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Abstract

Background: Dissecting the genetic basis and regulatory mechanisms for the biosynthesis and accumulation of
nutrients in maize could lead to the improved nutritional quality of this crop. Gene expression is regulated at the
genomic, transcriptional, and post-transcriptional levels, all of which can produce diversity among traits. However,
the expression of most genes connected with a particular trait usually does not have a direct association with the
variation of that trait. In addition, expression profiles of genes involved in a single pathway may vary as the intrinsic
cellular state changes. To work around these issues, we utilized a statistical method, liquid association (LA) to
investigate the complex pattern of gene regulation in maize kernels.

Results: We applied LA to the expression profiles of 28,769 genes to dissect dynamic trait-trait correlation patterns
in maize kernels. Among the 1000 LA pairs (LAPs) with the largest LA scores, 686 LAPs were identified conditional
correlation. We also identified 830 and 215 LA-scouting leaders based on the positive and negative LA scores,
which were significantly enriched for some biological processes and molecular functions. Our analysis of the
dynamic co-expression patterns in the carotene biosynthetic pathway clearly indicated the important role of IcyF,
CYP97A, ZEP1, and VDE in this pathway, which may change the direction of carotene biosynthesis by controlling
the influx and efflux of the substrate. The dynamic trait-trait correlation patterns between gene expression and oil
concentration in the fatty acid metabolic pathway and its complex regulatory network were also assessed. 23 of 26
oil-associated genes were correlated with oil concentration conditioning on 580 LA-scoutinggenes, and 5% of these
LA-scouting genes were annotated as enzymes in the oil metabolic pathway.

Conclusions: By focusing on the carotenoid and oil biosynthetic pathways in maize, we showed that a genome-
wide LA analysis provides a novel and effective way to detect transcriptional regulatory relationships. This method
will help us understand the biological role of maize kernel genes and will benefit maize breeding programs.
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Background

Maize is one of the most widely grown crops in the
world and also is a very important model organism [1].
Carotenes and fatty acids are two important nutrients
in maize kernels. Understanding the genetic architec-
ture and regulation mechanism of their biosynthesis and
accumulation will be of great value for improving the
nutritional quality of maize. Based on linkage analysis,
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map-based cloning, and candidate gene association
mapping methods, there are more than 100 loci or can-
didate genes involved in maize kernel oil and carotene
accumulation [2-6]. With the completion of a high-
quality maize genome sequence and the availability of
high-throughput phenotyping technologies, genome-
wide association (GWA) studies have quickly become a
powerful, general tool for identifying alleles and loci
responsible for natural variation in maize [7]. Recently,
an association mapping panel of 500 maize inbred lines
and 560,000 polymorphisms with minor allele fre-
quency (MAF) > 0.05 was used to identify 74 loci sig-
nificantly associated with kernel oil concentration and
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fatty acid composition [8]. Moreover, the transcription
profiles of maize kernel development have been gen-
erated for two maize inbred lines, resulting in the
identification of differentially expressed genes and the
functional characterization of genes involved in kernel
developmental pathways [9, 10]. Fu et al. character-
ized a large-scale gene regulatory network in maize
kernels using RNA-sequencing (RNA-seq) in 368 in-
bred lines, which identified expression quantitative
trait loci (e-QTLs) as well as the relationship between
these e-QTLs and their targets [11]. These studies
have led to a deeper understanding of carotene and
oil biosynthesis pathways, including the genes in-
volved and their regulation.

Phenotypic variation is regulated at the genomic,
transcriptional, and post-transcriptional levels [12]. As
an example of genomic-level regulation, a phenylalan-
ine insertion in maize acyl-CoA diacylglycerol acyl
transferase (DGAT), which catalyzes the final step in
the Kennedy pathway for triacylglycerol (TAG) biosyn-
thesis, alters enzyme activities and is responsible for
increased oil and oleic-acid contents [13]. crtRBI,
which encodes B-carotene hydroxylase, is an example
of the importance of transcript abundance during the
control of carotenoid profiles. crtRB1 alleles associated
with reduced transcript expression correlate with high
[B-carotene concentrations [4]. Transgenic results con-
firmed that LEAFY COTYLEDONI (ZmLECI) and
WRINKLEDI (ZmWRI11) in maize, both of which en-
code transcription factors, regulate oil concentration
variation at the transcriptional level [14]. Thus, differ-
ences in gene expression may account for a substantial
proportion of the variation in traits, especially for
quantitative traits. However, the expression level of
trait-associated genes does not correlate with the
phenotypic variation of target traits at P value <0.01
[8]. In addition, highly co-expressed genes may be
involved in the same biological process or metabolic
pathway [15, 16], but the expression profiles of most
genes in the same pathway are often uncorrelated [17].
Recent studies have demonstrated that the co-
regulation pattern of two genes is affected by the ex-
pression levels of third genes or genetic variations in
yeast and humans [18-23].

Liquid association (LA) theory offers a scoring system
to guide a genome-wide search for the critical cellular
players that may affect the co-expression pattern of any
gene pair (X, Y) [20, 21]. Thus, LA is an extension of
the traditional correlation measure, which is effectively
used in gene expression studies for identifying the me-
diator genes in pathways or metabolic pathways in yeast
[21, 22]. LA is also used to find candidate genes that
intervene, confound, and weaken the drug-gene correl-
ation [18, 19]. In general, the LA method is a recently
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developed tool for understanding the biological roles of
genes that had not previously been applied in plants.

In this study, two datasets were used. One is a gene
expression dataset of poly(A) transcripts collected from
kernels at 15 days after pollination from all 368 lines
sequenced using 90-bp paired-end Illumina sequencing
with libraries of 200-bp inserts [11]. The other dataset
contains the oil concentration collected from the ker-
nels of the 368 maize inbred lines [8]. Based on these
data, we carried out a full genome-wide study on more
than 1.10 x 10" gene triplets to investigate trait-trait
dynamic correlations conditioning on LA-scouting
genes. Our objectives were to (1) capture the dynamic
co-expression pattern between genes while controlling
for the constantly varying expression of genes, (2) focus
on a new attempt to study the trait-trait correlation
patterns between gene pairs in the metabolic pathway
or between a gene and a quantitative trait by LA, (3)
use the LA method to study the direction of gene regu-
lation in pathways and (4) find more candidate genes in
a biosynthesis pathway or metabolic pathway.

