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Abstract

Background: Wine grapes are important economically in many countries around the world. Defining the optimum
time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of
flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast
disorganization and cell death characterize the late ripening stage.

Results: To better understand the molecular and physiological processes involved in the late stages of berry
ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon,
Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified
approximately 2000 common differentially expressed genes for all seven cultivars across four different berry
sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression
network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits
in the berry skins of the late stages of berry ripening. These independent approaches revealed genes
involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most
photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other
processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism.
Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized
into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene
subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the
chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world
and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest
connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these
subnetworks were identified including numerous members of the core circadian clock, RNA splicing,
proteolysis and chromosome organization. An integrated model was constructed linking light sensing with
alternative splicing, chromosome remodeling and the circadian clock.
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Conclusions: A common set of differentially expressed genes and gene subnetworks from seven different
cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected
gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy),
catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were
induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and
fruit development. This work provides a better understanding of berry development and the transcriptional

processes involved in the late stages of ripening.

Keywords: Circadian clock, Chromosome organization, Epigenetic modification, Fruit development, Grape
berry, Network analysis, RNA-seq, Transcriptomics, Vitis vinifera L

Background

Fruits are specialized organs that encapsulate seeds. Bo-
tanically a fruit is the ripened ovary or carpel of a flower.
Functionally it allows the development of and is a vehicle
for the dispersal of seeds. There are different kinds of
fruits. Fleshy fruit examples are grapes, apples and or-
anges; dry fruits include cereal grains and nuts. Both
fleshy and dry fruits have similar regulatory subnetworks
and developmental programs [1].

Grape berries are formed on flower clusters or inflores-
cences. Grape berry development and ripening involve
complex physical and molecular changes [2], including
color development, softening, volatile production, acid
catabolism, and sugar accumulation. These processes at
maturity or peak ripeness produce attractive signals for
human, avian and other vectors of seed dispersal. Grape
berries have many bioactive compounds, like polyphenols
and carotenoids with bright colors and aromas that signal
their edibility and health-related benefits [3, 4].

Grape berry color change and sugar accumulation are
common metrics for ripeness. These processes change
significantly at veraison, the start of the ripening stage in
grapes. Sugar accumulation can vary with genotype and
environment [2]. For example, higher temperatures lead
to higher sugar accumulation in the berry at the
optimum time of ripeness (as defined by the wine-
maker). Many times the winemaker will taste the berries
to determine optimum flavor and time to harvest.

Nonetheless, sugar accumulation is a wine industry
standard for assessing grape maturity. Wine grapes are
typically harvested between 22 and 25 °Brix. Other
measures of fruit maturity exist (e.g. total acidity or
the sugar to total acidity ratio), but the sugar level re-
mains a simple and standard measurement of grape
maturity in the wine industry. Measurement of sugar
levels in grapes is an easy and accurate measurement;
all that is needed is a simple refractometer that mea-
sures soluble solids (°Brix), which are essentially made
up of glucose and fructose sugars. Wine grape berries
typically can reach 25% sugar if allowed to ripen fully.

Higher concentrations can be achieved, but this is often
due to dehydration of the berry. A recent paper character-
izes in detail the effects of postharvest dehydration in
these late stages of berry ripening [5], which are beyond
the stages studied in the present study.

Sugars affect plant growth and development. Sugars
provide energy for cellular respiration and transcription-
ally signal and regulate gene activity, allowing the fine-
tuning of fruit metabolism and development [6, 7]. Sugar
can interact with hormones and the circadian clock to
regulate gene expression [8]. In addition, sugar can
induce senescence [9] and inhibit the expression of
photosynthetic genes [10]. Some of the sugar sensors
have been identified in plants [8] including hexose
kinase (HXK1), SNF1 related protein kinase 1.1 (SnRK1.1)
and target of rapamycin (TOR). A glucose phosphate
transporter (GPT2) appears to be an important sugar
sensor in the chloroplast [10].

Sugars can influence fruit development as well [11-13].
Sugar signaling has been linked to wheat grain develop-
ment [13]. In strawberry, tomato [12], and grape [14],
sugar influences the expression of the ABA-stress-
ripening (ASR) gene, a transcription factor, which when it
is over-expressed or silenced, accelerates or delays fruit
ripening, respectively [12]. In grapes, sugars enhance
anthocyanin development and the expression of many
genes, including the sugar sensor, HKT1 (High-affinity K
(potassium) Transporter 1) [11, 15, 16].

Other factors can affect fruit ripening, such as epigen-
etic regulation and hormones [1, 2]. An investigation of
the tomato methylome showed epigenetic control of
ripening that was tissue and developmentally specific at
the breaker stage [17] when color begins to develop.
Grape berry development is likely to be under epigenetic
regulation as well [18, 19].

Hormonal regulation of fruit development is perhaps
best studied in tomato [1]. A complex interplay of
hormones are involved at different stages of fruit devel-
opment. A number of grape studies indicate that differ-
ent aspects of ripening are also under hormonal control
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by auxin, ethylene, abscisic acid and other hormones [2].
Most of these grape studies were focused on veraison.

A few studies have focused on the late ripening stages of
grapes [2, 5, 20-22]. This stage of development represents
a senescence-like phase preparing the fruit for seed disper-
sal with several degradative processes occurring including
chloroplast disintegration [23, 24] and cell death [22]. A
large number of genes and physiological processes appears
to be operating including genes involved with ethylene
signaling and flavor pathways [20] in the skin of Cabernet
Sauvignon berries in the late stages of ripening over a
range of °Brix levels (22 to 37 °Brix). This present study
focuses on a better definition of a core set of late ripening
genes by expanding upon our previous findings in
Cabernet Sauvignon. To better understand fruit ripening
processes in this stage, four red-skinned and three white-
skinned grape cultivars were studied: Cabernet Franc,
Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay,
Sauvignon Blanc and Semillon, respectively. A narrower
range of °Brix levels was selected to restrict the set of can-
didate genes involved in berry skins to those genes that
are expressed around the optimal sugar levels that flavor
maturity develops; berry skins are the primary source of
aroma, flavor and color in grapes [25].

Transcriptomic and gene network analyses can be used
to infer active physiological processes in organisms. To
derive and understand complex gene subnetworks (mod-
ules) in cells or whole organisms, scientists use gene co-
expression network analysis approaches to identify highly
connected gene subnetworks with highly enriched gene
ontology (GO) categories [26-29]. WGCNA (Weighted
Gene Co-expression Network Analysis) is one approach
that was effectively used to identify highly connected hubs
in gene subnetworks for Arabidopsis [30, 31] and Vitis
[32]. Another approach, petal [29], was developed recently
to provide a truly scale-free and small-world network
model for large-scale Omics analyses. A common set of
transcriptional changes occurring in the late ripening
stages for all cultivars was identified in this study using a
standard (a posteriori) approach of gene mapping to
known biochemical pathways and gene network (a priori)
approaches. These approaches have elucidated multiple
transcriptional processes of grape berry ripening at the
mature stage and identified top hub genes in these gene
subnetworks some of which involve autophagy, photosyn-
thesis, chromosome organization and the circadian clock.

Results

Throughout September and October of 2012, whole
berry clusters were harvested at the Valley Road Nevada
Agricultural Experiment Station Experimental Vineyard.
Seven grape cultivars were harvested: Cabernet Franc,
Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay,
Sauvignon Blanc and Semillon. Individual berry skins
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were separated immediately from the whole berry and
the individual sugar (“Brix) level of the berries was deter-
mined. RNA-seq profiling of transcript abundance
during the late stages of development was then con-
ducted on berry skins at different sugar levels (see
Methods for details). Prior to signal filtering, there were
27,926 expressed genes out of 29,971 annotated genes in
the V1 reference genome (Additional file 1). Independ-
ent filtering of lowly expressed genes by minimum
counts mapped (see Methods) reduced the count to
16,606 genes for downstream analysis (Additional file 2).

