calculated as the ratio of the inner pore width/pore
length of each pair of stomata [29-31]. More than 60
guard cells were calculated for each sample and all experi-
ments were repeated for three times.

Drought stress and measurement of water loss
For drought stress experiment, seeds were incubated in
mixed soil (nutrient soil: vermiculite, 2: 1, v/v) in a


http://www.abrc.osu.edu
http://www.abrc.osu.edu
https://imagej.nih.gov/ij

Shen et al. BMC Plant Biology (2017) 17:217

growth chamber with sufficient watering. Approximately
3 weeks later, the plants were subjected to drought stress
treatment by withholding water for 2—3 weeks. The plants
were then rehydrated for 3 days. The effect of the stress
was regularly monitored photographically. To quantify
water loss, rosette leaves were detached from 4-week-old
plants (three replicates per treatment and genotype),
weighed, and placed on dry filter paper in light. The ros-
ette leaves were weighed at a series of time points for 4 h
at room temperature. The rate of water loss was calculated
from the measured loss in fresh weight.

GUS staining

Histochemical GUS staining was used to analyze the ex-
pression profile of AtMPCI1. The native AtMPCI1 pro-
moter was amplified using the primer pair MPCI-GUS-
F/R (Additional file 1: Table S1) and inserted into the
pCAMBIA-ubiGUS vector [32] to obtain the construct
proMPCI:GUS, which was introduced into Agrobacter-
ium tumefaciens strain GV3101 and from there into A.
thaliana via the floral dip technique. Various organs of
transgene homozygotes selected from the T3 generation
were subjected to GUS staining by incubation at 37 °C
for 4-6 h in 0.5 M phosphate buffer (pH 7.2) containing
100 mM K, Fe(CN)g, 100 mM K;Fe(CN)g, 10% v/v Tri-
ton X-100, 0.5 M EDTA, and 0.5% w/v X-Gluc. After
staining, the material was bleached in 100% ethanol and
monitored by light microscopy.

Electrophysiology

A. thaliana guard cell protoplasts were isolated as de-
scribed previously [33]. Briefly, the A. thaliana abaxial
epidermis was peeled from 10 to 12 expanded young
leaves of 4-week-old plants. The epidermis was homoge-
nized in distilled water for 28 s and filtered through a
100-um nylon mesh. The peels were then transferred
into 2 mL enzyme solution I, which contained 0.7% Cel-
lulysin cellulase, 0.1% PVP-40, and 0.25% BSA in 55%
basic solution (5 mM MES, 0.5 mM CaCl,, 0.5 mM
MgCl,, 0.5 mM ascorbic acid, 10 uM KH,PO,, 0.55 M
sorbitol, pH 5.5). The peels were placed in a shaking
water bath for 30 min to digest. Another 2 mL basic so-
lution was added, and shaking was continued for a fur-
ther 8 min. The peels were then filtered through a 100-
um nylon mesh and transferred into 2 mL enzyme solu-
tion II, which contained 1.5% Onozuka cellulase RS,
0.02% cellulase Y-23, and 0.25% BSA in 100% basic solu-
tion. The peels were shaken for at least 20 min to digest.
After digestion, the peels were mixed by pipetting up
and down with a 1-mL pipette and filtered through 30-
pm nylon mesh. The protoplasts were obtained by cen-
trifugation at 800 rpm for 5 min and washed twice with
basic solution.
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The whole-cell mode patch clamp experiment was
performed as described previously [6, 34, 35]. To record
the slow-type anion channel current, the bath solution
contained 30 mM CsCl, 2 mM MgCl,, 1 mM CaCl,, and
10 mM MES (pH 5.6), and the pipette solution con-
tained 150 mM CsCl, 2 mM MgCl,, 6.7 mM EGTA,
3.35 mM CaCl,, and 10 mM HEPES (pH 7.5). The os-
molarities of the bath and pipette solutions were ad-
justed with sorbitol to 480 and 500 mOsm, respectively.
Before using pipette solution, ATP (Mg-ATP, 10 uM)
and GTP (10 uM) were added. The anion channel cur-
rents were recorded using the Axopath-200B amplifier
(Molecular Devices, Downingtown, PA, USA) after the
whole-cell configuration was achieved. The holding po-
tential was +30 mV, and voltage steps were applied from
-145 to +35 mV in +30 mV increments, with a duration
of 60 s for every test voltage. To acquire and analyze the
anion currents, pCLAMP software (version 10.2; Axon
Instruments, Sunnyvale, CA, USA) was used, and Sigma-
Plot 11.0 (Systat Software, Richmond, CA, USA) was
used to draw the current—voltage plots. For ABA or
pyruvate treatment, guard cell protoplasts were exposed
to 50 uM ABA or 100 pM pyruvate for 2 h before meas-
urement. ABA/pyruvate was also added to both the bath
and pipetting solutions.

