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Abstract

Background: Advances in forward and reverse genetic techniques have enabled the discovery and identification of
several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for
testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual
uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask
downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the
induced disease resistance and influencing these observable disease phenotypes has never been systematically
tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration.

Results: We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases
related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence
response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched
process regulatory network based on the functional degeneracy of the plant proteome to help understand the
induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to
changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection.
Results indicated that the presence of a functionally active NPR1 reduced the plant’s susceptibility to the infection,
with about 99% of variability in Pseudomonas spore growth between npr1mutant and wild-type samples. Moreover,
the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an
enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism.

Conclusions: This protocol can improve the characterization of the gene target and, potentially, elucidate induced
defence response by more effectively utilizing available phenotype information and plant proteome functional
knowledge.
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Background
Plants are sessile organisms often subjected to several
attacks and invasions from herbivorous and pathogenic
organisms. Pathogenic organisms have been repeatedly
reported to cause outbreaks on bean, cucumber, stone
fruit, kiwi and olive tree, as well as on other crop and non-
crop plants [1]. Plants respond to these attacks by switch-
ing on an array of defence pathways whose end products
serve to limit the progression of invading pathogens. The
innate response is the first stratum and earliest form
of response reported. It involves interaction between
pathogen associated molecular patterns (PAMP/MAMP)
from the invading pathogen, and the plant’s membrane-
localized pattern recognition receptors [2–4]. Down-
stream of this is the hypersensitive response (HR) which
is highly specific and requires the recognition of specific
avirulent genes from the pathogen by specific resistance
(R) genes in the plant [5, 6]. Further downstream is a broad
spectrum-type of response called systemic acquired resis-
tance (SAR), a long-lasting defence response which primes
the plant against future pathogenic attack [2, 7]. In 1999,
Pieterse and Van Loon [8] highlighted the existence of yet
another form of systemic response called induced systemic
response (ISR), which can occur independently of the HR
and SAR.
These strata of defence response pathways are gener-

ally governed by perturbations in the cells redox state,
fluctuations in intracellular ionic concentration, acti-
vation/repression of kinases, synthesis of diverse sig-
nalling molecules, including salicylic acid (SA), jasmonic
acid (JA), ethylene (Et), activation/repression of tran-
scriptional co-regulators, such as the non-expressor of
pathogenesis-related 1 (NPR1), activation/repression of
transcription factors, such as TGA and WRKY, and the
ultimate expression/suppression of defence end prod-
ucts, such as pathogenesis-related (PR) proteins, which
influences the growth and progression of the invad-
ing pathogens [9–14]. Understanding the biology of the
plant protection and defence response may help in con-
trolling the performance and survival of plants, which
are very often faced with several types of stresses.
The induced resistance response requires a coordi-
nate action of many defence-related genes interacting
within processes and signalling pathways to control
down-stream responses during stress conditions. Com-
putational modelling is therefore playing an additional
role [15] in improving our understanding of plant
defence and disease resistance mechanisms in a manner
that is less costly, reduces redundancies and increases
robustness. Such models offer attractive alternatives for
the identification of gaps and opportunities in already
characterized biological systems, and could eventually
inform the design of more targeted molecular biology
experiments [16].

Pseudomonas syringae (P. syringae) is a rod shaped
Gram-negative bacterium, a major bacterial leaf pathogen
that causes diseases in a wide range of plant species with
visible symptoms [17, 18]. A specific variety of P. syringae
pathovar tomato strain DC3000 (Pst-DC3000), is known
to infect DC3000 tomato and Arabidopsis thaliana plants
[19], using the plant leaf surface to negotiate its entry
into the plant. Both Arabidopsis [20] and Pst-DC3000 [19]
have been sequenced and are genetically tractable, eco-
nomically and environmentally convenient, and constitute
a model system in research for studying molecular patho-
genesis and dynamics of plant-pathogens interactions
[21]. Interestingly, Arabidopsis thaliana shares high sim-
ilarity with high agronomic value crops, such as rice
with similarity of 0.71 [22], suggesting that the find-
ings related to Arabidopsis thaliana can be assessed
to determine whether they could be applied to these
different plants.
In this study, we used NPR1 (or SAI1 for salicylic

acid-insensitivity or NIM1 for non-inducible immunity)
as a reference due to the available experimental data
and its central role in SAR signalling pathway, a broad-
spectrum resistance protecting against several pathogenic
attacks [23], which activates antimicrobial genes prod-
ucts in both the model plant Arabidopsis thaliana and a
diverse number of food crops [4, 24–32], including canola,
cabbage, broccoli, tobacco, tomato, potato, corn. NPR1 is
also involved in the regulation of signalling pathways like
abscisic acid (ABA) [33], which, as JA- and Et-dependent
activation of defense responses resulting from ISR [17],
offers resistance to necrotrophic pathogens.We propose a
post-gene silencing bioinformatics (post-GSB) protocol, a
two-step approach (see Fig. 1), which can be used to effi-
ciently analyze plant differential responses based on leaf
spore count or expression level experimental data sets.
This post-GSB protocol introduces the closeness score
concept between plants to extract differentially infected
plants in a population of Arabidopsis thaliana wild type
and npr1 mutant plants infected with Pst-DC3000 used
in further analyses. It uses a Gene Ontology (GO) based
semantic similarity model to identify proteins collaborat-
ing with NPR1 as well as enriched biological processes
involved in the defence response and elucidate these pro-
cess occurrence sequences. This new model manages
eventual uncertainty of data, potential noise inherent in
the experiment and redundancy from the semantic-based
GO structure to effectively assess contributions of and
validate plant-defence genes, and predict plant-defence
mechanisms.