A principal components analysis (PCA) was performed
(Fig. 1) to validate sample uniformity and investigate the
degree of separation between cultivar and “Brix effects.
Cultivars were distinctly separated on the 1st principal
component explaining 21.8% of the variance, with red
and white cultivars segregating together and away from
one another. °Brix levels segregated along the 2nd prin-
cipal component explaining 21.4% of the variance, in
some cases distinctly from one another (e.g. Merlot at
20 °Brix, Semillon and Chardonnay both at 26 °Brix).
The cultivars separated in a similar pattern as in a pre-
vious study [33], with Pinot Noir again segregating
between red and white cultivars.

While there were many transcripts changing that were
different for different cultivars, in this presentation of
the results we focus on the common changes in tran-
script abundance amongst the seven grape cultivars at
different °Brix levels. We define a common differentially
expressed gene (DEG) as the gene’s transcript abundance
changing significantly in at least one Brix comparison of
all possible comparisons (e.g. 24 vs 22, 26 vs 20, 24 vs 22,
etc.) AND this had to occur for at least one comparison in
every cultivar. We identified 2108 common differentially
expressed genes (DEGs) using a series of contrasts be-
tween each °Brix level (Additional files 3 and 4).

In the following analyses, we utilized the DEGs to con-
duct a “standard” transcriptomic analysis approach,
followed by two different gene co-expression network
analysis approaches. In the first approach (standard net-
work analysis), gene set enrichment of gene ontologies
(GO) was utilized to identify “genes of interest”. They
were then mapped to known physiological and biochem-
ical pathways (a posteriori approach) to gain further
insight. In the second approach, we applied two different
gene co-expression network analyses, WGCNA and
petal, to the set of 16,606 filtered and quality-controlled
transcripts (a priori approach) and evaluated some of
the gene subnetworks and hubs identified.

Standard transcriptomic analysis

Gene ontology enrichment analysis

Enriched GO categories for the 2108 DEGs for the com-
mon genes of all cultivars (the “Brix effect) were identified
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Fig. 1 A PCA plot of berry skin samples according to their normalized counts per million. The first (PC7) and second (PC2) components are
represented. Samples corresponding to three biological replicates from four °Brix levels were analyzed. °Brix levels are colored across cultivars.
Sample abbreviations represent the cultivar, replicate number and Brix level, respectively. Cultivar abbreviations are Cabernet Franc (CF),
Sauvignon Blanc (SB), Cabernet Sauvignon (CS), Merlot (ME), Pinot Noir (PN), Chardonnay (CD) and Semillon (SM)

(Additional file 5) and were depicted in a GO network
(Additional file 6). The color and size of the circles signify
the level of enrichment and the number of genes in each
set, respectively. Approximately 400 GO categories were
overrepresented after correcting for multiple hypothesis
testing (Additional file 5). Mapping the DEGs on the
cellular overview of the Vitiscyc [34] webpage showed that
these transcripts were widespread across most biochem-
ical pathways (data not shown). These results indicated
that grape berry ripening in the late stages was broad and
complex across many biochemical pathways.

Some of the top overrepresented GO categories in-
cluded membrane, regulation of hormone levels, catabolic
process and response to abiotic stress. Other interesting
GO categories included developmental process, response
to light, response to monosaccharide, nitrogen metabol-
ism, RNA processing and chloroplast. Many GO categor-
ies related to flavor development were overrepresented
(e.g. fatty acid catabolism, amino acid metabolism, alcohol
metabolism and isoprenoid metabolism).

Of the 2108 DEGs, approximately half of the tran-
scripts increased and the other half decreased with
increasing °Brix level (Fig. 2). Gene set enrichment was
performed for the gene ontologies of the top 500 DEGs
that increased and decreased the most (the difference in
transcript abundance between 20° and 26°Brix) to deter-
mine the biological processes involved. The top three
enriched GO categories (from a total of 105) for the
increasing DEGs were nucleic acid metabolism, MCM
(minichromosome maintenance) complex and chromo-
some organization (Additional file 7). Additional inter-
esting categories that were highly enriched were DNA
methylation and lipid catabolism. The top three GO
categories (from a total of 197) for the decreasing DEGs
were membrane, cell wall and photosystem (Additional
file 8). Other interesting categories included regulation
of hormone levels and pigment accumulation.

Examples of three of the top genes with increased and
decreased transcript abundance with increasing °Brix
level include a MYB transcription factor, a LOB domain
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Fig. 2 A heat map representing the difference in log2 expression of
the 2108 DEGs with different °Brix contrasts. Individual ratios for the

six contrasts were computed for each cultivar and then averaged

protein, a ubiquitinase, an expansin, a bifunctional lipid
transfer protein and a pectin lyase (Fig. 3).

Chromosome organization and regulation of transcription
Gene ontology enrichment analysis indicated that chromo-
some related events (chromosome organization, DNA and
histone methylation, etc.) were significantly modified in the
late stages of ripening (Additional file 5). Chromatin re-
modeling was recently discovered to be very important in
regulating tomato fruit ripening [17]. Many genes related to
chromatin silencing or chromosome organization that
negatively regulate gene transcription were associated with
increasing °Brix. These included histone methyltransferases
and a number of sucrose non-fermentable 2 (SNF2) tran-
scripts. SNF2 domain-containing proteins participate in
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epigenetic regulation of gene transcription to control devel-
opment in plants and other organisms [35]. For example,
the transcript abundance of Photoperiod Independent Early
Flowering 1 (PIE1; VIT_08s0007g06370) whose protein
contains helicase and SNF2 domains, was increased
with °Brix level (Fig. 4). Similarly, the transcript abun-
dance of the transcription factor VviDDMI (Decrease
in DNA Methylation 1; VIT_04s0023g01610) also peaked
at 26 °Brix. DDM1I belongs to the Lsh subfamily of SNF2
domain proteins [35, 36]. The transcript abundance of
another TF, methyl-CPG-binding Domain 9-like (MBDY;
VIT_14s0066g01450) also significantly increased with
°Brix. And finally, a minichromosome maintenance
family protein (MCM; VIT_07s0005g01430) increased
with increasing °Brix.

Regulation of hormone level genes
Genes involved in the regulation of hormones were also
significantly enriched. The regulation of several different
hormone pathways was represented in this group
(Fig. 5). A protein kinase receptor, HSLI (HAESA-
like 1; VIT_10s0003g00330) is one of the most sig-
nificantly reduced DEGs with increasing °Brix. It
interacts with an abscission signaling peptide to inhibit seed
maturation [37, 38]. Its expression is dependent on sugar
levels and it also interacts with sugar-inducible and ABA-
regulated genes [39, 40]. A reduction in transcript abun-
dance of VWiHSL1 may contribute to seed maturation.
Other genes with decreasing transcript abundance
(Fig. 5) included Non-Phototropic Hypocotyl 3 (NPH3;
VIT_03s0038g00270), Auxin Response Factor 3 (ARF3;
VIT_10s0003g00420), and Oxophytodienoate-Reductase
3 (OPR3; VIT_11s0016g01230). NPH3 regulates auxin
efflux carriers [41] and OPR3 is involved in jasmonate
biosynthesis [42].

Light responsive and photosynthetic genes
Many blue-light responsive genes, including Zeitlupe
(WiZTL; VIT_11s0052g00730) and XAPS5 Circadian
Timekeeper (VviXCT; VIT_03s0038g01810) had an in-
creasing response to °Brix level. These genes are known
to measure day length and adjust the circadian clock.
The transcript abundance of a Constans-Like 4 gene
(WiCOL4, VIT_04s0008g07340) was increased signifi-
cantly with °Brix. Constans-like genes were first identi-
fied in flowering and are important sensors of day length
and light-driven redox signaling [43]. Constans-like 13
(VIT_07s0104g01360) belongs to Group III of CO-like
TFs [44, 45]. Almada et al. [44] reported both spatial
and temporal expression patterns for the VviCOLI, with
a reduction of expression in maturing berries, a pattern
seen in all cultivars.