RT-PCR and quantitative real-time PCR (qPCR)

The transcript levels of AtMPCI and NRGA1 were moni-
tored by RT-PCR. Total RNA was isolated from Col-0,
mpcl mutant, OE lines, C lines, nrgal mutant, and mpcl/
nrgal double mutant using TRIzol reagent (Roche, Basel,
Switzerland), and cDNA was synthesized using the Rever-
Aid First Strand cDNA Synthesis Kit (Thermo Fisher,
Waltham, MA, USA). qPCR amplifications were per-
formed using the CFX96 Touch™ Real-Time PCR Detec-
tion system (Bio-Rad, Hercules, CA, USA, based on SYBR
Premix Ex Taq mix (Roche)) with gene-specific primers
for MPC1 and the internal control (ACTIN2). The primer
sequences used are listed in Additional file 1: Table S1.

Co-immunoprecipitation assay

The co-immunoprecipitation experiment was performed
as described by Choi [36], with some modifications.
Briefly, the ORF sequences of AtMPC1 and NRGAI were
amplified by PCR using primer pairs MPCI1-Pro-F/R and
NRGAI-Pro-F/R (sequences given in Additional file 1:
Table S1) and cloned into the pCM1307-Flag and
pCM1307-C-MYC vectors, respectively. Then, pCM1307-
MPC1-Flag and pCM1307-NRGA1-MYC were trans-
formed into Agrobacterium strain (Agrobacterium tumefa-
ciens strain GV3101) and suspended to ODgyy = 0.8 in
infiltration buffer. Equal volumes of solutions of Agrobac-
terium carrying the two constructs, respectively, were
mixed and co-infiltrated into the 3-week-old leaves of
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tobacco plants. The infiltrated tobacco plants were grown
for an additional 3 days in a growth chamber at 28 °C.
Proteins were then extracted from leaf samples weighing
approximately 1 g using 2 mL extraction buffer (50 mM
Tris-HCI, pH 8.0, 2 mM EDTA, 150 mM NaCl, 1 mM di-
thiothreitol, 10% glycerol, 1% Triton X-100, 1 mM PMSE,
1x protease inhibitor cocktail). The samples were placed
on ice with gentle shaking for 1 h to solubilize membrane
proteins and centrifuged at 13000 x g for 20 min. Super-
natants were incubated with 10 mL anti-Flag polyclonal
antibody (CWBio, Beijing, China) for 2 h at 4 °C with gen-
tle rotation, and then 50 mL 50% (v/v) protein A agarose
bead (Thermo Fisher Scientific, Waltham, MA, USA)
slurry were added followed by incubation overnight. The
beads were then washed four times with washing buffer
(1 x PBS, 0.5% Triton X-100, 1 x protease inhibitor cock-
tail). After the last centrifugation, PBS was removed com-
pletely. The pellet was resuspended in 2x SDS-PAGE
loading buffer. Eluted proteins were analyzed by immuno-
blotting using an anti-MYC antibody (CWBio, Beijing,
China), followed by signal detection using the SuperSignal
West Pico Chemiluminescent kit (Thermo Fisher Scien-
tific, Waltham, MA, USA).