Methods
The study was divided into two parts, the first was to
check whether NPR1 plays an important role in plant
protection and secondly to perform functional analyses
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Fig. 1 The post-gene silencing bioinformatics (post-GSB) scheme. This describes the two steps of the model as described in the scheme. The first
step consists of producing experimental data sets and using the closeness scores between plants to extract the set of differentially infected plants
to be considered for further analyses. The second step initially focuses on statistical analyses checking whether there is any difference between the
two data sets: wild type and npr1 gene mutant plants. If this difference is significant, then the Gene Ontology process annotation based functional
analysis is performed to identify proteins, enriched processes and pathways contributing to the NPR1-based plant defence mechanisms

to predict the biological mechanisms of the NPR1-based
defence response.

Experimental data from Arabidopsiswild type and npr1
mutant plants
Data analyzed in this study was derived from a study
conducted at the John Innes Centre (England) in 2010
[32] and consisted of data from wild type (Wt) and npr1
mutantArabidopsis thalianaColumbia (Col – 0) plants 48
hours post infection with Pst-DC3000 [34]. These plants
were grown and inoculated under controlled greenhouse
conditions (23 °C, 10 h day/14 h dark regime and a rel-
ative humidity of 65 ± 5%) in the John Innes Centre in
England [32]. Pst-DC3000 bacteria strain was cultured as
described in [34] using King B’s media [20 gL−1 proteose
peptone (w/v), 1.5 gL−1 di-potassium hydrogen phosphate
(w/v), 1.5 gL−1 magnesium sulphate (w/v), 1.5% glyc-
erol (v/v) and 1.2% bacterio agar (w/v)] supplemented
with 50mgL−1 kanamycin. The bacteria cells were re-
suspended in a 10mMMgCl2 solution and the concentra-
tion adjusted to 5 × 105 colony forming unit cfu.mL−1.
For each plant to be inoculated, three leaves were hand-
infiltrated using a 1mL needless syringe containing either
a 10mM MgCl2 solution or an inoculum of Pst-DC3000
(5 × 105 cfu.mL−1). Bacteria growth was measured as
spore counts 48 h post treatment using 8mm leaf discs
excised from the treated plants. Measurements were con-
ducted using a FB12 luminometer with a single photon
counter [32, 34]. For adequate representation and statis-
tics purposes, the experiment was conducted three times

using a total of 60 plants (three infected leaves per plant)
per genotype (see raw data in Additional file 1).

Sample extraction and analysis
Data from a total of 31 Arabidopsis Wt plants (controls)
and 29 npr1 mutant plants (cases) inoculated with Pst-
DC3000 were used for further analysis. Figure 2 is a
graphical representation of the spore count data to visu-
ally assess the distribution of these spore counts. Noticing
that there was a distribution pattern, samples were further
analysed in three main steps: (1) computing the closeness
score of each individual in a sample and ranking these
individuals based on these scores; (2) extracting the list
of differentially infected plants using Pearson χ2 scores
based on aggregated closeness scores; and (3) statisti-
cally measuring the significant difference among the two
phenotypes.

Computing individual closeness scores
Generally, a set of plants within each group consists of
a mix of phenotype tendency associated with different
levels (moderate or high) of infection observed through
plant spore counts. Since at a higher level of infection,
it may not be evident to distinguish between the two
groups under consideration, there is a need for a scor-
ing scheme which can appropriately classify plants with
moderate level of infection, referred to as differentially
infected plants, based on plant spore counts. Here we
set up a closeness score approach to measure the length
of the line-segment joining the plant phenotypes using
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Fig. 2 Plotted heat-maps of spore counts for the case and control raw datasets. These plots (cases and control datasets on left and right sides,
respectively) show variations of leaf spore counts from relatively lower (dark orange) to higher (dark green) counts as an indication of low and high
levels of infection. An asterix on a given plant identifier indicates that the plant is among differentially infected plants within a dataset

spore count vectors, enabling the selection of differentially
infected plants. The individual closeness score of an indi-
vidual (plant) ı , denoted ICS(ı), in a sample is computed
as follows:

ICS(ı) =
n∑

j=1
Sıj (1)

where n is the size of the sample (number of individu-
als in the sample) and Sıj is the similarity score between
individuals ı and j calculated using the Manhattan met-
ric defined on a vector of spore counts for three different
readings and converted to similarity measure following
the Resnik-edge-based approach [35, 36]. This similarity
score Sıj is given by:

Sıj = 2 × δ (xı ) − d
(
xı , xj

)
(2)

with xk a spore count vector of individual k, δ (xı ) =
max

{
d

(
xı , xj

)
: j = 1, . . . , n

}
and d

(
xı , xj

)
the distance

between spore count vectors of the two individuals based

on the Manhattan metric defined on a vector of spore
counts, computed as follows:

d
(
xı , xj

) = min
{ n∑

k=1

∣∣xık − xjp(k)
∣∣ : p ∈ P

}
(3)

where P is the set of all permutations of the ordered set
S = {1, 2, . . . , n} of n readings in the sample. The individ-
ual or plant with the highest ICS is referred to as reference
individual or plant, whose similarity scores to other plants
are used to extract the set or list of plants of interest for
further statistical analyses.