Results

Genome-wide results of the co-expression dynamic pattern
of gene pairs

From 28,769 annotated genes in 368 maize lines, we
selected 24,907 genes with a missing rate of <20% for
this study [11]. We conducted a genome-wide search for
the cellular players that may affect the co-expression
pattern of any two gene pairs using LA theory. Then we
computed two genome-wide distributions of LA linkage
scores, one for positive scores and the other for negative
scores, based on a total of 1.10 x 10'? triplets. As the
LA linkage analysis consisted of a large number of gene
pairs, the majority of which are probably biologically
unrelated, the LA linkage scores were highly susceptible
to random chance. We have performed a series of per-
mutations from one million to one hundred million.
And we found that the LA thresholds are similar regard-
less of the number of permutation times at 1.00 x 107
quantile (Additional file 1: Table S1). Using one million
times permutation, we obtained one reference distribution
for the positive LA linkage scores and the other for the
negative LA linkage scores (see Methods). According to
the quantile-to-quantile plot of genome-wide LA scores
versus randomly generated LA scores, we found a global
linear pattern with an upward shift for the genome-wide
positive LA linkage scores and a downward shift for the
negative scores (Additional file 2: Figure S1). Using the
1.00 x 107° quantile from the reference distribution as the
cutoff, we obtained 1.60 x 10° and 1.10 x 10° gene triplets
with positive and negative LA scores, respectively (Fig. 1
and Additional file 3: Table S2). And the modified li-
quid association (MLA) method was used to define the
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Fig. 1 The genome-wide results of LA in maize. The LA-scouting gene frequency for positive and negative LA scores. The cutoff for P value of LA
is 1.00 x 107", Broken dashed lines indicate the LA-scouting gene frequency (5.00 X 10°)
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LA-scouting gene in each triplet. The false discovery
rate (FDR) for positive and negative LA findings were
0.72% and 0.98%, respectively (Additional file 4: Figure
S2 and Additional file 5: Table S3).

We checked the LAPs (which consisted of a gene
pair, X and Y) with exceptionally positive or negative
LA scores and focused on a small portion of the 1000
high-scoring LAPs. Among these 1000 LAPs, 686 LAPs
were correlated only conditioning on the gene expres-
sion levels of LA-scouting genes (r < 0.17 and
LA > 0.60). The 50 LAPs with the highest LA scores
from the original group of 686 are shown in Table 1
(At the end of the paper). We then annotated the top
50 triplets with the highest LA scores (Additional file 6:
Table S4) and found that some of them are functionally
associated with or involved in the same metabolic path-
ways, which were highlighted in Table S3. For example,
the triplet GRMZM2G033626, GRMZM2G388576, and
GRMZM2G446426 encode Mov34/MPN/PAD-1 family
proteins, which function as the ubiquitin isopeptidase/
deubiquitinase in the ubiquitin-based signaling and
protein turnover pathways in eukaryotes [24]. Another
gene pair, GRMZM2G064133 and GRMZM2G056393,
which encode translation initiation factor 3Gl and
translation elongation factor EFG/EF2 protein, respect-
ively, which are both involved in protein translation
process.

LA-scouting leaders represent the LA-scouting genes
with the highest LA-scouting ability. Using a stringent

cutoff of at least 500 x 10° linkages per LA-scouting
gene, we identified 830 LA-scouting leaders based on
positive LA scores and 215 LA-scouting leaders based
on negative LA scores (Fig. 1). The Gene Ontology
(GO) analysis of the top 200 LA-scouting leaders with
negative LA scores indicated that they are significantly
enriched in some biological processes, especially in
positive regulation of cellular process and regulation of
phosphorus metabolic process (Fig. 2 and Additional file 7:
Figure S3a), and the same GO analysis were also remark-
ably enriched in molecular function of binding activities
(Fig. 2 and Additional file 7: Figure S3b). In addition, the
top 200 LA-scouting leaders with positive LA scores were
involved in some molecular functions, such as nucleoside-
triphosphatase, pyrophosphatase and hydrolaseactivity
(Fig. 2 and Additional file 8: Figure S4a), and the same
GO analysis were also remarkably enriched in some bio-
logical process, especially in post-embryonic development
process (Fig. 2 and Additional file 8: Figure S4b). These re-
sults showed that phosphorus activities are involved in
both positive and negative LA scores.