Measurement of pyruvate content

A. thaliana ~15-day-old seedlings grown on solidified
agar plates were incubated in 1/2 MS liquid medium for
24 h, after which either 50 uM ABA was added to the
medium, or the seedlings were removed from the
medium and placed on dry filter paper. After a 3-h ex-
posure to one of these treatments, pyruvate was ex-
tracted and quantified following the method of Yu et al.
with some modifications [37]. Briefly, 0.2 g sample (fresh
weight) was ground in liquid nitrogen. The powder was
mixed with 1 mL extraction solution (50% acetonitrile)
and extracted overnight at 4 °C. The solution was then
centrifuged at 13800 x g for 10 min. The supernatant
was removed, and the remaining sample was extracted
again in 0.5 mL extraction solution for 3 h at 4 °C. The
two extracts were combined and analyzed using the
L3000 HPLC device (Rigol, Beijing, China) equipped
with a C18 chromatographic column. The mobile phase
was 0.1% phosphate buffer (pH 2.3) at a flow rate
0.8 mL /min, a temperature of 35 °C, and an input vol-
ume of 20 pL.

Fluorescence detection of ROS production

ROS levels in the guard cells were quantified using the
fluorescent dye CM-H,DCFDA (Life Technologies,
Carlsbad, CA, USA) as described previously [38, 39]
with minor modifications. Briefly, the A. thaliana abaxial
epidermis was peeled from expanded leaves of 4-week-
old plants and incubated in buffer (1 mM CaCl,, 20 mM
KCl, 5 mM MES-KOH, pH 6.15) for 2.5 h in light. Then,
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50 uM ABA or 100 uM pyruvate was added to the buffer
for a further 2.5 h. The epidermis was then incubated with
1%o fluorescent dye CM-H,DCFDA for 20 min in the
dark. Excess dye was removed by washing at least three
times with distilled water. Fluorescence images were cap-
tured by confocal laser-scanning microscopy (LSM 700;
Carl Zeiss, Oberkochen, Germany) at an excitation wave-
length of 488 nm. The fluorescence intensities were mea-
sured using Image] v. 1.37 (https://imagej.nih.gov/ij/).

Results

Expression pattern of AtMPC1 in A. thaliana

Previously, the pyruvate carrier function of AtMPC1 in
the yeast mutant mpcIA was confirmed by complemen-
tation analysis [18], and co-localization of GFP-tagged
MPC1 and RFP-tagged NRGA1 indicated that AtMPC1
was deposited in the mitochondria, co-localizing with
NRGA1 [27]. To further examine the tissue expression
pattern of AtMPCI1 at the whole-plant level, transgenic
plants harboring a GUS reporter gene fused to the
AtMPCI native promoter were generated. GUS staining
indicated that AtMPC1 was ubiquitously expressed in
the leaf, root, silique, and flowers, with a particularly
high expression level in epidermal guard cells (Fig. 1),
which suggests important functions of AtMPCI1 in dif-
ferent tissues, especially in guard cells of the epidermis.