Extracting sets of differentially infected plants in different
samples
In order to minimize the impact of potential biases which
may emanate from highly infected plants, we design a
model for selecting sets of differentially infected plants
in which spore counts based phenotypes are significantly
associated with moderate level of infection in different
samples based on closeness or similarity score described
in the subsection above. Using similarity scores between
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reference plant, denoted d, and all plants in a sample, the
list of these plants were ranked from the highest to the
lowest scores. The ranked plant list is then used to com-
pute a Pearson χ2 score for each plant subset, reflecting
the tendency of plants in a particular set to occur towards
the extremes of the list. The Pearson χ2 score of a sub-
set containing plants re-indexed from � to m, denoted
χ2
P (�,m), is given by:

χ2
P (�,m) =

m∑

j=�

(
Sdj − μ�m

)2

μ�m
(4)

which is known to approximate a χ2-distribution with
(m − �) degree of freedom (dof) and where their
expected value μ�m represents aggregated score (ES) of
the extracted subset and estimated as follows:

μ�m = ES (m − � + 1) =
m∑

j=�

Sdj (5)

We identified s top individuals as differentially infected
with s the index fold-change χ2

P . Assuming that the ranked
list contains n individuals, s (s ≤ n) is the smallest index
satisfying the following inequality:

χ2
P (1, s) − r ∗ χ2

P (s + 1, n)√
1 + r2

> 0 (6)

where

r =
√

s − 1
n − s − 1

(7)

which is the ratio of standard deviations of χ2
P (1, s) and

χ2
P (s + 1, n), and set to 1 if s = 1.
The significance of the aggregated score, ES(s), of the

subset of differentially infected plants was assessed using
sample randomization. So, we randomly selected 1000
independent subsets (same size with the set of differen-
tially infected) of plants and compute ES of each subset
and then perform the Shapiro-Wilk test under the null
hypothesis that the generated sample is drawn from a nor-
mal distribution. Following the rejection or the acceptance
of the null hypothesis, we perform the Wilcoxon- or the
T-test to check whether the identified set of differentially
infected individuals is more than expected by chance.

Statistical analyis of npr1mutant andwild-type plant based
disease symptoms
The contribution of NPR1 protein to the plant protec-
tion during infection as the defence co-regulator is sta-
tistically assessed on sets of differentially infected plants
extracted from the two population samples (mutant/case
and wild/control). We test for the differences between the
mutant and the wild type plants using parametric or non
parametric statistics given that agreements with respects
to the violations of the assumptions are met. Thus, the

normality and variance homogeneity assumptions of the
two samples are tested using the Shapiro-Wilk and Bartlett
tests, respectively. In order to satisfy these assumptions
for datasets which are characterized by extreme non-
normality or heterogeneity of variance, we apply a data
transformation [37, 38] based on the Fisher-Pearson coef-
ficient of skewness [39] to bring the data into greater
agreement with the normality and variance homogene-
ity assumptions. Depending on whether normality and
variance homogeneity assumptions are met or not, we
performed the analysis of variance (ANOVA) method or
the non-parametric Kruskal-Wallis rank sum test.

Bioinformatics analysis of potential NPR1-based plant
defence mechanisms
We used the Gene Ontology (GO) [40, 41] and the pro-
tein GO Annotation (GOA) mapping provided by the
UniProtKB-GOA project [42–44] to reveal the potential
NPR1-based regulatory network using enriched biological
processes and pathways in which a set of protein targets
are involved. The complete set of GO data and protein-
GO term associations were extracted from the GO and
GOA databases, respectively, accessed on the 11th of
October, 2016. For the pathway enrichment analysis, we
use the Kyoto Encyclopeadia of Genes and Genomes
(KEGG) datasets. The whole Arabidopsis thaliana path-
way dataset was extracted from the KEGG database at
http://www.genome.jp/kegg/.

Identification of other putative proteins participating to the
plant defence response
Proteins perform an astonishing range of biological func-
tions in an organism by collaborating in pathways and
processes, and interacting with the cellular environment
in some way to promote the cell’s growth and func-
tion [45, 46]. This argues that the induced resistance
response requires concerted biological action of many
genes involved in diverse processes or defence signalling
pathways. There are various computational approaches
for identifying proteins co-working or involved in a simi-
lar process, which, in general, rely on a priori knowledge
of protein functional features. This functional knowledge
can be either a protein-protein interaction (PPI) network,
in which case, these proteins interact and influence each
other in the same sub-network or protein functional anno-
tations, in which case, these proteins are involved in
semantically similar processes or in the same pathway. In
this study, since we are looking at the NPR1 biological
role and functional annotations, we use protein biologi-
cal process dataset to identify putative proteins which are
functionally similar to Arabidopsis NPR1 by quantifying
functional similarity between proteins based on sets of
strict non-redundant processes annotating proteins under
consideration [47].

http://www.genome.jp/kegg/
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Given two proteins p and q, the functional similarity
between p and q, BMA (p, q), is computed using the Best
Match Average model [48–51] as follows:

BMA (p, q) = 1
2

⎛

⎝1
n

∑

s∈Tp

S
(
s,Tq

) + 1
m

∑

s∈Tq

S
(
s,Tp

)
⎞

⎠

(8)

where Tr is a set of process terms annotating a given
protein r and n = ∣∣Tp

∣∣ and m = ∣∣Tq
∣∣ are the

number of processes terms in these sets. S (s,Tr) =
max {S (s, t) : t ∈ Tr} with S (s, t) , the semantic similar-
ity score between process terms s and t computed using
the GO-universal metric [48]. It is worth noting that
semantic similarity measure has proved its effectiveness
to solving biological issues related to the Gene Ontology
annotation-based knowledge discovery, including pre-
dicting and validating protein-protein interaction (PPI)
[52]. With curated PPIs, which are still relatively scarce,
high-throughput biology experiments and computational
methods producing high rate of false positive PPIs [53],
and the lack of appropriate techniques to address these
shortcomings [45], semantic similarity-based approach is
more effective, providing a classification indicator of PPIs
in the absence of reliable information.

Identifying enriched Arabidopsis defence response processes
and pathways
For process or pathway enrichment analysis, we used
hyper-geometric test adjusted using the Bonferroni mul-
tiple testing correction. For each process or pathway, the
p-value was calculated using its frequencies of occurrence
in the reference dataset (Arabidopsis thaliana proteome)
and target set, which composed of proteins identified to
be functionally similar to NPR1. Thus, this p-value, which
is the probability of observing at least s proteins from a
target gene set of size n by chance, knowing that the refer-
ence dataset contains m annotated genes out of N genes,
is given by the following formula [54, 55]:

P [X ≥ s] = 1 −
s−1∑

k=0

(m
k
)(N−m

n−k
)

(N
n
) (9)

where the random variable X is the number of genes
involved in the GO process or participating to the path-
way under consideration within a given target gene set
contributing to plant defence response. To account for
relationships between GO terms in the GO structure, we
used the concept of the GO term semantic similarity score
[55] and the frequency of occurrence f (t) of the target-
associated process t in a set of proteins P is given by:

f (t) =
∑

q∈P
δq(t) (10)

where δq is the q-function indicator given by

δq(t) =
{
1 if Sq(t) > ε

0 otherwise (11)

where ε ≥ 0 is the agreement level or customized agree-
ment at which a GO process is considered to be a possible
annotation of the protein q and Sq(t) = S

(
t,Tq

)
, repre-

senting the semantic similarity degree at which a related
term is considered to semantically reflect in the specifica-
tion of the term t [47]. Here, ε was set to 0 for t ∈ Tq or
t ∈ Aq, and to 0.7 for t ∈ Cq where Aq and Cq are sets of
ancestors and descendants of processes inTq, respectively.
The p-value of each process term was adjusted using the
Bonferroni multiple testing correction.

Results and discussion
In the first part of the post-GSB framework developed
in this study, we have designed a spore count closeness
scoring approach. This enables the identification of dif-
ferentially infected plants used to ascertain the role of
NPR1 in Arabidopsis plant defence response with bacte-
ria spore count data collected from Arabidopsis Wt and
npr1 mutant leaves 48 h post Pst-DC3000 infection as
described in the “Methods” section. We then predicted
the potential NPR1-based regulatory network based on
the identified set of putative proteins, enriched biological
processes and pathways which participate in plant defence
response.

NPR1 protein is required for Arabidopsis defence response
The heat map representation of the raw experimental
spore count data from both data sets in Fig. 2 revealed that
spore distribution patterns in the ArabidopsisWt infected
leaves are more closely similar (see Fig. 2b) in compari-
son to those of the mutant (Fig. 2a). This is in agreement
with previous results which showed a significant differ-
ence in spore numbers between the two phenotypes (data
not shown) [32]. In a study of Wt and npr1 mutant plants
by Cao et al. [56], it was observed that infection spread
event to uninfected parts of the leaf is quite rapid due to
its high level of susceptibility. To eliminate the possibility
that the presence of highly infected plants in the mutant
population is contributing significantly to the observed
differential response found in this study, we statistically
tested the difference between the two groups of plants on
specific sets of plants from these two groups. These sets
contains only differentially or moderately infected plants
in order to keep out the highly infected plants within
the two phenotype groups using the closeness scoring
approach. Outputs generated 13 moderately infected npr1
mutant plants, and 14 moderately infected Arabidopsis
Wt plants which were used for further downstream anal-
ysis (Fig. 2, plants marked with an asterisk). Note that
these identified sets of differentially infected plants for
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both npr1 mutant and wild-type plants are statistically
significant with p-values <2e − 16.
The graphical representation (Q-Q plots) of the above