Nearly all of the transcripts for photosynthetic DEGs
were decreasing with increasing °Brix level, such as
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Cytochrome C6A (VIT_01s0011g01850) or light harvest-
ing complex II type I CAB-1 (VIT_10s0003g02890). The
gene expression of some of these photosystem genes ap-
pears to be completely shutting down. Only two transcripts
associated with photosynthesis were increasing in expres-
sion: a pentatricopeptide repeat-containing (PPR) protein
(VIT_03s0063g00900) and ferritin (VIT_08s0058g00440).
These results support the hypothesis that chloroplasts are
becoming nonfunctional for photosynthesis or possibly
even degraded. Chloroplasts are also the location for iso-
prenoid, carotenoid and terpenoid metabolism, and thus a
source of important volatiles and aromas [46)].

Gene co-expression network analyses

WGCNA

WGCNA was applied to the entire set of transcripts to
systematically and globally identify highly-connected gene
subnetworks or module eigengenes (MEs), which are the
first right-singular vectors of the standardized module

expression data. WGCNA was also used to identify highly
correlated hub genes within these modules. Results from
the WGCNA R package hierarchical clustering function
confirmed the PCA results that the transcript abundance
of all quality-controlled transcripts of the berry samples
separated very well according to cultivar and °Brix effects
(Additional file 9). WGCNA produces module member-
ships with highly enriched GO categories with important
biological meaning [26, 32]. WGCNA defines modules as
clusters of gene nodes with high topological overlap,
which means that members of a given module share a
greater number of connections with other members of the
module than with genes outside the module [27]. The
gene network had near scale-free topology (Additional
file 10) with a number of highly connected hub gene
nodes. Extensive branches (clusters of transcripts form-
ing modules) can be observed in the gene dendrogram
produced using average linkage hierarchical clustering
(Additional file 9). Utilizing the WGCNA R package, 64
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the °Brix levels. The orangered3, turquoise, antique-
whitel and coral2 were the most significantly correlated
modules with an increasing gene expression trend with
increasing °Brix (Fig. 6). The darkgrey, navahowhite,
darkseagreen3 and lavenderblush3 modules were the
most significantly correlated modules with a decreasing
gene expression trend with increasing °Brix.

Module membership (kME or the module eigengene
connectivity) was calculated for each gene for each mod-
ule (Additional file 11). A kME value of 1 indicates
perfect correlation with the module eigengene and the
higher the kME of a gene the higher its connectivity
within the module. Genes with a high kKME are consid-
ered hub genes. GO category enrichment was deter-
mined with the top 500 genes of each module (data not
presented).

Major details of all 64 modules were summarized
(Additional file 12), including the top hub gene and GO
categories highly enriched in each module. Half of the
64 modules were significantly correlated with °Brix
(Additional file 12). Many of these modules were enriched
with many GO categories including chloroplast, ribosome,
cytoplasm, nucleus, photosynthesis, translation, nucleic
acid metabolism, phenylpropanoid biosynthesis, defense
responses, etc.

Module eigengenes for all 64 modules were correlated
with each other to elucidate the relationships between
modules (Fig. 7). Hierarchical clustering revealed a
complex network order; 6 higher order subnetworks (A
to F) could be subdivided into what we call “module
subnetworks” (1 to 12). The 12 module subnetworks
were identified with a minimum set of three modules
(Additional file 12, Fig. 7).

The higher order subnetworks, A, B, and C, all were
highly enriched in chloroplast, cytoplasm, photosyn-
thesis and translation GO categories (Additional files 11
and 12). They were mostly associated with higher expres-
sion in white grape varieties, but there were a significant
number of modules that had no differences between red
and white grapes.

Higher order subnetwork D was enriched in the
nucleus, nucleotide binding and gene expression. Higher
order subnetwork E was not enriched in any particular
cellular compartment but was enriched in phenylpropa-
noid and aromatic compound metabolism GO categor-
ies. Higher order subnetwork F was enriched in the golgi
apparatus and transport processes. These latter higher
order subnetworks (D-F) were mostly associated with
higher expression in red grape varieties, but there were a
significant number of modules that had no differences
between red and white grapes (Additional file 12); these
represent common gene subnetworks for all cultivars.

Some module subnetworks were large and complex,
consisting of 8 or 9 modules (Additional file 12, Fig. 7);
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they formed a subnetwork within a larger subnetwork.
For example, the Group 3 module subnetwork consisted
of modules involved in protein folding, translation,
chloroplast and response to light. Only 3 of the 8
modules in this subnetwork were correlated (negatively)
with increasing °Brix, the rest were more correlated with
different genotypes (Additional file 12, Fig. 6).

The Group 2 module subnetwork consisted of 6 mod-
ules and was similar to Group 3; the module clustering
in the module dendrogram indicated that the subnet-
works formed into a larger branch or subnetwork. Five
of the six modules in Group 2 negatively correlated with
increasing °Brix. These modules had gene ontologies
involving the chloroplast, translation, and photosynthesis
and were similar to those in Group 3.

In summary, the WGCNA network of the grape berry
skin at the late ripening stages could be divided into 6
higher order subnetworks and 12 module subnetworks.
These subnetworks were enriched in GO categories in-
volving cellular compartmentation (e.g. chloroplast and
nucleus) and major metabolic processes (e.g. photosyn-
thesis, translation, and phenylpropanoid metabolism). In
the next section we will focus on details in the two
largest gene modules identified by WGCNA that were
correlated with °Brix levels.

Turquoise module had the largest positive correlation
with Brix

The turquoise module was highly correlated with three
other modules: orangered3, antiquewhitel and coral2
(Fig. 7). These four modules formed the core of the
Group 6 module subnetwork (Fig. 7). There were many
common GO categories amongst these modules includ-
ing nucleic acid and protein binding (Additional file 12).
Interspersed within the top kMEs were many of the core
circadian clock genes (Additional file 11).

The turquoise module eigengene had the highest sig-
nificant correlation of 0.69 (p-value = 4e-10; Additional
file 12; Fig. 6) with 26 “Brix. The turquoise module was
the largest most connected module with 355 transcripts
having a 0.80 KME or higher. Transcript abundance in
this module increased with °Brix level. The response was
generally common for all varieties (p-value >0.1 for red
vs white grape and all varieties except Cabernet Sauvignon).
The top hub was VIT_1350067g03760, a pre-mRNA-spli-
cing factor 3 protein, with a kKME of 0.96. The pro-
tein of this gene is required for RNA-directed
methylation of DNA [47].

There were 337 GO categories overrepresented in the
top 500 genes in this module (data not shown). Highly
enriched GO categories of the top 500 turquoise module
genes included nucleic acid binding (p-value = 1.74e-17),
nucleus (2.86e-15), mRNA metabolic process (9.28e-17),
and protein binding (1.11e-11). Other interesting GO
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A\
categories included RNA processing, epigenetic regula- The top 100 genes of this module were highly enriched

tion of gene expression, post-embryogenic development, in specific categories that may be interacting with each
response to red or far red light and autophagy. other; 32 were involved in RNA processing, 22 were
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Fig. 7 A hierarchical clustering dendrogram and heatmap of module eigengene correlations. The hierarchical clustering dendrogram is overlaid
with symbols identifying gene subnetworks. Colored blocks at the periphery represent individual modules

involved in chromosome organization, 12 were involved
in proteolysis, 9 were transcription factors, 2 were in-
volved in the circadian clock or circadian rhythm and 2
were involved in autophagy (See Additional file 13 for
color highlights and a list of genes in each category).
Many of these processes are intimately connected to
the core circadian clock (see Discussion). These genes
represented 79 of the total top 100 hubs, indicating
very high enrichment of these GO categories in the
top 100 genes.