AtMPC1 negatively regulated stomatal closure and the
drought response

AtMPCI tissue expression was particularly abundant in
guard cells, suggesting a potential role of AtMPC1 in the
regulation of stomatal movements. To examine the
physiological function of AtMPC1, we obtained the T-
DNA insertion mutant mpcl (SALK_008945) (Fig. 2a,
Additional file 1: Figure S1A, B and C). OE and C lines
were also generated (Fig. 2a, Additional file 1: Figure
S1D and S2A). The function of AtMPC1 was character-
ized by comparing the behavior of Col-0 with those of
the mpcl mutant and the OE and C lines, focusing on
the response to exogenous ABA. In plants exposed to a
range of ABA concentrations (0, 1, 10, 50 uM), stomatal
aperture was reduced in the mutant compared with Col-
0 (Stomatal width/length ratio in Col-0: 0.658 + 0.01,
0.563 + 0.01, 0.362 + 0.01, and 0.25 + 0.005, respect-
ively; In mpcl: 0.679 + 0.011, 0437 + 0.01, 0.276 *
0.008, and 0.145 + 0.005, respectively), but stomatal
closure in the OE lines was less sensitive to ABA (Sto-
matal width/length ratio in OE-1: 0.66 + 0.011, 0.628
+ 0.022, 0.473 + 0.011, and 0.321 + 0.009, respectively).
The level of ABA sensitivity in the C lines was similar to
that in Col-0 (Stomatal width/length ratio in C-1: 0.666
+ 0.009, 0.554 + 0.013, 0.387 + 0.011, and 0.248 *
0.007, respectively) (Fig. 2b and ¢, Additional file 1:
Figure S2B, Additional file 2: Table S1). As the bulk of
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transpired water escapes via the stomata, its rate of loss
from a detached leaf was lower in the mutant than in
Col-0 (water loss rates in 4 h of 37.765% + 1.205 and
33.991% + 1.331 for Col-0 and mpcl, respectively),
while the leaves of the OE line showed more rapid tran-
spiration (water loss rate in 4 h of 48.27% + 1.408 for
OE-1) (Fig. 2d, Additional file 1: Figure S2C, Additional
file 2: Table S2). When water was withheld from soil-
grown plants, mpcl appeared to be more tolerant to
drought stress than did Col-0, while the OE plants
remained withered even after re-watering (Fig. 2e, Add-
itional file 1: Figure S2D and S3). The overall conclusion
was that AtMPC1 plays a negative role in ABA-induced
stomatal closure, thereby influencing the ability of the
plant to tolerate drought stress.

AtMPC1 was involved in the regulation of slow-type anion
channels

As ABA activates slow-type anion currents in guard cells
[40], it was of interest to determine the effects of altering
ABA sensitivity via manipulation of AtMPCI expression
on the performance of slow-type anion channels. In re-
sponse to ABA treatment, the size of the anion current in
the guard cells increased more substantially in the mpcl
mutant than in Col-0. The guard cell anion current in the
C lines behaved similarly to that in Col-0, but in the OE
lines, the currents were markedly lower than those in Col-
0 (Fig. 3, Additional file 1: Figure S4, Additional file 2:
Table S4). These responses confirmed that AtMPC1 acts
as a negative regulator of ABA-enhanced slow anion
channel function during stomatal closure.
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AtMPC1 interacted with NRGA1

The physiological experiments indicated that AtMPC1
has a function similar to that of NRGA1 in the regula-
tion of stomatal closure, and co-expression of NRGAI
with AtMPCI restored the growth of the yeast mutant
mpc2A/mpc3A [18]. Therefore, it is necessary to explore
the relationship between AtMPC1 and NRGA1 by mo-
lecular and genetic methods. Co-immunoprecipitation
using an anti-Flag antibody demonstrated an interaction
between AtMPC1 and NRGAL1 in plants (Fig. 4a). We
also obtained the double mutant mpcl/nrgal by
hybridization of mpcl with nrgal (Fig. 4b), and this mu-
tant did not display an extreme phenotype compared
with those of the mpcl and nrgal single mutants, re-
gardless of stomatal movement (Stomatal width/length
ratio: 0.243 + 0.009, 0.141 + 0.006, 0.142 + 0.004, and
0.148 + 0.005 for Col-0, mpcl, nrgal, and mpcl/nrgal,
respectively, after 50 uhM ABA treatment) or the rate of
water loss (water loss rates in 4 h of 55.83% + 2.397,
46.116% + 3.098, 43.312% + 2.183, and 42.783% + 2.124
for Col-0, mpcl, nrgal, and mpcl/nrgal, respectively)
(Fig. 4c and d, Additional file 2: Table S1-S2). The assay of
physiological function also indicated that AtMPC1 and
NRGAL1 form an interactional heterocomplex, consistent
with previous reports in yeast and mammals [20, 41].