Dynamic co-expression pattern of gene pairs in the
carotene biosynthetic pathway

Dynamic co-expression analysis revealed that a gene pair
for the B-carotene branch of the carotene biosynthesis
pathway, ZEP1 and VDE, is significantly linked to lcyE,
which encodes lycopene e-cyclase. When expression of
lcyE was high, we found a strong positive correlation
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Table 1 The top 50 triplets with the highest LA scores in a genome-wide LA analysis
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X y z LA (Y.2IX X2 x|z
AF546188.1_FG003 AF546188.1_FG002 AF546188.1_FGOOT -072 -003 -042 -043
GRMZM2G172980 GRMZM2G134020 GRMZM2G122520 -071 -025 ~034 -047
GRMZM2G172980 GRMZM2G134020 GRMZM2G161750 -070 -0.19 -030 -040
GRIMZM2G172980 GRMZM2G134020 GRMZM2G150524 -069 -023 -029 -043
GRMZM2G172980 GRMZM2G134020 GRMZM2G156578 -069 -023 -028 -038
GRMZM2G172980 GRMZM2G134020 GRMZMS5G813474 -069 -024 -029 -042
GRIMZM2G172980 GRMZM2G134020 GRMZM2G093035 -069 -028 -032 -042
GRMZM2G172980 GRMZM2G134020 GRMZM2G483598 -068 -027 -030 -040
GRMZM2G172980 GRMZM2G134020 GRMZM5G837022 -068 -028 -029 ~045
GRIMZM2G172980 GRMZM2G134020 GRMZM5G822819 -068 -020 -025 ~045
GRMZM2G172980 GRMZM2G134020 GRMZM2G003461 -067 -024 -028 -037
GRMZM2G033626 GRMZM2G446426 GRMZM2G388576 067 020 041 044
GRIMZM2G009598 GRMZM2G056099 GRMZM2G040079 066 030 035 036
GRMZM2G181362 GRMZM2G046932 GRMZM2G008226 ~065 -025 -029 -033
GRMZM2G064133 GRMZM2G082271 GRMZM2G008226 065 022 031 035
GRIMZM2G096010 GRMZMS5G891343 GRMZM2G396773 065 015 033 042
GRIMZM2G008607 GRMZM2G146283 GRMZM2G090869 ~065 -030 -033 ~034
GRMZM2G009598 GRMZM2G156818 GRMZM2G101635 064 014 029 031
GRMZM2G025703 GRMZM2G180612 GRMZM2G146283 064 031 032 033
GRMZM2G010797 GRMZM2G035118 GRMZM2G060611 064 030 032 034
GRMZM2G009598 GRMZM2G056099 GRMZM2G321753 064 028 037 038
GRMZM2G126821 GRMZM2G082271 GRMZM2G008226 064 022 033 036
GRMZM2G009598 GRMZM2G101635 GRMZM2G321753 0.64 017 033 036
GRMZM5G821988 GRMZM2G179024 GRMZM2G072894 ~064 -0.19 -030 -035
GRMZM2G119483 GRMZM2G035118 GRMZM2G046932 064 029 034 034
GRIMZM2G172980 GRMZM2G134020 GRMZM5G884722 ~064 -025 -033 -043
GRMZM2G064133 GRMZM2G056393 GRMZM2G008226 064 024 033 035
GRMZM2G010797 GRMZMS5GS76621 GRMZM2G060611 064 025 033 035
GRMZM2G010037 AC1964753_FGOO5 GRMZM2G032852 064 019 033 035
GRMZM2G375222 GRMZM2G179024 GRMZM2G072894 ~064 -0.17 -033 -035
GRIMZM2G009598 GRMZM2G101635 GRMZM2G467169 063 017 029 034
GRMZM2G009598 GRMZM2G035395 GRMZM2G056099 063 023 034 034
GRMZM2G009598 GRMZM2G056099 GRMZM2G447745 063 026 032 033
GRMZM2G009598 GRMZM2G056099 GRMZM2G127632 063 030 033 036
GRIMZM2G009598 GRMZM2G101635 GRMZM2G168096 063 019 029 038
GRMZM2G009598 GRMZM2G056099 GRMZM2G168096 063 028 033 036
GRMZM2G025703 GRMZM2G040207 GRMZM2G401050 063 021 033 037
GRMZM2G009598 GRMZM2G056099 GRMZM2G104047 063 027 032 035
GRMZM2G126821 GRMZM2G094123 GRMZM2G008226 063 025 033 036
GRMZM2G174479 GRMZM2G147671 GRMZM2G177599 -063 -035 -036 -037
GRMZM2G043417 GRMZM2G075683 GRMZM2G146283 063 031 031 032
GRMZM2G009598 GRMZM2G101635 GRMZM2G331368 063 016 029 034
GRMZM2G009598 GRMZM2G156818 GRMZM2G040247 063 0.12 032 035
GRMZM2G111022 GRMZM2G046932 GRMZM2G008226 063 024 028 034
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Table 1 The top 50 triplets with the highest LA scores in a genome-wide LA analysis (Continued)
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X y z LA (Y.2IX X2 x|z
GRMZM2G010797 GRMZM2G064145 GRMZM2G401050 063 018 032 034
GRMZM2G110402 GRMZM2G040207 GRMZM2G119703 063 025 032 034
GRMZM2G009598 GRMZM2G101635 GRMZM2G123660 063 017 028 032
GRIMZM2G009598 GRMZM2G138425 GRMZM2G091151 063 030 032 033
GRMZM2G153792 GRMZM2G179024 GRMZM2G072894 -063 -020 -033 -035
GRMZM2G009598 GRMZM2G101635 GRMZM2G097068 063 019 029 033

between ZEPI and VDE expression. In contrast, when
expression of [cyE was low, the correlation between
ZEP1 and VDE expression dropped nearly to zero
(Fig. 3a and Table 2). The regulatory role of lcyE on
[B-carotene branch biosynthesis is consistent with a
previous study [25].

Another LAP, lcyE and CYP97A, was significantly
linked to crtRB1, which encodes [B-carotene hydroxy-
lase. When expression of crtRB1 was high, the correl-
ation between IlcyE and CYP97A dropped to zero;
however, with low crtRBI expression, the correlation
between [cyE and CYP97A was significantly positive
(Fig. 3b and Table 2). Similarly, the dynamic co-
expression patterns for two additional LAPs (ZEPI and
VDE, CYP97A and VDE) were significantly linked to
lcyB, which encodes lycopene B-cyclase, the enzyme re-
sponsible for cyclizing lycopene to -carotene (Fig. 3c-d
and Table 2) [26]. Higher expression of lcyB was associ-
ated with a stronger positive correlation between ZEPI
and VDE, whereas low expression of lcyB corresponded
with the disappearance of the correlation between
ZEP] and VDE. Similar results were found for the LA

analysis of CYP97A and VDE, which suggests that IcyB has
a substantial role in mediating violaxanthin biosynthesis.

There are five genes in the violaxanthin biosynthesis
pathway: lcyB, CYP97A, ZEPI, crtRB1 and VDE. With
dynamic co-expression analysis, we also found similar co-
expression patterns between IlcyB and CYP97A and
between lcyB and ZEPI given changes in the expression of
VDE (Fig. 3e-f and Table 2). Conditioning on the high
VDE expression, we saw clear positive co-expression
patterns between lcyB and CYP97A, and the co-expres-
sion pattern between [cyB and ZEPI was also posi-
tively correlated. Our results have provided new
insight into the regulation of IlcyB, CYP97A, ZEPI
and VDE, which may change the direction of carotene
biosynthesis by controlling the influx and efflux of
the substrate.

Dynamic trait-trait correlation patterns in the oil
biosynthetic pathway

A previous GWA study identified 26 loci significantly
associated with oil concentration, and candidate gene as-
sociation analyses of some of those genes found indels

Percent of genes

u Background/Reference
¥ [nput list

Negative

and positive LA scores

Fig. 2 GO analysis of the top 200 LA-scouting leaders. Enrichment analysis of GO annotation for the top 200 LA-scouting leaders with negative

Positive
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Fig. 3 Dynamic co-expression analysis of gene pairs in the carotene biosynthetic pathway. a-f Co-expression patterns of LAPs are mediated by
expression of the third genes. Each red dot indicates a maize line in which the expression of the LA-scouting gene (shown above each scatter
plot) is high, a dark blue dot indicates a maize line in which LA-scouting gene expression is low, and a light blue dot indicates a maize line in
which LA-scouting gene expression is moderate. The corresponding correlations are shown with matching colors. a Co-expression pattern of
ZEPT and VDE is mediated by expression of IcyE. b Co-expression pattern of lcyE and CYP97A is mediated by expression of crtRB1. ¢ Co-expression
pattern of ZEPT and VDE is mediated by expression of lcyB. d Co-expression pattern of CYP97A and VDE is mediated by expression of lcyB. @ Co-expression
pattern of IcyB and CYP97A is mediated by expression of VDE. f Co-expression pattern of lcyB and ZEPT is mediated by expression of VDE