Some of these top 100 kME genes were involved in more
than one category. For example, CBFl-interacting co-
repressor CIR domain containing protein (VIT_02s0087
g00830; hub rank #43), Enhancer of polycomb-like tran-
scription factor protein (VIT_04s0008g04370; hub #67),
Microrchidia 4 (MORC4; VIT_17s0000g00910; hub #75),
RNA Polymerase Il large subunit (VIT_18s0001g00860;
hub #89), High Mobility Group (HMG; VIT_14s0108g00

040; hub #92) are involved in both RNA processing and
epigenetic regulation; methyl-CPG-binding domain 9
(MBDY; VIT_14s0066g01450; hub #25) and DDBI-CUL4
associated factor 1 (VIT_04s0008g03060, hub #9) are in-
volved in RNA processing and protein ubiquitination.

The turquoise module was highly connected to the
circadian clock and other light regulated genes; the
module contained the largest number of circadian clock
and light-regulated genes (16) in the top 500 kMEs (posi-
tively correlated) than any other module (Additional
file 11); it also had 5 circadian clock and light-regulated
genes in the bottom 500 kMEs (negatively correlated),
inferring that these genes may have been negatively re-
gulated or repressed by the same factors that positively
regulated the genes within the turquoise module. The
light-regulated gene from the turquoise module with
the highest kME was COPI-interacting protein 4.1
(CIP4; VIT_01s0137g00190; 0.91 kME, hub #37). CIP4
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was highly connected in 3 similar modules: its hub rank
was equal to #37, #214, and #282 for turquoise, oran-
gered3, and coral2 modules, respectively. CIP4 is a tran-
scriptional activator that promotes photomorphogenesis
[48]. It appears to act downstream of most photoreceptors
and Constitutive Photomorphogenic 1 (COPI). Photore-
ceptors can inhibit COPI and thus activate CIP4.

The next highest hub in this group was Time for
Coffee (TIC; VIT_05s50020g03150; 0.89 kME; hub #55);
it is the circadian clock gene with the highest connectiv-
ity. It interacts with LHY (Late Elongated Hypocotyl)
and PRR9 (Pseudo-Response Regulator 9) in the core
circadian clock [49]. ZTL, also known as Adagio Protein
1 (VIT_11s0052g00730), was the next most connected
circadian clock hub gene, having a kME of 0.87 and had
a rank of 101 in the module.

ELF3, is part of the evening complex (ELF3, Early
Flowering 4 (ELF4) and Phytoclock 1 (PCLI)) and ap-
pears to be a key regulatory hub for the circadian clock
that modulates light signals [49]. The gene expression
trends for Far-Red Impaired Response 1 (FARI) and
other FARI1-related genes, ELF3, ZTL, Topless (TPL),
and COPI within our data set were very similar and
indicate a possible light signal sensing cascade/cycle
involving FARI (or a FARI- related sequence protein),
PHYB (phytochrome B), ZTL, ELF3, COPI and TPL.

TPL was another interesting gene from the circadian
clock core in this subnetwork of increasing gene expres-
sion; it forms a complex with PRR9 and HDAG, a histone
deacetylase [50] that positively regulates chromosome
compaction. TPL is a broad repressor of many genes and
down-regulates the early morning genes as a co-repressor
with PRRY, which binds to the promoters of the morning
genes, CCA1 (Circadian Clock Associated 1) and LHY; inhi-
biting their expression. Increasing TPL shortens the day
phase (and lengthens the night phase) as in short days. It
also interacts directly with EMFI (Embryonic Flower 1)
and WRKY32 [51]; both of these genes were within the top
100 kMEs of this module. EMF1 (VIT_04s0008g03660;
0.88 kME; hub #74) is part of a Polycomb group (PcG)
complex (chromatin modification mediating transcriptional
repression) and regulates flowering by repressing Flowering
Locus T (FT) expression; it helps to synchronize environ-
mental cues and is a vascular signal.

Another top hub, Early Flowering in Short Days (EFS;
VIT_18s0001g01700; 0.93, 17) is a histone lysine N-
methyltransferase required specifically for the trimethy-
lation of H3-K4 in Flowering Locus C (FLC) chromatin.
It also affects carotenoid biosynthesis genes, and light
and carbon responsive genes. EFS methylates LHY in
Arabidopsis [52]. Other top hub genes were histone
ubiquitin ligases (HUBs) involved in protein processing
and post-embryonic development. Monoubiquination of
histones by HUBs stimulates gene expression [53]. Thus,
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there is a strong representation of key components of
the circadian clock in this gene module.

There were 4 autophagy genes in the top 500 kMEs of
the turquoise module: homolog of yeast autophagy 18 G
(ATG18g), autophagy 9 (APGY), autophagy-related 11
(ATG11) and autophagy 2 (ATG2). In particular, 3 of the
4 are part of the APG9 cycling. ATG18g (hub #20) was
the most highly connected autophagy hub followed by
APG9 (hub # 122). Autophagy is an important part of
the senescence process [54, 55].

Darkseagreen3 module had the largest negative
correlation with °Brix

The darkseagreen3 module was part of the Group 2
module subnetwork and thus a part of one of the largest
subnetworks elucidated in the late stages of berry ripen-
ing. The darkseagreen3 module eigengene had a signifi-
cant correlation of —-0.55 (p-value = 5e-08) with 26 °Brix.
It was the second largest most connected module with
342 transcripts having a 0.80 kKME or higher. The tran-
script abundance of gene members in this module
decreased with increasing °Brix level. This decreasing re-
sponse was generally common for all varieties, but there
was higher transcript abundance in white grape skins.
The top hub was VIT_09s0002g04360, a CURvature
Thylakoidl protein (CURTI), with a kME of 0.96, a
membrane phosphoprotein responsible for curvature at
the grana margins [56].

There were 422 GO categories overrepresented. The
top GO categories of the top 500 kMEs were chlo-
roplast (2.95e-47), thylakoid (6.29e-46), photosynthesis
(3.59e-32), and cytoplasm (4.27e-29). Other interesting
GO categories included isopentenyl diphosphate bio-
synthetic process, mevalonate-independent pathway, al-
cohol metabolic process, monosaccharide metabolic
process, lipid biosynthesis, and cysteine biosynthesis.

There were 7 and 8 circadian-related and light regulated
genes in the top and bottom 500 kMEs, respectively. ELF4,
part of the evening complex, was the top circadian clock
gene at #106, another circadian rhythm gene was Plastid
Transcriptionally Active 16 (PTAC16; VIT_06s0004g05230;
0.86 kME) at #113, Transcription factor TCP domain pro-
tein 7 (TCP7; VIT_10s0042g00170; hub #180), Accumula-
tion and Replication of Chloroplast 5 (ARCS; VIT_12s005
5g00490; hub #221), Light-Inducible And Clock-Regulated 2
(LNK2; VIT_13s0139g00360; hub #223), and Regulator of
Chromosome Condensation (RCCI; VIT_0750031g02560;
hub #455).

Some of the top negatively correlated circadian clock
genes included VWIELF3, VviZTL, VviSKIP (SNW/SKI-Inter-
acting Protein; VIT_11s0016g03290), VWiTIC (VIT_05s00
20g03150), VViRVEI (ReVeillE 1; VIT_04s0079g00410) and
WiFRS5 (FAR1-Related Sequence 5; VIT_03s0038g04140).
These genes were all positively correlated hubs in the
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turquoise module and indicated a coordinated regulation
between the turquoise and darkseagreen3 module.