ABA and drought stress induced pyruvate accumulation

As a MPC, the activity of AtMPCI is expected to influ-
ence the transport of pyruvate. Therefore, pyruvate con-
tents were compared between Col-0 and the mpcl
mutant under normal and stressed growth conditions
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width/length ratio analysis, at least 30 stomata were measured

(Fig. 5). When treated with ABA or exposed to drought
stress, the pyruvate contents were increased in both Col-
0 and mpcl. However, the mutant contained more pyru-
vate than did Col-0 under each of the treatment condi-
tions (Fig. 5). Thus, both ABA and drought stress
induced the accumulation of pyruvate in an AtMPC1-
dependent manner.

Pyruvate acted on stomatal closure by modulating slow-
type anion currents

As AtMPCL is likely involved in ABA-induced stomatal
closure, and ABA induces the accumulation of pyruvate, it
was suggested that pyruvate may act as a regulator of sto-
matal movement. This is supported by the observation that
pyruvate induced stomatal closure: the stomatal aperture
decreased in size under higher concentrations of pyruvate
until reaching 100 uM (Stomatal width/length ratio: 0.662
+ 0.009, 0.611 + 0.011, 0471 + 0.011, and 0.474 + 0.008
for Control, 10, 100, and 1000 uM pyruvate, respectively)
(Fig. 6a and b, Additional file 2: Table S1). Exposure to

either 50 uM ABA or 100 uM pyruvate increased the size
of the anion current, although pyruvate was less effective
than ABA (Fig. 6¢c and d, Additional file 2: Table S4). Be-
sides, we also did patch clamp whole-cell recordings of
slow-type anion currents in Col-0 guard cell protoplasts
under control condition and treated both with 50 pM ABA
and 100 pM pyruvate, to some extent, the currents were
slightly increased compared to those of ABA or pyruvate
treatment alone (Fig. 6¢ and d, Additional file 1: Figure S5,
Additional file 2: Table S4). However, we still could not con-
firm if the elevation of cytosolic pyruvate could strengthen
the ABA activated slow-type anion currents ie., whether
there was an additive effect in anion channel regulation.
Therefore, additional research needs to be done in future.

Pyruvate induced production of ROS

ROS participate in the regulation of stomatal movement
[42, 43], and mitochondrial metabolism influences the
production of ROS. Therefore, we investigated the rela-
tionships between ROS and pyruvate-mediated stomatal
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movement and anion channel activity. As visualized by
CM-H,DCEFDA staining, ROS production was induced in
guard cells exposed to either ABA or pyruvate. After ABA
pretreatment, the fluorescence intensity was stronger than
that after treatment with ABA or pyruvate alone, indicat-
ing that pyruvate induced the production of ROS (Fig. 7a
and b, Additional file 2: Table S3). In addition, pyruvate
induction of stomatal closure was disrupted in the double
mutant rbohD/F, which failed to show ROS production
(Stomatal width/length ratio without vs. with pyruvate
treatment: 0.667 + 0.011 and 0475+ 0.009 for Col-0, re-
spectively, and 0.665 + 0.012 and 0.657 + 0.012 for
rbohD/F, respectively) (Fig. 7c, Additional file 2: Table S1).
Consistent with stomatal movement, pyruvate did not in-
crease the size of the anion current in rbohD/F (Fig. 7d
and e, Additional file 2: Table S4). These observations sug-
gested that increased pyruvate-induced stomatal closure
was dependent on ROS accumulation in guard cells.