(insertions and deletions) in their 3’untranslated regions
(UTRs) or non-coding regions, suggesting that regula-

Table 2 Dynamic co-expression patterns of carotene biosynthesis ~ tion at the level of transcription leads to natural vari-

genes ation in oil phenotypes [8]. However, the expression of
X > 7 Comr_high® Corr_low® LA P value these candidate genes was not significantly correlated
7P VDE of 034 005 021 900x10° With the oil phenotypes [8]. We thus applied the LA
o CYPOTA cRBT 006 033 020 430 x 104 methodology to these oil-associated genes, by using the

expression of these 26 individual genes and oil concen-
ZEPT - VDE loB 038 004 023 200107 yration as the pair (X, Y) and any additional gene as Z.
CYP97A  VDE leyB 043 0.14 024 500x107  We computed LA scores as described above. We found
eyB CYP97A VDE 017 -0.08 024 500x10~  that 22 oil-related genes were co-regulated with a P
leyB ZEP] VDE 043 0.05 023  400x 10> Vvalue = 1.00 x 10’4conditioning on 482 LA-scouting

®The correlation between X and Y under high Z expression g.ene.:s and 17 oil-related g?nes were C.ontra—‘regulatehd condi-
PThe correlation between X and Y under low Z expression tioning on 127 LA-scouting genes, mcludlng 9 oil-related
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genes that were both co- and contra-regulated. In total,
23 oil-related genes were correlated with oil concentra-
tion mediated by 580 unique LA-scouting genes. We
annotated these 580 unique LA-scouting genes and
found that about 29 genes were implicated in lipid
metabolism in Arabidopsis thaliana or other species
(Additional file 9: Figure S5). The proteins encoded by
the remaining 551 genes were classified as signaling
molecules, stress responsers, transcription factors, and
enzymes involved in biological pathways including
oxidation-reduction reactions, and protein metabolism.
The functions of approximately one-third of the identified
genes are currently unknown (Additional file 9: Figure
S5). In the example of LACS (GRMZM2G079236), previ-
ous re-sequencing results identified two completed linked
indels (indel 146 and indel _472) in the 3'UTR that were
significantly associated with oil concentration [8]. How-
ever, the expression levels between LACS and normalized
oil concentration were uncorrelated (r = -0.04, P = 0.48,
n = 349; Fig. 4a). By carrying out a dynamic correlation
analysis of gene expression and oil concentration, we
found that the trait-trait correlation patterns between
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LACS and oil concentration change as the expression
levels of nine LA-scouting genes change (Fig. 4b). Among
these LA-scouting genes, GRMZM2G473411, which had
the highest LA score, encodes serine/threonine kinase,
which is involved in a number of fundamental cellular
processes such as ATP binding, oxidoreductase activity,
protein kinase activity [27]. A strong negative correlation
between the expression of LACS and oil concentration
was found when expression of GRMZM2G473411 was
low (Fig. 4c). However, when GRMZM2G473411 expres-
sion was high, there was a positive correlation between
LACS expression and oil concentration (Fig. 4c). These
results implied that GRMZM2G473411 has a role in me-
diating oil biosynthesis.

We subsequently determined the regulatory network
among 23 oil-related genes and LA-scouting genes
(Additional file 10: Figure S6). The results indicated
that GRMZM2G122767, which encodes a protein in-
volved in ATP binding, is linked to 89 LA-scouting
genes (Additional file 11: Table S5). For example,
GRMZM2G122767 and oil concentration were co-
regulated conditioning on GRMZM2G102878 with

a c GRMZM2G473411

S S

s s

c c

8 8

3 3

b

X z Corr_high Corr_low LA P value Z annotation Chr

LACS GRMZM2G100020 0.20 -0.30 0.21 9.00 x10° Unknown 1
LACS GRMZM5G848945 0.19 -0.22 0.20 1.00 x10*  Auxin signaling F-box 3 2
LACS GRMZM2G019876 0.18 -0.21  0.20 9.00 x10°® Thioredoxin 2
LACS GRMZM2G005583 0.17 -0.22  0.20 4.00 x10° Triglyceride lipases 4
LACS GRMZM2G473411 0.17 -0.24 0.22 1.00 x10° Serine/threonine kinase 4
LACS GRMZM5G877647 0.23 -0.28 0.20 1.00 x10* Unknown 4
LACS AC233960.1_FG002  0.15 -0.25 0.21 6.00 x10°  Alternative oxidase 1A 5
LACS GRMZM2G126957 0.34 -0.20 0.21 1.00 x10° Transcription factor 10
LACS GRMZM2G119802 0.22 -0.23 0.21 3.00 x10° Methyl-CPG-DNA binding 10

Fig. 4 Co-expression pattern of LACS and oil concentration is mediated by nine genes. a The correlation between LACS and oil concentration.
b Nine genes that mediate the co-expression pattern of LACS and oil concentration. ¢ The co-expression pattern of LACS and oil concentration
at different expression levels of GRMZM2G473411. Each red dot indicates a maize line in which GRMZM2G473411 expression is high, a dark blue
dot indicates a maize line in which GRMZM2G473411 expression is low, and a light blue dot indicates a maize line in which GRMZM2G473411
expression is moderate. The corresponding correlations are shown with matching colors
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LA = 0.25 (Additional file 12: Figure S7a). When the
expression level of GRMZM2G102878 was high, a
strong positive correlation was identified between the
expression of GRMZM2G122767 and oil concentration,
and this correlation disappeared when the expression
of GRMZM2G102878 was low. GRMZM2G102878,
which encodes fatty acyl-acyl carrier protein (ACP),
functions as a substrate in the fatty acid synthesis path-
way [28, 29]. A similar interpretation can be made
based on the LA for GRMZM2G122767 and oil con-
centration, with GRMZM2G046804 being the mediator
gene (Additional file 12: Figure S7b). When GRMZM
2G046804 expression was high, a strong positive
correlation was identified between the expression of
GRMZM2G122767 and the oil concentration, whereas the
correlation dropped nearly to zero when the expression of
GRMZM2G046804 was low. GRMZM2G046804 encodes
glyceraldehyde-3-phosphate  dehydrogenase (GAPDH),
which plays an important role in the glycolysis pathway
[30, 31]. These results indicated that upstream genes in
the metabolic pathways have a substantial role in mediat-
ing the oil biosynthesis pathway.