Petal analysis

To provide another independent approach for gene co-
expression analysis, petal analysis was performed on the
same set of 16,606 filtered and quality-controlled genes.
Petal constructs models based on seven different Spear-
man correlation thresholds and calculates multiple topo-
logical network measures to automatically determine the
‘best’ possible network model for this dataset meeting
scale-free and small-world characteristics [29]. The final
model used for down-stream analysis (module and hub
identification) is constructed based on a Spearman cor-
relation value of 0.703 and includes 15,092 of the 16,606
original genes (Additional file 14). Here we define hub
genes by the top 5% of connected genes within the final
network model corresponding to 751 genes; their con-
nectivity (k) ranged between 395 and 788. All maximal
largest cliques within the hub subnetwork were ex-
tracted, resulting in 90 cliques (completely connected
subnetworks) with 89 genes each. The intersection and
union of these largest cliques include 74 and 105 genes,
respectively. The union is a highly intra-connected sub-
network of 105 genes with a density of 0.99 (i.e., 46
edges (links) are missing to make a clique).

To build a larger subnetwork, the common immediate
neighbors of the 105 hub genes were combined into what
we define as a hub module; this resulted in a module of
216 genes with density of 0.85 (Additional file 15). The
genes in this hub module (216 genes, Additional file 15)
were also represented in the WGCNA turquoise module.
Both approaches independently identified gene modules
with highly connected hub nodes, although WGCNA’s
turquoise module included more genes, its intra-
connectivity was much lower, indicating that the gene
expression profiles within the WGCNA turquoise mod-
ule exhibited greater variability compared to petal’s hub
module. There was general agreement of the order of
hubs in petal with the kME values of the hubs in the
turquoise module (Additional file 15). A true compari-
son is difficult, because WGCNA’s kME values are local
hub measures, whereas petal defines hubs based upon
the entire small-world and scale-free network model.
Thus, we can conclude that the two gene co-expression
network approaches consistently identified a list of highly
connected hubs in a common network of all grape culti-
vars of the late stages of grape berry ripening.

Integration of WGCNA module subnetworks with the
circadian clock in berry skins

Several other WGCNA modules had circadian clock genes
in the top (most positive) or lower (most negative) 500
KkMEs. To better understand the role of the circadian clock
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in fruit ripening, an integrated circadian clock model was
constructed relating known circadian clock genes with the
grape berry skin gene modules in which they had the
highest correlation (Fig. 8). The model integrated both
blue and red light receptors (identified with red and blue
lightning bolts) as well as genes involved in biochemical
processes regulating the clock. These processes included
light sensing, proteolysis, alternative splicing and chroma-
tin remodeling. The model depicted a complex interplay
of these processes and the large number of gene modules
that were affected. Lines in the model represent known
interactions between genes; red arrows are positive inter-
actions, black lines are negative interactions, and blue
lines indicate direct physical interactions but the direction,
positive or negative, is unknown. No lines indicate that
there are no known interactions at this time.

From this model it is hypothesized that light signals
(in this case a shortening of the day length with a daily
sunrise occurring later each day as time passes in
Autumn and °Brix increases in the berry) drive the reset-
ting of the clock through the photoreceptors. These in
turn affect a series of positive and negative feedback
loops in the model.

More subtle associations in the model can be per-
ceived through the module correlations. The two mod-
ules participating the most in the clock were the
turquoise (14 members) and cyan (8 members) modules.
ZTL, FRS5 and FRS6 photoreceptors were part of the
turquoise module. The Cryptochrome 3 (CRY3) photo-
receptor was part of the cyan module. There is no direct
interaction evidence of these photoreceptors to the core
clock components, but their expression was highly cor-
related with some clock components (e.g. HY5 (Elon-
gated Hypocotyl 5), ELF3, COP1, PHYE (Phytochrome E),
SPA3 (suppressor of phytochrome A-related 3, etc.) indi-
cating some sort of linkage. In other cases, module asso-
ciations were more obvious. For example, ZTL, a blue
light photoreceptor, has a number of known interactions
with clock components, including the inhibition of
TOCI. LNK2 has direct positive effects on ELF4.

At a higher gene subnetwork level, module sub-
network 6 was largely represented by circadian clock
components in the turquoise, coral2, antiquewhitel and
skyblue2 modules. Again, these modules were enriched
in the nucleus, RNA splicing, chromosome organization,
epigenetic regulation, and ubiquitination. The circadian
clock components of the darkseagreen3, cyan, firebrick3
and lavenderblush3 modules were each part of the
module subnetworks 2, 5, 7 and 12, respectively. These
subnetworks were enriched in the chloroplast and the
cytoplasm categories.

Thus, this model depicted different genes (or proteins)
within the circadian clock that had direct positive and
negative interactions with other genes or proteins in
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Fig. 8 An integrated circadian clock model with gene modules of grape berry skins in the late ripening stages. Colored symbols indicate genes

within that particular module. Light sensing, proteolysis, alternative splicing and chromatin remodeling or miscellaneous represent certain regions
of the model. Red and blue lightning bolts represent the reception of their respective light wavelengths for each gene symbol. Lines in the model
represent known interactions between genes; red arrows are positive interactions, black lines are negative interactions, and blue lines indicate direct

physical interactions but the direction, positive or negative, is unknown. No lines indicate that there are no known interactions at this time

these subnetworks, reflecting the complex interplay of
positive and negative feedback loops in the circadian
clock. Other genes were connected in this clock model
through gene module associations, but with no known
physical interactions. These genes are new targets for
future research on the nature of their interactions within
the clock.

Discussion

The mature berry skin transcriptome was highly dynamic

This study investigated grape berry skins sampled at four
concentrations of total soluble sugars: 20, 22, 24 and 26
°Brix. All of these grapes were grown in the same vine-
yard and thus exposed to nearly identical environmental
conditions. We sampled individual berries from a cluster
over a narrow developmental range of increasing sugar
in an attempt to reduce variability of our samples. Most
of the transcriptional changes could be examined with
co-expression subnetworks and could be associated with
highly enriched GO categories. By comparing both red
and white grape cultivars in the same vineyard we could
identify modules common to all cultivars that were
active in the late ripening stages. In the following sec-
tions we discuss some of the processes that appear to be
involved in the berry skin gene subnetworks during the
late stages of ripening.

Accumulation of sugar and gene expression

Sugar levels appear to play a role in the transcriptional
profiles of the berry skin. PCA and the hclust function
utilized in the WGCNA R package showed clear separ-
ation by sugar level and a uniformity between samples.
These observations were similar to other studies where
developmental stages were separated by °Brix [57-60].
Grape berries on a cluster can ripen asynchronously
with a range of °Brix levels [61]. The lack of uniformity
in sugar concentration can range from 5 to 7 °Brix
within a grape cluster [62]. Indeed, we observed varying
°Brix within a cluster while separating individual berries
from our clusters in this study, which followed a normal
distribution within a cluster. Ripening related asynchro-
nicity within a cluster has been shown to synchronize in
some situations at maturity [60], but this process was
not complete in our berries of seven different varieties,
where we observed differences in berries on a single
cluster of approximately 4 °Brix (sometimes a difference
of 8 °Brix was observed).

Gene expression in grape berries is affected by the
sugar concentration [16]. Grape berry sugar concentra-
tions increase substantially after veraison, when soluble
sugars are actively transported via the phloem while
vines are photosynthetically active [7, 63, 64]. Sugars in-
fluence fruit development and gene expression in other
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plant species [11-13]. In grapes, sugar can affect cell
growth and induce the transcription of some genes in
berries [16]. Sugar increases the expression of a glucose-6-
phosphate transporter facilitating sucrose transport
for starch conversion in plastids [65] and acts as a
sensor for sugar signaling [10]. A putative glucose-6-
phosphate transporter (VIT_19s0177g00300) had increas-
ing transcript abundance with °Brix (Additional file 3).

Some bZIP TFs also contain a sucrose-controlled up-
stream open-reading frame that exhibits repressed ex-
pression under increasing molarities of sugar [66, 67].
The promoter sequence of a dihydroflavonol reductase
gene (VIT_18s0001g12800) contains a G-box binding
domain, MYB and sucrose box domains that can be in-
duced by sucrose, glucose and fructose, constituents of a
ripening berry [68]. Sugar regulates other genes involved
in sugar transport and anthocyanin biosynthesis in grape
berries [16].