Wt plant sub-data indicated that this sub-data was not
normally distributed (see Additional file 2: Figure S1) with
the Shapiro-Wilk test p–value of 0.000152 ≤ 0.05, thereby
leading to a two-step statistical analysis process. Firstly, we
tested for statistical differences using the non-parametric
Kruskal-Wallis rank sum test. Results from this test indi-
cated that within phenotypes, there was no significance
difference (p–value = 0.70 > 0.05), but, between the two
phenotypes, there was a significant difference in the num-
ber of bacteria spores (p–values = 4.551e − 12 ≤ 0.05).
Noting that non-parametric tests have weaker statistical
power in comparison to parametric tests, and to further
eliminate the possibility of introducing a type II error
[57], we applied a parametric approach to increase the
robustness of our analysis.
In order to bring different data subsets into agree-

ment with the normality and homogeneity of variance
(equal population variance) assumptions, these data sub-
sets were log transformed (see Additional file 2: Figure S2)
and scaled using their standard deviations. Note that the
choice of log 10 transformation was guided by the Fisher-
Pearson skewness coefficient [37, 38] of the Wt dataset
with a value of 1.46524, suggesting that its distribution
was highly skewed (substantially positive skewness) [39].
The Shapiro-Wilk normality test and the Bartlett vari-
ance homogeneity p–values were greater than 0.1169 and
0.98 for both Wt and npr1 mutant data subsets. Results
from our ANOVA using this log transformed data subsets
still confirmed that there was no significance difference
within data subsets (p–value = 0.481), but there existed
a significant difference in spore numbers between both
phenotypes (p–value < 2e − 16) with the measure of
association ω = 0.98893. This indicates that 99% of the
variability between Wt and npr1 mutant samples may be
attributed to whether the NPR1 protein is functionally
active or not, providing evidence thatNPR1 plays a critical
role in plant defence response.
In summary, we applied the Pearson χ2-based plant

closeness scoring scheme in order to extract specific
sets of plants in populations under consideration to be
used for further statistical inferences. These experimen-
tal data subsets showed evidence that a functional NPR1
is required to limit bacteria growth in Arabidopsis plants.
This findingcorrelateswith results from previous studies that
have equally demonstrated that the presence of a func-
tionalArabidopsis NPR1 is important in limiting pathogen
growth in infected plants [56, 58, 59], playing a key role
in the SAR signalling pathway [23, 58, 60], the broad-
spectrum type of response providing defence against sec-
ondary pathogens after a primary attack. This Pearson
χ2-based plant closeness scoring approach enables the use

of more relevant data subsets in further analyses, thus
limiting the effect of the eventual uncertainty of these
datasets and potential noise inherent in the biological
experiment used. This provides an increased robustness
of statistical analyses and stronger validation of inferences
from experimental datasets.

Elucidating potential NPR1-based enriched process
regulatory network
Similar to other organisms, plants combat the adverse
effects of stressors by activating or deactivating various
processes and pathways. We therefore applied a seman-
tic similarity based computational model to gene products
that are functionally similar toNPR1 and identify enriched
plant defence biological processes using protein GO
annotation mapping from the GOA-UniProtKB dataset
[42, 44] with the reviewed proteins in theArabidopsis pro-
teome retrieved from the UniProt database [61]. Further-
more, we used the Arabidopsis KEGG pathway dataset
to retrieve enriched pathways participating to the NPR1-
based regulation of Arabidopsis defence response and
elucidated the GO-based regulatory network triggered by
NPR1.

Identification of NPR1-associated plant defence proteins
In general, defence mechanism is driven by several gene
products that act dependently or independently. In order
to identify NPR1-associated plant defence proteins, we
computed the functional similarity scores between NPR1
and other 20 545 annotated proteins [62] out of 51874
found in the complete list of proteins in the Arabidop-
sis proteome. In order to avoid over-estimating functional
similarity scores between proteins [52], which is induced
by the redundant processes from parent-child relations
from the GO structure [47], we used the set of filtered
non-redundant processes in which proteins are involved.
Results indicated that 30 proteins shared high functional
similarity to the Arabidopsis NPR1 (Table 1) of which, 25
were reviewed or manually curated (in Table 1; protein
with status�). A hierarchical clustering representation of
these 25 annotated proteins together with the Arabidop-
sis NPR1 protein, which shows functional relatedness
between these 26 reviewed proteins, produced two main
clusters (Fig. 3) with Cluster 1 comprising of two sub clus-
ters (1A and 1B). Sub-Cluster 1A contains proteins clos-
est to NPR1 (at the maximum distance of approximately
0.245) and distant at 0.275 from Sub-Cluster 1B, while
proteins in Cluster 2 were the farthest subgroup being
distant at 0.375 maximum from Cluster 1. Proteins in
the sub-cluster 1A comprised of the NPR1/NIM-1 inter-
acting protein (NIMIN-1), transcription factor proteins
(TGA3, WRKY70), Resistance to P. syringae 2 (RPS2), two
Enhanced Diseases Susceptibility proteins (EDS1, PAD4)
and Mitogen-activated protein kinase kinase 4 (MKK4).
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Fig. 3 Functional similarity between NPR1 and other associated proteins. A dendrogram showing the relatedness of 26 reviewed proteins in
Arabidopsis thaliana proteome. This was obtained by applying hierarchical agglomerative clustering algorithm on the set of annotated proteins
related to NPR1 using a distance retrieved from functional similarity scores and represented on the horizontal axis