Discussion

MPCs are required to transport pyruvate into the mito-
chondria where it enters into the TCA cycle. Although
transport of pyruvate into the mitochondrial has long been
known to require a carrier-mediated process, it has taken
several decades since to determine the molecular identity of
the pyruvate carrier responsible for its mitochondrial
localization [19, 20]. A great deal of research effort has been
focused on the relationship between MPC activity and can-
cer because of the special metabolic phenomenon of the
Warburg effect in cancer cells [24, 41, 44]. There have also
been studies regarding the MPC activity and MPC
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complexes in yeast and mammals, the genomes of which
have been shown to encode at least three and two MPCs,
respectively [22, 45, 46]. Furthermore, the roles of MPCs in
the modulation of respiratory capacity and stress tolerance
have been reported in yeast [23], suggesting that MPC has
multiple functions in both metabolism and stress responses.

In plants, the putative MPC2-like protein NRGALI has
been reported to be a negative regulator of guard cell
ABA signaling and the drought response [18]. Another
member of the MPC family, AtMPC1, has been confirmed
to show pyruvate carrier activity in yeast and mitochon-
drial localization in plant cell [18, 27]. Here, we further ex-
plored the function of AtMPC1 through physiology,
molecular biology, and genetic methods. Similar to
NRGA1, AtMPC1 was shown to be ubiquitously expressed
in different plant tissues (Fig. 1), with especially high levels
in guard cells (Fig. 1e). The negative roles of AtMPC1 in
guard cell ABA signaling and the plant drought response
are shown in Figs. 2 and 3. Due to the similar functions of
NRGA1 and AtMPC1, we considered that they interact in
plants (Fig. 4a), consistent with a previous report that the
MPC family is composed of different members [19, 20].
The similar phenotypes between the double mutant
mpcl/nrgal and either single mutant strengthened this
hypothesis (Fig. 4b, ¢ and d).

As a member of the MPC family, the absence of AtMPC1
would be expected to disturb pyruvate metabolism in
plants. It has been reported previously that the capacity to
alter the cytosolic level of pyruvate is a key determinant of
stress tolerance [23]. Measurement of the tissue content of
pyruvate showed that there were no differences between
Col-0 and the mpcl mutant under control conditions
(Fig. 5), which may have been due to the functional redun-
dancy of other MPC members to maintain basic pyruvate
metabolism. However, ABA and drought stress induced ac-
cumulation of pyruvate in both Col-0 and the mpcl mu-
tant, and the pyruvate level was higher in the latter than in
the former (Fig. 5). It was concluded that the loss of
AtMPC1 impeded pyruvate metabolism in plants, especially
under conditions of stress. Interestingly, administration of
exogenous pyruvate induced stomatal closure in a
concentration-dependent manner (Fig. 6a and b), and this
process relied on the anion channel activity of guard cells
(Fig. 6¢ and d). The reversibility of ABA-inhibited stomatal
opening by pyruvate in the presence of ATP has also been
reported previously [47], indicating the equalizing regula-
tion of stomatal aperture by pyruvate to maintain balance
between the demands of photosynthesis and transpiration
under drought conditions; the mechanism of pyruvate in-
duction of stomatal closure needs to be explored.

The transport of pyruvate into mitochondria is a vital
step in energy metabolism, and the mitochondria represent
a major source of ROS [48-50]. Certain ROS function as
signaling molecules, particularly in the context of the
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abiotic stress response, and have been implicated in ABA-
induced stomatal closure [51-55]. Here, ROS concentra-
tions were increased under conditions of pyruvate treat-
ment (Fig. 7a and b), and the induction of stomatal closure
and activation of slow-type anion currents by pyruvate
were impaired in the double mutant rbohD/F (Fig. 7c, d
and e), which failed to show ROS production. Pyruvate
was suggested to regulate stomatal closure indirectly by in-
ducing ROS production. In addition to its role in oxidative

metabolism, pyruvate is a branching point for the syntheses
of glucose, lactate, fatty acids, and amino acids. Further
studies are required to examine the roles of MPCs in plant
sucrose and organic acid metabolisms, which have also
been implicated in guard cell ABA signaling [56—58].

Conclusion
A working model for the role of AtMPC1 in the regulation
of stomatal movement and the drought response is
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