Thus we confirmed our hypothesis that the transcript
abundance of genes would vary with sugar level. This
argument is supported by the substantial separation of
samples by sugar level in the principal component 2
(Fig. 1), which was only slightly lower (21.4%) than prin-
cipal component 1 (21.8%), which separated by geno-
type. In addition, there was an enrichment of several GO
categories for responses to sugar (Additional files 5 and 6).
While harvesting grapes at different times may have
contributed to some variability in the samples, separ-
ating samples based on their sugar level captured a
large part of the variability. It is likely that some
changes in gene expression in these berry skins were
influenced by the sugar concentration.

Autophagy and the decrease of photosynthesis
transcripts

Many ripening related processes were observed in our
data. There was an increase in specific hub genes in-
volved in autophagy. The most highly connected hub for
autophagy was the ATGI8¢ transcript in the turquoise
module (hub #20; Additional file 11). Autophagy is a
degradative process that involves the formation of
autophagosomes [54] and intracellular vesicle transport
[55]. ATG18g, APG9 (ATG9) and ATG?2, all hubs in the
turquoise module, are part of the ATG9 cycling system,
which participates in the formation of autophagosomes
[54]. There were also a number of proteolysis genes in
the top 100 hubs of the turquoise module (Additional
file 13). Other senescent-like processes have been ob-
served during grape ripening such as chloroplast disinte-
gration [23, 24] and cell death [22].

Ripening also included the continued decrease in tran-
script abundance of most photosynthetic transcripts that
were highly enriched in the darkseagreen3 module. This
is consistent with the deactivation or degradation of
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chloroplasts; interestingly, the darkseagreen3 module
was negatively correlated with the turquoise module
indicating that there may be an interaction between the
two subnetworks.

Most photosynthesis-related transcripts were decreased
in late ripening berries. The ripening berry is a sink organ
for photosynthate, losing its photosynthetic capacity with
time and changing color as chloroplasts are degraded or
converted to other plastids with changing carotenoid
production [46, 69]. In tomato, chloroplasts are converted
to chromoplasts, which are the source of the red pig-
ments. In grapes, it appears from two studies that the
chloroplasts remain chloroplasts, but that the chloroplasts
structure begins to become disorganized with plastoglo-
bules forming and enlarging [23, 24]. These plastoglobules
may be a source for lipids used in volatile production
during the late stages of fruit ripening [24]. Hardie et al.
[24] associated changes in chloroplast structure with the
formation of lipid bodies and monoterpenes, which con-
tribute important volatile aromas in maturing grapes.
High sugar concentrations can induce senescence [9], re-
press transcription of the plastome, reduce chloroplast
numbers and alter chloroplast morphology [10]. Perhaps
the high sugars in the berries have the same effect?

Other ripening processes included cell wall and lipid
metabolism. Some cell wall softening genes like a polyga-
lacturonase (VIT_16s0050g01110) and a xyloglucan en-
dotransglycosylase/hydrolase (VIT_02s0012g02220) were
positively correlated with °Brix levels in the mature berry
skins, whereas the transcript abundance of other cell wall
proteins were decreased, such as a group of expansins
(Additional file 3). Genes involved in fatty acid and lipid
oxidation were also highly enriched in the turquoise mod-
ule (Additional file 11); the transcript abundance of these
genes increased with increasing sugar level.

Epigenetic regulation

The turquoise module was highly enriched with genes
involved with epigenetic regulation. DNA methylation
plays an indispensable role in regulating endogenous
gene transcription [70]. In general, methylation of genes
inhibits gene expression or methylation of RNA affects
alternative splicing. Methylation of histones can be per-
missive for gene expression (e.g. H3K4me3, H3K36me/
me2/me3, and H3K9me3). Acetylation and monoubiqui-
nation of histones are also generally associated positively
with gene activity. In contrast, histone H2A monoubi-
quitination [71] and H3K27 trimethylation [72] potently
repress transcription by the action of the polycomb re-
pressive complexes, PRC2 and PRC1.

Regulation of fruit ripening is linked to DNA methy-
lation. For example, gradual decreases in methylation of
the promoter region of the RIN MADS-box TF in
tomato [17] allows ripening to proceed. Differentially
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expressed methyltransferases, like CMT, DRM and MET,
are transcriptionally active during fruit development in
pear [73] and legume [74]. These findings indicate a
possible role for normal fruit ripening through the regu-
lation of DNA methylation, particularly in this class of
genes highly conserved in eukaryotic species [75].

Methyl-CpG-Binding Domain 9 (MBD?9) in Arabidopsis
can modulate DNA methylation and histone acetylation
to regulate both flowering time and shoot branching
by specifically binding methylated CpG dinucleotides
[76-78]. Atmbd9 mutants flower earlier and show ab-
normal axillary bud outgrowth [77], displaying signifi-
cantly methylated promoter and intronic regions of
the FLC gene [78]. A common increase in transcript
abundance of VviMBD9 in all grape cultivars was
observed and raises the possibility for methylation of
DNA and histones (which presumably causes a reduc-
tion in transcription).

Likewise, DDM1 and PIEI transcript abundance in-
creased in berries with increasing °Brix level in the late
ripening stages, peaking at 26° Brix. DDMI proteins
have been observed co-localizing with MBD proteins
forming protein complexes [76]. DDM1 in Arabidopsis
[79, 80] and rice [81] is necessary for genomic DNA
methylation and chromatin remodeling through pre-
ferential methylation of histone H3 lysine 9 (H3-K9)
instead of transposable elements.

Genome-wide reduction of DNA methylation results
in severe developmental and morphological defects in
ddml mutants [82]. In Arabidopsis, PIE1 forms part of
the Swrl-like complex which deposits a histone variant,
H2A.Z, onto chromatin around both the transcriptional
start and stop sites on genes responsible for flowering
repression (FLC, MAF4 (MADS Affecting Flowering 4)
and MAF5 (MADS Affecting Flowering 5)) enabling their
competence for activation by other factors [83]. Our re-
sults support the hypothesis for a role of epigenetic
regulation during the late stages of berry development.

Light and the core circadian clock

Not all DEGs in the berry appear to be related to the
sampled °Brix levels, some genes appear to be influenced
by the genotype (Fig. 1). Light may also be having an
effect on gene expression. There are at least two publica-
tions that provide evidence for a role of light and the
circadian clock in grapevine.

In the first, over a thousand genes in two Vitis vinifera
cultivars were recently observed expressing distinctive
circadian rhythms throughout the light-dark cycle [84].
For example, VWiLHY and WiTOCI did not oscillate,
whereas VViRVE1 and WWiELF3 of the core clock genes
did display a circadian rhythm in grape [84]. The authors
attribute the differences in clock gene expression to
grape maintaining a simplified clock in ripening fruit.
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Furthermore, secondary processes seemed more respon-
sive to circadian oscillation in late ripening stages than
primary metabolism, such as the phenolic pathway
enzymes: stilbene synthases and phenylalanine ammonia
lyase [84, 85].

In the second publication, a genome-wide analysis
of the cis-regulatory elements (CREs) of grapevine
protein-coding gene promoters was performed [86].
Highly enriched modules or gene networks were iden-
tified. There are over 4000 promoters with a circadian
clock-associated CRE. The genes with this CRE in
their promoters are highly enriched in functional categor-
ies associated with abiotic stress, hormone, flavonoid, and
isoprenoid metabolism. There are a large number of chal-
cone synthase, stilbene synthase, and terpene synthase
genes in this group. The authors suggested that grapevine
might have an “expanded clock regulatory network”. In
addition, they linked light- and chloroplast-related genes
to the subnetwork of the circadian clock gene, VviHYH.

The circadian clock is regulated by light and may have
affected gene expression in grape berry skins during the
late stages of berry ripening. Day length decreased with
advanced berry ripening and the progression of autumn.