Those in the sub-cluster 1B comprised of WRKY40,
AT1G74360, XBAT34, the putative calmodulin-like pro-
tein 47 (CML47), AT2G23680, the Yellow Leaf-Specific
protein 9 (YLS9), Constitutively Activated Cell Death 1
(CAD1), PUB23, CML40, and ATL2. Proteins in clus-
ter 2 comprised of Mitogen-activated Protein Kinase 11
(MPK11), Phosphoinositide 4-Kinase Gamma 4 (PI4KG4),
PUB2, two basic Leu zipper (BZIP) transcription factors
(BZIP60 and bZIP28),Molybdopterin biosynthesis protein
(CNX1),Calcium-dependent Protein Kinase 9 (CPK9), and
Oxysterol-binding Protein-Related Protein 1C (ORP1C2).
An in-depth literature review demonstrated that these

functionally related proteins could contribute in the same
pathway as NPR1 or independently to either positively
or negatively drive defence response to pathogens and
elicitors. For instance, calcium signalling is known to be
associated to the innate response, HR and SAR, acting
upstream of the pathogen-induced SA-signalling path-
way to favor the activation of NPR1 and associated
downstream activities, such as TGA binding, to inhibit
pathogen growth [63–65]. The calcium signalling trig-
gers the activation of a set of Mitogen protein kinase
(MPK) contributing to the plant innate immunity related
cell death [66] and the MAMP defence [67], which is
also an innate-form of defence response, and to other
processes that stimulate ROS production during plant
pathogen attack [68]. In this study, two MPK proteins,
namelyMPK11 (Cluster 2) andMKK4 (Cluster 1A) which

is an important mediator of plant response to osmotic
stress [69], were found to be closely related to NPR1.
Proteins belonging to the EF hand super family have
been shown to harbour motifs that are important for cal-
cium sensing [70, 71]. Typical examples of proteins within
this family are the calmodulin (CaM)-like proteins (CML)
and Calcium protein kinase (CPK) [70, 72, 73] whose
members: CML47, CML40, CPK9 identified in this study
belonged to Clusters 1A and 2. Moreover, two other pro-
teins identified, NDR1 (YLS9) in Cluster 1B and EDS1 in
Cluster 1A, are known to mediate the Effector Triggered
Immunity through specific R genes [74, 75]. As illustra-
tion, EDS1 was found to be a regulatory gene controlling
down-streamdefencegeneexpression inArabidopsis [76], tar-
geting R genes with TIR-NB-LRR motifs required for the
recognition of Pst-DC3000 avrRps4 proteins [75, 77, 78].
R genes, such as RPS2 (Cluster 1A), which recognizes
Pst-DC3000 avrRpt2, are targeted by NDR1 and har-
bour LZ-NBS-LRR motifs [74, 75, 77, 78]. YLS9, an
NDR1/HIN1-like 10 (NHL-10) identified in our study has
been implicated in HR and is inducible by several CPKs
[79], thereby suggesting its action downstream of the
calcium signalling pathway.
As pointed out previously, proteins functionally related

to NPR1 may contribute to the plant defence mecha-
nism degradation. For example, CAD1 (Cluster 1A) has
been implicated in the repression of the programmed cell
death (PCD) pathway mediated by SA and this negative
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function of CAD1 is inhibited under stress conditions to
favor the PCD pathway [80]. However, even under undis-
turbed conditions, plant proteins undergo proteolysis as
a strategy to effectively turnover its protein reservoir and
to ensure for efficient functioning of biological processes
through an ubiquitination process [81, 82]. The NPR1
protein, for instance, which can switch between two con-
formational states (oligomeric andmonomeric) or two cell
compartments (cytosol and nucleus), is a typical example
of a protein whose nuclei-localized monomers undergo
proteolysis through a CUL-3-based E3 ligase ubiquitina-
tion process to ensure for the effective expression of its
target genes [59, 83, 84]. Our analysis identified five puta-
tive ubiquitin-like proteins - XBA34, PUB23, PUB2, ATL2,
PI4KG4 [85–87]. Although their direct role inNPR1 ubiq-
uitination has not been reported, their transcript levels,
especially those of ATL2 and PI4KG4, have been shown
to increase following exposure of plants to chitinases
[88] and treatment with SA [89], respectively. The role
of these proteins during drought stress has equally been
demonstrated [85]; and proteins, such as XBAT34 have
been shown to be induced by 6-BA (6-benzylaminopurine)
and SA [90]. Additionally, XBAT34 contains two Ankyrin
repeats, which are also core motifs found in NPR1 pro-
tein and are important in mediating interactions with
other proteins [58, 90–92]. The importance of the ankyrin
repeats within the NPR1 sequence is elegantly demon-
strated in the inability of npr1 mutants to activate PR
genes following pathogen attack due to a distortion in
this region [58, 93]. A distorted ankyrin repeat within the
NPR1 protein hampers its ability to bind to transcription
factors belonging to the basic leucine zipper (BZIP) family
such as TGA3 (Cluster 1A) for a positive defence outcome
[92, 94–97].
Two other BZIPs (BZIP60 and BZIP28) were identified

in this study and have been implicated inUnfolded Protein
Response (UPR) during stress response [98–100]. The abil-
ity of the BZIP domain to translocate to the nucleus
during stress could be a key contribution to its role during
stress responses. In fact, although we did not find a direct
relation between BZIP28 and BZIP60 to NPR1 in liter-
ature, existing evidence shows that the inositol-requiring
protein-1a (IRE1a)/BZIP60 branch of the UPR pathway
have a role in PR protein secretion following treatment
with SA [99]. In addition to the BZIP transcription factor
(TGA3) identified here, proteins belonging to the WRKY
family of transcriptional factors [101] – WRKY70 (Fig. 3;
Cluster 1A) and WRKY40 (Fig. 3; Cluster 2) were equally
identified. Unlike TGA3, no direct interaction between
NPR1 and WRKY40 was found during our literature
search. However, similar toNPR1monomers, evidence for
the nuclei localization of WRKY40 does exist [102]. Its
role in stress response has also been demonstrated and,
its ability to interact with other WRKY proteins has been