Discussion

It is well known that all biological processes are inter-
connected, and many proteins have important roles in
multiple cellular processes. Two proteins involved in a
common process under certain conditions may func-
tion in independent processes under other conditions,
which implies that both the strength and pattern of as-
sociation between the expression profiles of two genes
may vary as the intrinsic cellular-state changes [32].
These results in subtle co-expression patterns of two
genes that are hard to recognize by standard similarity
analyses based on correlation. In the literature, different
measures such as structural equation models, Bayesian
networks and other probabilistic graphical models are
widely used for study conditional correlation and causal
relationship [33-35]. However, many complex regula-
tory in the biological system can’t be captured by direct
guilt-by association using above methods because of
multi-way interaction [36]. For example, two gene ex-
pression levels are overall non-correlated but they ex-
hibited high correlation when a third gene is high
expressed and a much lower correlation when expres-
sion of the third gene is low. In this case, the third gene
may serve as an indicator of certain cellular state or
regulator that controls the presence and absence of co-
regulation between two gene pairs [36]. To identify the
conditional association in the gene triplet, Li (2002)
proposed a liquid association to explore the dynamic-
pattern as opposed to the static-pattern of gene expres-
sion in cell, and previous studies and our results has
proved that LA method is a useful tool for investigating
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the dynamic nature of co-expression on a genome-wide
scale [18, 20-22].

We conducted a genome-wide search and identified
the significant critical cellular players that may affect
the co-expression pattern of any two genes. We found
24,907 LA-scouting genes after filtering in this study.
The LA result, with the size of the resulting dataset is
1.10 x 10", represent a huge amount of data that can
be sorted and organized in a variety of ways to meet
different researchers’ needs. In this study, we focused
on a small portion of the high-scoring LAPs. In general,
a higher LA score is associated with a more obvious LA
pattern when the profile plots are visually examined. It
is in this sense that the leading LA-scouting genes are
better surrogates of the relevant intrinsic cellular-state
variables. But how we use these surrogates to infer the
cellular state depends on the available biological know-
ledge [21]. Ultimately, our results can contribute to the
understanding about the biological roles of maize genes,
of which the vast majority are still not well characterized.
Recently, a new method named LANDD (Liquid Associ-
ation for Network Dynamics Detection) probably im-
proved the interpretability of the results, which find
subnetworks with concentrated LA relationships. This
method used the collective behaviour of genes in a subnet-
works as indicators of cellular states rather than one gene
[37]. LAPs with high LA scores are likely to be involved in
biological pathways (Additional file 6: Table S4), which
implies that metabolism-related genes are more suscep-
tible to being regulated in this manner. Of course, with
rapid accumulation of transcript omic studies, combining
multiple studies to indentifying LA triplets is likely to pro-
duce more accurate and stable results [36].

The LA system is useful for predicting the functions
of little known genes. For example, GRMZM5G858880
is an LA-scouting gene with a high positive LA score.
Characterization of GRMZM5G858880 has been quite
limited, and its functional annotation is vaguely worded
as “encode WW domain-containing protein” by Mai-
zeGDB (MazieGenome Database). Among the list of LAPs
for GRMZM5G858880 (Additional file 13: Table S6), we
found several genes involved in ribosome protein synthe-
sis, translation initiation, and protein phosphorylation:
GRMZM2G092663 (ribosomal protein S5 family protein,
appearing three times), GRMZM2G099352 (ribosomal
protein S3 family protein), GRMZM2G168149 (ribosomal
protein S5 family protein), GRMZM2G092663 (ribosomal
protein S5 family protein), GRMZM2G129015 (ribosomal
protein S26e family protein, appearing twice)) GRMZ
M2G164352 (protein phosphatase 2A subunit A2, appear-
ing four times), GRMZM2G122135 (protein phosphatase
2A subunit A2, appearing twice)) GRMZM2G064133
(eukaryotic translation initiation factor 3G1). This is consist-
ent with the GRMZMS5G858880 homolog in Arabidopsis,
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which regulates translation through two broad mechanisms:
ribosomal stalling and reducing re-initiation efficiency [38].

We were also able to demonstrate the applicability of
LA using the maize data on the carotene biosynthetic
pathway. We show how the transition from a-carotene
to B-carotene is mediated by a delicate switch between
the co-expression and contra-expression of CYP97A
and IcyE. This switching mechanism depends on the
expression of ¢rtRBI. A previous study has shown that
high expression of IcyE, which is a key gene in the f3-
carotene branch of the pathway, is conducive to the
accumulation of B-carotene [39]. Researches also vali-
dated that crtRBI transcripts accumulated to a greater
extent in lines with low p-carotene amounts relative to
lines with high p-carotene [4]. In our LA results,
expression of CYP97A and IcyE was positively corre-
lated when the expression of crtRBI was low, which
suggested that both the substrate and energy were flow-
ing into the B-carotene branch. Knowledge of the entire
pathway and an understanding of the key genes in-
volved at each step in the pathway allow the manipula-
tion of the pathway to create maize grain with higher
levels of provitamin A (Pro-VA) content. For instance,
the dynamic co-expression patterns of PSY1, lcyE, and
crtRBI were tested in this study. The LA analysis indi-
cated that the levels of lcyE and crtRBI expression were
slightly positively correlated when the expression of
PSY1 was high, PSY1 expression and crtRBI expression
were slightly negatively correlated when [cyE expression
was low, and PSY1 expression and IcyE expression were
also slightly negatively correlated when the expression
of crtRB1 was low (Additional file 14: Table S7). These
results agree with findings from previous studies that
upregulation of PSYI and co-downexpression of lcyE
and crtRBI correspond to the high level of natural vari-
ation for Pro-VA components [4, 6]. Thus the dynamic
co-expression patterns of key genes in biosynthetic
pathways can be used to guide the selection of gene
combinations for more efficient biofortification by
marker-assisted selection and genetic modification.