Numerous genes in the core circadian clock were
highly connected in gene subnetworks in the late ripen-
ing stage. Many of the core clock genes displayed similar
patterns of expression for all genotypes (Fig. 8). As the
day length shortened, it appears that the day phase of
the clock accelerated or shortened, allowing a greater
involvement of the evening complex and its cyclic
repression of the morning genes.

The circadian clock is regulated by a number of negative
feedback loops and positive regulators [87, 88]. Its regula-
tion involves a complicated interaction of transcription
[89], RNA splicing [90, 91], proteolysis [92] and histone
modifications [53, 93]. Light regulates histone modifica-
tions, gene expression and higher order chromosome
organization [53]. Genes from all of these processes are
present in our circadian clock model (Fig. 8).

The circadian clock regulates gene expression through-
out the day and night. It regulates the rhythmic variation
in photosynthesis, starch accumulation, and starch turn-
over [94]. A well-supported hypothesis is that the circa-
dian clock regulates starch metabolism in the leaf to
maintain sugar metabolism throughout the night. The
circadian clock in turn is sensitive to photosynthesis and
soluble sugar accumulation [95]. Sugars accelerate the day
phase of the circadian clock.

Do sugars accelerate the day phase in berries? The role
of the circadian clock is well studied in leaves, roots, apical
meristems, buds and flowers, but there are few papers on
the role of the circadian clock in fruit development.

Light signals set the circadian clock (Fig. 8) as the day
length shortens in autumn. The circadian clock likely
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received day length signals through far red (e.g. FAR1-
related proteins) and blue light sensors (e.g. ZTL) that
trigger changes in gene expression involving RNA pro-
cessing, proteolysis, chromosome modification and
organization, and may lead to major changes in berry
metabolism (e.g. suppression of gene expression of
chloroplast genes).

Yet berries develop normally in grapevines grown
under constant environmental conditions in the green-
house [96, 97] or growth chamber [11]. Elevated CO,
concentrations substantially accelerate photosynthesis
and berry development [97], indicating that sugar accu-
mulation may affect rates of berry development. Can
changes in day length or the circadian clock alter the
rate of berry development and fruit composition as well?
To what extent the circadian clock functions in berry
development is unclear, but the network analyses results
in this study indicate that it was highly connected to major
developmental processes and gene modules related to
epigenetic regulation and chromosome organization. The
interactions of sugar with the circadian clock may be even
more complex. The roles and interactions of the circadian
clock with sugar accumulation and grape berry develop-
ment warrants further investigation.

Conclusions

Gene expression of berry skins in the late stages of
ripening was associated with sugar accumulation and
genotype. A common set of genes for all seven culti-
vars was identified in the late ripening stages of berry
development. Transcriptional regulation of fruit ri-
pening involved many transcription factors and other
regulators of hormone levels. In addition, the tran-
script abundance of genes related to DNA meth-
ylation indicated that epigenetic programming might
be involved in the regulation of transcription during
berry ripening at maturity, suppressing or silencing
many genes. Gene co-expression analysis was used by
two different approaches to elucidate complex tran-
scriptional networks. Two of the most highly con-
nected gene subnetworks consisted of hundreds of
genes: one subnetwork involved RNA processing,
chromosome organization, epigenetic regulation, pro-
teolysis and autophagy and the other subnetwork,
negatively correlated with the first, involved photosyn-
thesis. Thus, there seems to be an interaction be-
tween these two subnetworks that links nucleotide
metabolism and autophagy with berry skin ripening
processes including the large decrease in photosyn-
thetic transcripts. A circadian clock signature for key
clock components was also observed to participate in
these subnetworks and warrants further study to bet-
ter understand the role light plays in these subnet-
works and the late stages of berry ripening.
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The identification of a core set of genes common to all
seven cultivars, both red and white wine producing,
allowed the identification of key processes in the devel-
opment of late ripening berry skins, including autoph-
agy, catabolism, nucleotide metabolism, photosynthesis,
cell wall metabolism, gene expression and chromosome
organization. Some of these key processes were associ-
ated with specific modules or gene subnetworks and the
key hub genes in these subnetworks were ranked for
future targeted testing. These transcriptomic results sup-
port the hypothesis that senescent-like processes domin-
ate the late stages of berry ripening as the seed matures
and prepares for dispersal.

Methods

Plant materials

Vitis vinifera L. cultivars Cabernet Franc, Cabernet
Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon
Blanc and Semillon were grown at the University of
Nevada, Reno’s Nevada Agricultural Experiment Station
Valley Road Experimental Vineyard. Research approval
was obtained by Grant R. Cramer from the Nevada
Agricultural Experiment Station and the University of
Nevada, Reno. All grape cultivars were originally ob-
tained as certified material from Inland Desert Nursery,
Benton, City, Washington, USA. The cultivars were
surveyed in September and October 2012, depending
upon the berry maturity of each cultivar. Maturity was
assessed using a digital refractometer (HI 96811, Hanna
Instruments, Woonsocket, RI, USA) to measure soluble
solids (“Brix) that are mostly made up of sugars. Berry
clusters were collected between 11.00 h and 13.00 h
(near solar noon) in an attempt to minimize temporal
transcriptional response variations caused by the circa-
dian clock. At harvest, individual berry °Brix levels were
determined with a digital refractometer. Separated berry
skins were placed into 50 mL centrifuge tubes in liquid
nitrogen according to sugar level (1 + 0.5 °Brix incre-
ments; 19 to 27 °Brix). Berry to berry variation was
considerable on an individual cluster; in some cases ber-
ries varied as much as 8 “Brix on a single cluster. In this
way berries were collected over many days from multiple
clusters from multiple vines from 3 different individually
irrigated blocks in the vineyard. Each block was consid-
ered an experimental replicate.

RNA extraction

Three experimental replicates from each cultivar at 20,
22, 24 and 26 °Brix were used for sequencing. Total
RNA was extracted from approximately 250 mg of finely
ground skin tissue using a modified CTAB extraction
protocol followed by an additional on-column DNase
digestion using a Qiagen RNeasy Mini Kit (Qiagen,
Valencia, CA, USA) as in [33]. RNA quality and quantity
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were assessed with a Nanodrop ND-1000 spectropho-
tometer (ThermoFisher Scientific, Waltham, MA, USA)
and an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA).

RNA-seq library preparation and sequencing

Eighty-four 50 bp single-end, barcoded libraries were con-
structed and sequenced by the Neuroscience Genomics
Core at the University of California, Los Angeles (Los
Angeles, CA, USA) using Illumina TruSeq RNA library
prep kits (Illumina Inc., San Diego, CA, USA) according
to the manufacturer’s instructions. The barcoded
libraries were pooled and multiplexed, and were
sequenced using Illumina TruSeq chemistry (version
3.0) on a HiSeq2000 sequencer (Illumina Inc., San
Diego, CA, USA).

Gene expression and statistical analysis

The single-end sequence fragments (reads) generated by
[lumina sequencing were base-called, demultiplexed,
and then quality filtered with the NGS QC Toolkit [98].
TopHat2 (version 2.0.10) was used to align reads to the
V1 version of the PN40024 Vitis vinifera reference gen-
ome annotation obtained at EnsemblPlants [99]. Filtered
reads were aligned with the “—b2-very-sensitive” option
for Tophat2 and “~transcriptome-index” option with a cor-
responding EnsemblPlants-sourced index, as in [33, 100].
Remaining parameters were kept at default. Approximately
93% of reads were mapped (Additional file 1). Samtools
[101] and HTSeq [102] were used to generate feature
counts from the BAM alignment files produced by
Tophat2. HTSeq was run using the “union” mode, with the
“-i gene_id -t exon -s no” options. Counts of genes were
filtered prior to expression analysis, using the following
independent criteria: transcripts with zero counts in all
samples were excluded; further filtering was performed to
remove transcripts with <15 counts in 75% of samples (63
of 84) prior to expression comparison (Additional file 2).
Correction scaling factors were computed from the filtered
and untransformed library counts using the trimmed mean
of M-values method between each pair of sample libraries,
as implemented in edgeR (3.14.0) [103]. This produced an
effective library size for model-based differential expression
analysis in edgeR. A design model that defined each °Brix
level combination as an element of a group (~ 0 + Group)
was used to test for differential expression using simple
contrasts between subgroups of interest within each culti-
var (e.g. 22-20, 24-20, 24-22, 26-20, 26-22, 26-24).
Statistically significant transcript abundance changes
were found below the adjusted p-value of 0.05, ac-
cording to the Benjamini and Hochberg procedure to
control the false discovery rate (FDR) [104]. An inter-
section of statistically significant transcripts at differ-
ent °Brix levels was made to derive a common set of
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berry skin transcripts shared in the seven grapevine
cultivars. RNA-seq statistics are presented in Table 1.