shown [102, 103]. For instance, co-expression ofWRKY18
and WRKY40 led to increased susceptible of plants to
P. syringae and Botrytis cinerea correlating with reduced
PR gene expression [102]. WRKY70 on the other hand is
known to positively mediate pathogen defence response
in an SA-dependent fashion which is independent of the
NPR1 pathway [104]. PAD4, which is another protein
identified (Cluster 1A), can act dependently (e.g., for SA-
dependent defence response) or independently (e.g., for
basal immunity [105]) of NPR1 for PR-1 gene expression
[106, 107]. NPR1 also has the ability to interact with non-
transcription factors, such as NIMIN-1, identified in this
study (Cluster 1A) and experimentally verified to bind
to NPR1 [108, 109] to modulate PR-1 gene expressions
during SAR.

Retrieving enriched processes and pathwaysmediating the
Arabidopsis thaliana plant defence
A total of 114 biological processes were found to be
involved in the Arabidopsis thaliana protection and
defence mechanisms, among which 74 were found to
be non-redundant considering the feature of the GO
structure [47]. 21 processes were identified to be sta-
tistically significant in plant defence mechanisms and
Table 2 provides a summary of the type of response
and biological activities in which these enriched pro-
cesses are involved. These processes are related to both
biotic and abiotic triggered responses, leading to the
initiation of major pathways involved in the innate
response (GO:0010200), HR (GO:0009626) and SAR
(GO:0009862) in plants [2–7]. In general, these pro-
cesses are triggered on the basis of the (pathogen) attacks
classified using the mode of plant-pathogen interac-
tions. For example, a pathogen may survive by using
the living plant cells (for biotrophic pathogens) or by
killing plant cells and feeding on these dead cells (for
necrotrophic pathogens) [110]. Interestingly, the enrich-
ment pathway analysis reveals two enriched KEGG path-
ways participating to NPR1-associated plant defence
response, namely Plant-pathogen interaction (http://
www.genome.jp/kegg-bin/show_pathway?ath04626) and
Plant hormone signal transduction (http://www.genome.
jp/kegg-bin/show_pathway?ath04075) with p-values of
0.013085 and 0.02070, respectively. These pathways show
evidence of regulating a wide variety of enriched biologi-
cal processes, including programmed cell death (PCD) and
defence, HR, ABA and SA dependent responses.
NPR1-associated plant defence proteins share six pro-

cesses, namely MAPK cascade (GO:0000165), SAR, SA
mediated signalling pathway (GO:0009862), Regulation of
plant-type hyper-sensitive response (GO:0010363), Protein
targeting to membrane(GO:0006612), Defence response to
fungus (GO:0050832) and Negative regulation of defence
response (GO:0031348). The number of processes in

http://www.genome.jp/kegg-bin/show_pathway?ath04626
http://www.genome.jp/kegg-bin/show_pathway?ath04626
http://www.genome.jp/kegg-bin/show_pathway?ath04075
http://www.genome.jp/kegg-bin/show_pathway?ath04075
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which each protein is contributing is shown in Fig. 4b
and a, highlighting different protein-process associations.
Interestingly,NPR1 is involved in all 21 enriched processes
identified, suggesting that NPR1 is a potential regulator
of the plant ubiquitin proteolytic system during infection,
controlling associated protein expression levels and func-
tioning at the cross-roads of several signalling pathways,
as well as modulating antagonistic cross-talk between dif-
ferent signalling pathways [83, 97] critical to the plant
defence-mediated response. This suggests that the success
of the plant defence mechanism is a result of these differ-
ent concerted and controlled signal transduction events
that sequentially occur in the plant system, leading to
an increased resistance to diverse attacks. As a conse-
quence, the failure of these processes to function properly
may yield increased susceptibility to the pathogen, which
possibly negotiates its entry into the cell by activating
processes to thwart plant defence mechanisms. Thus, we
built a potential enriched process-based regulatory net-
work using the following binary relation rule: Given two
processes s and t, the process t is triggered after the process
s, which is indicated in the regulatory network by an arrow
from s to t, if At ⊂ As and As ⊇ P . Under the assump-
tion that a process is triggered after another as a result of
specific degradation of a single or a subset of proteins, and
where Ax is the set of proteins participating to the process
x andP is the set of proteins in at least one of the enriched
pathways identified.
Figures 4c and d show a potential enriched process-