For quantitative traits, a substantial proportion of
phenotypic variation can be explained by differences in
gene expression. Re-sequencing analysis found indels
(some very long) in the UTRs or promoter regions are
significantly associated with oil concentration in 4 of
26 oil-related genes in maize, potentially accounting for
gene expression differences seen in the RNA-seq results
[8]. Unexpectedly, expression of these four candidate
genes does not correlate with the corresponding traits
based on a statistical analysis. Here we developed a
new application for LA by taking the oil concentration
as variable Y to find the correlation between gene ex-
pression level and phenotype. From the LA results in
the oil biosynthetic pathway, 23 of 26 oil-associated
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genes were correlated with oil concentration conditioning
on 580 individual LA-scouting genes. Among these 580
LA-scouting genes, only 5% were directly involved in the
oil biosynthesis pathway, whereas the others encoded
regulatory factors or enzymes involved in biological path-
ways that potentially regulate the oil biosynthetic pathway
according to the LA results. Although additional func-
tional verifications of these LA-scouting genes are needed,
the LA method provides a new perspective for under-
standing the genetic architecture and genetic regulation of
oil biosynthesis and accumulation.

Conclusions

The LA method provided an effective way to dissect
dynamic trait-trait correlation patterns and identified
significant critical cellular players in carotene and oil
biosynthesis in maize kernels. We carried out a
genome-wide LA analysis and found that some bio-
logical pathways were notably enriched for these LAPs
and LA-scouting genes. The LA analysis in the caro-
tene biosynthetic pathway revealed relationships
among several important genes that can change the
flow from a-carotene to [P-carotene by a delicate
switch between co-expression and contra-expression.
The application of the LA method to analyze the oil
biosynthesis pathway indicated the presence of a gen-
etic regulatory mechanism at the level of transcription.
Future work is needed to assess the biological roles of
LA-scouting genes and to extend the LA system for
analyses of more complex correlations.

Methods

Data

We carried out our LA analysis using an RNA-seq data-
set of 28,769 annotated genes sequenced from kernels
collected 15 days after pollination from 368 maize lines
[11]. The expression values for each gene were normal-
ized using a normal quantile transformation with the
qqnorm function in R [11]. Missing values were im-
puted with average expression values. The oil concen-
tration phenotypes from the 368 genotypes, which have
been described in detail previously [8], were used for
the LA analysis within one pathway. The phenotypic
values for each line were also normalized using a nor-
mal quantile transformation with the qqnorm function
in R [11].

Theory of LA analysis

The LA theory is presented in terms of continuous
random variables [21]. Li proposed the concept of LA to
describe how the co-expression pattern of two genes, X
and Y, changes according to the level of a third gene, Z.
Suppose all variables are standardized to have mean 0 and
variance 1. So the correlation between variables X and Y is
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equal to E(XY). Conditioning on a third variable Z, the
conditional expectation E(XY]Z = z) is denoted by g(z) so
that the overall correlation between X and Y, E(XY) = Eg(Z).
g(z) is regarded as the co-expression measure between
gene pair X and Y when Z is expressed at level z. The
derivative g'(z) quantifies how g(z) varies as z increases. If
Z is continuous random variable, change of the condi-
tional expectation can be described by its derivative. The
definition of LA:

LA (X,Y|2) = E(¢ (2))
where
g(Z) = E(XY|Z =2)
when the Z is standard normal,
LA (X,Y|Z) = E(XYZ)

So a normal score transformation on each gene profile
is performed before analysis.

Genome-wide LA analysis

We used the statistical method LA to measure dynamic
co-expression patterns [20, 21]. The LA method de-
scribes the intuitive change in the co-expression of a
pair of genes, X and Y. If the state change turns out to
be associated with the differential expression of a third
gene, Z, then the profile of Z can be used to screen the
scatter plot of (X, Y) for LA activity. If an increase in Z
is associated with an increase in the correlation of (X, Y),
then gene Z is a positive LA-scouting gene for (X, Y),
and a positive score is assigned to quantify the strength
of LA. The pair (X, Y) is called a positive LAP of Z.
Similarly, a negative LA-scouting gene is defined as an
increase in Z that is associated with a decrease in the
correlation of (X, Y), and the LA score of the LAP is
negative. Consequently, when the low and high expression
levels of a negative LA-scouting gene are compared, the
scouted LAP is likely to change from being co-expressed
to being contra-expressed. For a positive LA-scouting
gene, the change goes in the opposite direction, from
contra-expression to co-expression [21].

For the genome-wide LA study, we standardize each
gene-expression profile with a normal score transform-
ation firstly. Then the average product of the three
transformed profiles was computed as follow,

LA score = (X1 Y1Z1 + XoY2Z5 + - + XY Zy)/m
where m is the total number of maize inbred lines.
Genome-wide LA significance assessment
To determine if a LA linkage score is statistically significant

or not, we generated a reference distribution of LA scores
under the assumption of no linkage using a simulation
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scheme. At each permutation, we randomly sample two
expression values (cells) in the matrix as X and Y and re-
compute the LA scores for all other genes as Z and then
record the most positive and most negative values. We re-
peated this procedure 1.00 x 10° times and obtained the
reference distributions for the positive LA scores and the
negative LA scores. Then we also generated a genome-wide
LA score distribution. At each genome-wide LA analysis,
we randomly sample genes (rows) in the matrix as X and ¥’
and re-compute the LA scores for all other genes as Z and
also recode the most positive and most negative values. We
repeated this procedure 1.00 x 10° times and obtained the
genome-wide LA score distributions for the positive LA
scores and the negative LA scores. We compared the
genome-wide LA score distribution with the reference dis-
tribution by a quantile-to-quantile plot. Next we estimate
the FDR value by assuming the proportion of null cases is
100%. Suppose there are altogether N gene pairs under
consideration and the permutation P value (the quantile of
the reference distribution) cutoff is p. We calculate the false
discovery rate: FDR = Np/D, where D is the number of
gene pairs with permutation P values < p [40, 41].

Definition of LA-scouting genes in genome-wide significant
LA triplets

Within the significant LA triplet, we used MLA to deter-
mine the LA-scouting gene [42]. When the conditional
means and variances also depend on X3, MLA can meas-
ure liquid association using p(Xi, X5| X3) as the co-
expression measure of X; and X, given X3 instead of
E(X1, Xo| X3) : h(X3) = p(X3, X5| X3). So, MLA represents
the expected value of the change of the conditional cor-
relation with X3. The definition of MLA applied Stein’s
lemma [43]:

MLA (X1,X2|X3) = E{h (X3)} = E{h(X3)X5}
A direct estimate for MLA is:

N > piXsi
M
where M is the number of bins over X3, p; is the sample
Pearson’s correlation coefficient of X; and X, using only
those observations with X3 in bin i, and X 5; is the mean
of X3 in bin i. The total number of bines M is set to 3 in
all MLA estimations throughout the analysis.