Gene co-expression analysis

Gene expression was also evaluated with the WGCNA R
package version 1.51 [27] to identify modules of corre-
lated genes and investigate intramodular hub genes. A
variance-stabilizing transformation of the filtered counts
of genes was performed using DESeq2 version 1.12.3
[105] before WGCNA, as suggested by WGCNA pack-
age authors. To meet the scale-free topology criteria for
optimal clustering, a power of 11 was selected as a soft
threshold value to transform the adjacency matrix (see
Additional file 10); a biweight midcorrelation was used
as an alternative to Pearson’s correlation. The following
settings for the adjacency function (datExpr, power = 11,
type = “signed hybrid”, corFnc = “bicor”, corOptions = “use
= ‘p, maxPOutliers = 0.1”) and for the cuttreeDynamic
function (dendro = geneTree, distM = dissTOM, deep-
Split = 2, pamRespectsDendro = FALSE, minCluster-
Size = 30); these functions have been shown to be the best
approach for biologically meaningful results [26].

The petal R package [29] was independently utilized to
construct a true small-world and scale-free complex
gene co-expression network model from which gene
modules with higher intra-correlation and density were
identified. Before creating a network model, the distribu-
tion of the entire dataset of 16,606 filtered and quality-
controlled transcripts was investigated for normality to

Table 1 RNA-sequencing, read mapping and feature count
statistics of the experiment

Next-generation sequencing platform [llumina Hiseq2000

Cultivars investigated 7

Library type Single-end
Number of libraries 84

Read length (bp) 50

Total number of reads 2,901,803,214
Average total reads 34,545,276.36
Total number of bases (Gb)® 145.09

Total number of HQP filtered reads 2,877,839,522
Average HQ reads 34,259,994.31
Total number of HQ bases in HQ reads (Gb) 143.89
Percentage of HQ filtered reads 99.18%
alignment_not_unique® 3,410,081.85
ambiguous® 219,495.24
no_feature® 2,692,823.24
not_aligned® 0.00
too_low_aQual® 0.00

2Giga base pair (1,000,000,000 bp)
PHigh quality (Phred score = 20)
“HTSeq
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ensure statistically appropriate association measures to
define genes as similar. The graph generated by graph-
HistQQFromFile clearly showed a non-normal distribu-
tion (Additional file 16); thus, the association measure,
Spearman Correlation Coefficient, was left at default and
createSWSFnetFromFile was used to create the network
model with no other parameter settings. The model’s
hub genes were identified by calculating the connectivity
degree (number of neighbors) of each node (gene, tran-
script) using the function: getVertexStats.

Gene annotation and functional enrichment of GO
categories

Genes were annotated from three sources. Arabidopsis
orthologs were identified using The Arabidopsis Informa-
tion Resources (TAIR) annotation in Gramene [106]. Add-
itional annotations were added from Grimplet et al. [107]
and the corresponding author. A GO file was created using
the EnsemblPlants BioMart [108] for Vitis vinifera. Func-
tional category enrichment of biological processes was
determined with the BinGO plugin application (version
3.0.2) in Cytoscape (version 3.2.1) [109]. Gene ontology
membership classifies function hierarchically from broad to
specific. Multiple testing correction adjusted p-values were
determined using the Benjamini & Hochberg false discov-
ery rate (FDR) at a 0.05 threshold.

Additional files

Additional file 1: Read counts uniquely mapped to the PN40024 grape
genome (XLSX 12905 kb).

Additional file 2: Log, counts per million of filtered and normalized
read counts (XLSX 11815 kb).

Additional file 3: Differential expression results from edgeR of the
significantly affected transcripts in common from berry skins of seven
grapevine cultivars at different “Brix levels. V1 ID refers to the transcript
identification of the gene loci of the V1 version of the PN40024 Vitis vinifera
reference genome. Cultivar abbreviations are Cabernet Sauvignon (CS),
Merlot (ME), Pinot Noir (PN), Chardonnay (CD) and Semillon (SM). P-values
and adjusted p-values (PAdj) were calculated for each of the comparisons
between the different °Brix levels for each cultivar (XLSX 2391 kb).

Additional file 4: Annotation of the differentially expressed genes
(DEGs) and count data associated with each gene. V1 ID is the same as in
Additional file 3. AtID refers to Arabidopsis thaliana gene loci. Headings on
the column refer to the cultivar abbreviation followed by the number of
the replicate and the number of the °Brix level. The final columns
compute the differences between °Brix levels for each cultivar and
average them for all cultivars. Color highlights represent decreasing
(green) or increasing (red) differences for the gene for the 26 to 20 °Brix
comparison (26-20) (XLSX 3136 kb).

Additional file 5: Statistical results from gene set enrichment analysis of
the DEGs using BinGO (XLSX 271 kb).

Additional file 6: Image of the network construction of the gene
ontology categories by BinGO. Yellow colors represent significant
enrichment and size of the circle represents the number of genes in
each set (PDF 214 kb).

Additional file 7: BinGO analysis of the top 500 DEGs with a positive
difference between 26 and 20° Brix (26-20) (XLSX 73 kb).
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Additional file 8: BinGO analysis of the top 500 DEGs with a negative
difference between 26 and 20° Brix (26-20) (XLSX 88 kb).

Additional file 9: A gene cluster dendrogram with gene modules
(colored blocks) for the cuttreeDynamic and merged modules functions
in WGCNA (PDF 11 kb).

Additional file 10: Scale independence and connectivity plots for the
determination of the power function of a scale-free topology using the
soft thresholding function in WGCNA (PDF 5 kb).

Additional file 11: Module membership of all filtered transcripts as defined
by WGCNA. Values are the kME (module eigengene connectivity). Circadian
rhythm and clock genes are highlighted in yellow (XLSX 17289 kb).

Additional file 12: Summary details of all 64 gene modules. Gene
module rows are highlighted with different colors to reflect transcript
abundance differences between red and white grapes for each module
(red highlight for red grapes, green highlight for white grapes and yellow
highlight for no distinction between red and white grapes) (XLSX 99 kb).

Additional file 13: Annotations of the top 100 hub (kME) genes in the
turquoise module. Highlight colors represent different GO categories
assigned to each gene (XLSX 111 kb).

Additional file 14: Network statistics for the petal analysis on the
filtered set of 15,092 genes. V1 ID is as in Additional file 3. The table
includes all genes of the network model based on a Spearman
correlation threshold of 0.703. Each gene's cluster coefficient (localCC)
and connectivity degree (k) are included (XLSX 423 kb).

Additional file 15: The set of 216 genes in the hub module constructed
from the top 5% of the most connected genes in the petal-constructed
gene network. Column headings are the same as in previous additional
files (XLSX 76 kb).

Additional file 16: Top) Histogram (blue) of the 16,606 transcripts and
line (line) of expected normal distribution considering the mean and
standard deviation of the given data. Bottom) Quantile-quantile (Q-Q) plot
of given data compared to the expected hypothetical normal distribution.
Histogram and Q-Q plots demonstrate that the distribution of the given
data is not normal as the histogram lies outside the normal curve and the
points on the QQ-plot are not scattered alone the red line (PDF 580 kb).
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