based regulatory network constructed and process
frequencies (number of proteins annotated by each
process), respectively. This regulatory network reveals,
for example, that there are only five possible pro-
cesses that may be triggered following the occurrence of
the negative regulation of PCD (GO:0043069), namely:
Response to xenobiotic stimulus (GO:0009410),Membrane
fusion (GO:0061025), Plant-type hyper-sensitive response
(HR) (GO:0009626), Abscisic acid (ABA)-activated sig-
nalling pathway (GO:0009738) and Response to cold
(GO:0009409) processes. Most of these processes are
expected to occur after the occurrence of the nega-
tive regulation of PCD, which could be triggered after
the occurrence of processes, such as Negative regulation
of defence response (GO:0031348). This is consistent as
the system may trigger mechanisms susceptible to pro-
mote or normalize the plant defence response by coor-
dinating different actions in order to offer appropriate
response to and to contain the infection. For example,
HR and ABA-activated signalling pathway may relaunch
new PCD by killing the infected cells at the point of inva-
sion [2, 6, 7, 111]. This regulatory network also reveals
that the occurrence of the negative regulation of PCD
can result from the dysfunction of critical processes,
such asMAPK cascade (GO:0000165), Protein targeting to

membrane (GO:0006612) and regulation to hydrogen per-
oxide (GO:0010310), which are vital for the regulation of
a wide variety cellular activities, including transportation
and communication of chemical materials, proliferation,
differentiation, apoptosis and stress response [112].

Conclusions
This study proposes a novel bioinformatics proto-
col that can be readily applied to plant phenotype
based gene knock-out or -down experimental dataset
to assess the contribution of the gene under con-
sideration to plant-defence mechanisms and to build
a potential enriched biological process-based regula-
tory network using publicly available biological data.
This protocol enables the extraction of the specific (dif-
ferentially infected) samples of the experimental dataset
to eliminate potential artefacts, such as uncertainty of
the data set and potential noise inherent in the experi-
ment, which couldmask downstream analysis.We applied
the protocol to the phenotype dataset expressed in
terms of leaf spore counts of 60 npr1 gene mutant
and wild-type Arabidopsis thaliana plants following Pst-
DC3000 infection. Results obtained still showed that
NPR1 plays an important role during plant pathogen
response by suppressing the growth of the pathogen.
More specifically, we found that differences in the plant
susceptibility to the Pst-DC3000 infection depend on
whether the NPR1 protein is functionally active or not
with about 99% of variability in Pseudomonas spore
growth between npr1 mutant and Wt plant samples.
The increased disease susceptibility phenotypes observed
in npr1 mutant plants following to Pst-DC3000 infection
may be due to the fact that the SAR signalling pathway,
which is essential for plant defence response, is blocked
in these plants as a result of knocking out or down
the protein NPR1, leading to the attenuation of PR gene
expressions. This SAR signal requires a functionally active
NPR1, which is a key regulatory protein of SAR, acting as
a controller and modulator of PR gene expressions.
With the increasing number of publicly available

biological data which already demonstrates the com-
plexity of the plant defence network, new computational
approaches are essential to provide an easy-to-analyse
picture which can lead to the identification of gaps and
opportunities for the development of future ‘wet or
dry lab’ experiments. The proposed protocol uses the
GO-universal metric based Gene Ontology semantic
similarity model to identify putative proteins collabo-
rating with NPR1 in regulating plant defence mediated
response and retrieve enriched biological processes
involved. We identified 26 NPR1-associated plant defence
proteins and 21 highly specific processes, which related
to the major forms of defence processes reported
(innate response, HR, SAR, etc.), and construct the
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dc

ba

Fig. 4 Summary results of the biological mechanism of the NPR1-based defence response. a plotted using the PINV tool [113] is a protein-process
map showing NPR1-associated plant defence proteins and enriched processes in which they are involved, and the number of enriched processes in
which each protein is involved is shown in (b). Note that processes in which all proteins are involved are not displayed in (a) to avoid that high
number of links limits visibility. c plotted using the Cytoscape tool [114] displays NPR1-based process regulatory network, showing possible process
occurrence sequences and (d) shows the number of proteins involved in or frequency of each enriched process. The suffix +, ∗, ×, or − were added
to enriched process according to the fact all NPR1-associated plant defence proteins are involved in the process (+), or set of proteins involved in
the process contains all NPR1-associated plant defence proteins are implicated in the Plant-pathogen interaction (×) or Plant hormone signal
transduction (−) or both (∗) pathways
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potential process-based regulatory network, predicting
occurrence sequences of different processes. This NPR1-
based enriched process regulatory network (Fig. 4c)
can effectively reveal eventual sequences of biological
processes occurring during the plant defence response.
As illustration, it suggests that the suppression of the
SAR signalling pathway (GO:0009862) may thwart
processes that enable the detection of the pathogen
(GO:0016045), control plant stress, promote PCD
and attenuate PR gene expressions (e.g., GO:0010310,
GO:0035304) to favor processes leading to the neg-
ative regulation of PCD (GO:0043069) in order to
trigger processes that possibly ensure pathogen life
continuity within plant cells. Different results obtained
demonstrate that this novel protocol is effective for
assessing plant-defence genes and may help better under-
stand the plant defence mechanisms, an important aspect
in the biology of plants.

Additional files

Additional file 1: Experimental data from Arabidopsis wild type and npr1
mutant plants. Leaf bacteria spore count (phenotype) dataset of 31
Arabidopsis wild type (control) and 29 npr1mutant (case) plants 48 h post
Pst-DC3000 infection. (XLS 10 kb)

Additional file 2: Checking normality assumption using Q-Q plots.
Checking normality assumption for initial and transformed differentially
infected wild and npr1mutant plant spore count datasets using Q-Q plots.
(PDF 536 kb)
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