Gene function annotation and GO enrichment analysis

To more fully explore the functions of candidate genes,
the annotation resources of maizeGDB (http://maizecyc.
maizegdb.org) and the InterPro (http://www.ebi.ac.uk/inter-
pro/) database were integrated into the analyses [44,
45]. GO enrichment analyses were performed using the
agriGO tool (http://systemsbiology.cau.edu.cn/agriGOv2/)
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with SEA (Singular Enrichment Analysis) option [46, 47].
Hypergeometric distributions were applied to test the
significance against the maize genome background, and
the P values were adjusted for multiple testing by con-
trolling the FDR. The updated GO items of the maize
genome were downloaded from Ensembl BioMarton
April 4, 2013 [48].

LA analysis within one pathway

Thirteen genes involved in the carotenoid biosynthetic
pathway were selected from MaizeGDB were used for
computing the triplet combinations using LA theory. And
we defined the LA-scouting gene in significant LA triplet
based on biological significance. 26 oil concentration—as-
sociated genes identified in a previous GWA study were
considered as X, and the oil concentration phenotype
normalized by the qqnorm function in R was consid-
ered as Y [8]. A genome-wide gene-trait LA was com-
puted across all the 24,907 genes. As the genome-wide
LA significance score is strict, we used a local permuta-
tion method. Briefly, we randomly permuted Z genes as
many as 1 million times and computed their LA scores.
The P values represent how often the permuting LA
scores exceeded the estimated LA score [21].
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GRMZM2G122767 and oil concentration are mediated by
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expression is moderate. b Each red dot indicates a maize line in which
GRMZM2G046804 expression is high, a dark blue dot indicates a maize
line in which GRMZM2G046804 expression is low, and a light blue dot
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Additional file 13: Table S6. The LA results for Z = GRMZM5G858880
with significant LA scores in the oil biosynthetic pathway. (XLSX 10 kb)
Additional file 14: Table S7. The LA results for PSYT, lcyE, and crtRBT in
the carotene biosynthetic pathway. (XLSX 9 kb)

Abbreviations

ACP: Acyl-acyl carrier protein; DGAT: Diacylglycerol Acyltransferase; e-

QTL: Expression quantitative trait locus; FDR: False discovery rate;

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; GO: Gene ontology;
GWA: Genome-wide association; Indels: Insertions and deletions; LA: Liquid
association; LAP: Liquid association pair; MAF: Minor allele frequency;

TAG: Triacylglycerol; UTR: Untranslated region

Acknowledgements
We appreciated the helpful comments on the manuscript from Dr. Jianbing
Yan and Dr. Haijun Liu.

Funding

We are grateful to the National Natural Science Foundation of China
(31401388), and the National Key Research and Development Program of
China (2016YFD0100503), and A Project of Shandong Province Higher
Education Science and Technology Program (J16LF07) for financial
support.

Availability of data and materials

The datasets supporting the conclusions of this article are included within
the article and its additional files. The detailed information of the method
we used are in R script (https://github.com/kumine/LiquidAssociation).

Authors’ contributions

XX and MW carried out the genome-wide LA analysis, and LA in the carotene
and oil biosynthetic pathways. LL participated in programming and LA results
analysis. RC helped to generate the reference distribution of LA score and
genome-wide LA score distribution. PL participated in LA analysis in oil
biosynthetic pathway. LP gave critical suggestions to the interpretation of the
results and helped to revise the manuscript. HL designed and supervised this
study. HL, XX, and MW prepared the manuscript. All the authors critically read
and approved the manuscript.

Ethics approval and consent to participate
The RNA-seq database used in this study were provided by Prof. Jianbing
Yan from Huazhong Agricultural University, Wuhan, China.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'School of Biological and Science Technology, University of Jinan, Jinan
250022, China. “National Maize Improvement Center of China, Key
Laboratory of Crop Genomics and Genetic Improvement, China Agricultural
University, Beijing 100193, China.


dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
dx.doi.org/10.1186/s12870-017-1119-y
https://github.com/kumine/LiquidAssociation

Xu et al. BMC Plant Biology (2017) 17:163

Received: 2 May 2017 Accepted: 9 October 2017
Published online: 16 October 2017

References

1.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Strable J, Scanlon MJ. Maize (Zea mays): a model organism for basic and
applied research in plant biology. Cold Spring HarbProtoc. 2009; https://doi.
0rg/10.1101/pdb.emo132.

Yang X, Guo Y, Yan J, et al. Major and minor QTL and epistasis contribute to
fatty acid compositions and oil concentration in high-oil maize. Theor Appl
Genet. 2010;120:665-78.

Li L, Li H, Li Q, etal An 11-bp insertion in Zea mays fatb reduces the
palmitic acid content of fatty acids in maize grain. PLoS One. 2011;6:024699.
Yan J, Kandianis CB, Harjes CE, et al. Rare genetic variation at Zea mays
crtRB1 increases beta-carotene in maize grain. Nat Genet. 2010;42:322-7.
Zhou Y, Han Y, Li Z, et al. ZmcrtRB3 encodes a carotenoid hydroxylase that
affects the accumulation of alpha-carotene in maize kernel. J Integr Plant
Biol. 2012;54:260-9.

Fu Z, Chai Y, Zhou Y, Yang X, et al. Natural variation in the sequence of
PSY1 and frequency of favorable polymorphisms among tropical and
temperate maize germplasm. Theor Appl Genet. 2013;126:923-35.

Yan J, Warburton M, Crouch J. Association mapping for enhancing maize
genetic improvement. Crop Sci. 2011,51:433-49.

Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the
genetic architecture of oil biosynthesis in maize kernels. Nat Genet.
2013;45:43-50.

Liu X, Fu J, Gu D, et al. Genome-wide analysis of gene expression profiles
during the kernel development of maize (Zea mays L.). Genomics.
2008,91:378-87.

Sekhon RS, Lin H, Childs KL, et al. Genome-wide atlas of transcription during
maize development. Plant J. 2011,66:553-63.

Fu J, Cheng Y, Linghu J, et al. RNA sequencing reveals the complex
regulatory network in the maize kernel. Nat Commun. 2013;4:2832.
Carpenter S, Ricci EP, Mercier BC, et al. Post-transcriptional regulation of
gene expression in innate immunity. Nat Rev Immunol. 2014;14:361-76.
Zheng P, Allen WB, Roesler K, et al. A phenylalanine in DGAT is a key determinant
of oil content and composition in maize. Nat Genet. 2008:40:367-72.

Shen B, Allen WB, Zheng P, et al. Expression of ZmLECT and ZmWRI1
increases seed oil production in maize. Plant Physiol. 2010;153:980-7.
Usadel B, Obayashi T, Mutwil M, et al. Co-expression tools for plant biology:
opportunities for hypothesis generation and caveats. Plant Cell Environ.
2009;32:1633-51.

Marcotte EM, Pellegrini M, Thompson MJ, et al. A combined algorithm for
genome-wide prediction of protein function. Nature. 1999,402:83-6.

Liu CT, Yuan S, Li KC. Patterns of co-expression for protein complexes by
size in Saccharomyces Cerevisiae. Nucleic Acids Res. 2009;37:526-32.

Li KC, Palotie A, Yuan S, et al. Finding disease candidate genes by liquid
association. Genome Biol. 2007; https://doi.org/10.1186/gb-2007-8-10-r205.
Li KC, Yuan SA. Functional genomic study on NCl's anticancer drug screen.
Pharmacogenomics J. 2004;4:127-35.

Li KC, Liu CT, Sun W, et al. A system for enhancing genome-wide co-
expression dynamics study. Proc Natl Acad Sci U S A. 2004;101:15561-6.

Li KC. Genome-wide co-expression dynamics: theory and application. Proc
Natl Acad Sci U S A. 2002;99:16875-80.

Sun W, Yuan S, Li KC. Trait-trait dynamic interaction: 2D-trait eQTL mapping
for genetic variation study. BMC Genomics. 2008;9:242.

Tai SK, Wu G, Yuan S, et al. Genome-wide expression links the electron
transfer pathway of Shewanella oneidensis to chemotaxis. BMC Genomics.
2010;11:319.

Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in
deubiquitination and degradation by the 26S proteasome. Science.
2002;298:611-5.

Harjes CE, Rocheford TR, Bai L, et al. Natural genetic variation in lycopene
epsilon cyclase tapped for maize biofortification. Science. 2008;319:330-3.
Singh M, Lewis PE, Hardeman K; et al. Activator mutagenesis of the pink
scutellum1/viviparous7 locus of maize. Plant Cell. 2003;15:874-84.

Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily: a
perspective.GenomeBiol. 2003; doi: https.//doi.org/10.1186/gb-2003-4-5-111.
Yuan L, Voelker TA, Hawkins DJ. Modification of the substrate specificity of
an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl
Acad Sci U S A. 1995,92:10639-43.

29.

30.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

Page 12 of 12

Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty
acid synthesis of Escherichia Coli by expression of a plant medium-chain
acyl-acyl carrier protein thioesterase. J Bacteriol. 1994;176:7320-7.

Huang XY, Barrios LA, Vonkhorporn P, et al. Genomic organization of the
glyceraldehyde-3-phosphate dehydrogenase gene family of Caenorhabditis
Elegans. J Mol Biol. 1989;206:411-24.

Berry MD, Boulton AA. Glyceraldehyde-3-phosphate dehydrogenase and
apoptosis. J Neurosci Res. 2000,60:150-4.

Weaver R. Molecular Biology. 2rd ed. Boston: McGraw-Hill; 2002.

Perrin BE, Ralaivola L, Mazurie A, et al. Gene networks inference using
dynamic Bayesian networks. Bioinformatics. 2003;19(Suppl 2):1138-48.

Li P, Zhang C, Perkins E, et al. Comparison of probabilistic Boolean network
and dynamic Bayesian network approaches for inferring gene regulatory
networks. BMC Bioinformatics. 2007;8(Suppl 7):513.

Dang S, Chaudhury S, Lall B, et al. The dynamic programming high-order
dynamic Bayesian networks learning for identifying effective connectivity in
human brain from fMRI. J Neurosci Methods. 2017;285:33-44.

Wang L, Liu S, Ding Y, et al. Meta-analytic framework for liquid association.
Bioinformatics. 2017; https://doi.org/10.1093/bioinformatics/btx138.

Yan'Y, Qiu S, Jin Z, et al. Detecting subnetwork-level dynamic correlations.
Bioinformatics. 2017;33(2):256-65.

Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames
in higher plants. BMC Genomics. 2008;9:361.

Vallabhaneni R, Wurtzel ET. Timing and biosynthetic potential for carotenoid
accumulation in genetically diverse germplasm of maize. Plant Physiol.
2009;150:562-72.

Storey JD. The positive false discovery rate: a Bayesian interpretation and
the g-value. Ann Stat. 2003;31:2013-35.

Yoav B, Yosef H. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289-300.
Ho YY, Parmigiani G, Louis TA, et al. Modeling liquid association. Biometrics.
2011,67:133-41.

Stein CM. Estimation of the mean of a multivariate normal distribution. Ann
Stat. 1981,9:1135-51.

Lawrence CJ, Harper LC, Schaeffer ML, et al. MaizeGDB: the maize model
organism database for basic, translational, and applied research. Int J Plant
Genom. 2008;496957

Zdobnov EM, Apweiler R. InterProScan-an integration platform for the
signature-recognition methods in InterPro. Bioinformatics. 2001;17:847-8.
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification
of biology. Nat Genet. 2000;25:25-9.

Du Z Zhou X, Ling Y, et al. agriGO: a GO analysis toolkit for the agricultural
community. Nucleic Acids Res. 2010;38:W64-70.

Kinsella RJ, Kahari A, Haider S, et al. Ensembl BioMarts: a hub for data
retrieval across taxonomic space. Database (Oxford). 2011; https://doi.org/10.
1093/database/bar030.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://dx.doi.org/10.1101/pdb.emo132
http://dx.doi.org/10.1101/pdb.emo132
http://dx.doi.org/10.1186/gb-2007-8-10-r205
http://dx.doi.org/10.1186/gb-2003-4-5-111
http://dx.doi.org/10.1093/bioinformatics/btx138
http://dx.doi.org/10.1093/database/bar030
http://dx.doi.org/10.1093/database/bar030

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Genome-wide results of the co-expression dynamic pattern of gene pairs
	Dynamic co-expression pattern of gene pairs in the carotene biosynthetic pathway
	Dynamic trait-trait correlation patterns in the oil biosynthetic pathway

	Discussion
	Conclusions
	Methods
	Data
	Theory of LA analysis
	Genome-wide LA analysis
	Genome-wide LA significance assessment
	Definition of LA-scouting genes in genome-wide significant LA triplets
	Gene function annotation and GO enrichment analysis
	LA analysis within one pathway

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

