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Abstract

Background: Edible dry beans (Phaseolus vulgaris L) that darken during postharvest storage are graded lower and
are less marketable than their non-darkened counterparts. Seed coat darkening in susceptible genotypes is
dependent upon the availability of proanthocyanidins, and their subsequent oxidation to reactive quinones. Mature
cranberry beans lacking this postharvest darkening trait tend to be proanthocyanidin-deficient, although the
underlying molecular and biochemical determinants for this metabolic phenomenon are unknown.

Results: Seed coat proanthocyanidin levels increased with plant maturation in a darkening-susceptible cranberry bean
recombinant inbred line (RIL), whereas these metabolites were absent in seeds of the non-darkening RIL plants. RNA
sequencing (RNA-seq) analysis was used to monitor changes in the seed coat transcriptome as a function of bean
development, where transcript levels were measured as fragments per kilobase of exon per million fragments mapped.
A total of 1336 genes were differentially expressed between darkening and non-darkening cranberry bean RILs.
Structural and regulatory genes of the proanthocyanidin biosynthesis pathway were upregulated in seed coats of the
darkening RIL. A principal component analysis determined that changes in transcript levels for two genes of unknown
function and three proanthocyanidin biosynthesis genes, FLAVANONE 3-HYDROXYLASE 1, DIHYDROFLAVONOL 4-
REDUCTASE 1 and ANTHOCYANIDIN REDUCTASE 1 (PvANRT) were highly correlated with proanthocyanidin accumulation
in seed coats of the darkening-susceptible cranberry bean RIL. HPLC-DAD analysis revealed that in vitro activity of a
recombinant PYANRT was NADPH-dependent and assays containing cyanidin yielded epicatechin and catechin; high
cyanidin substrate levels inhibited the formation of both of these products.

Conclusion: Proanthocyanidin oxidation is a pre-requisite for postharvest-related seed coat darkening in
dicotyledonous seeds. In model plant species, the accumulation of proanthocyanidins is dependent upon upregulation
of biosynthetic genes. In this study, proanthocyanidin production in cranberry bean seed coats was strongly associated
with an increase in PYvANRT transcripts during seed maturation. In the presence of NADPH, PvANR1 converted the
physiologically relevant substrate cyanidin to epicatechin and catechin.
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Background

Edible dry bean or common bean (Phaseolus vulgaris L.)
is one of the most highly cultivated legumes, and is a
primary source of dietary protein, fiber and vitamins in
developing nations. In 2014, 25.1 million tonnes of
edible dry bean were produced worldwide with the
highest cultivation occurring in India, Myanmar, Brazil,
United States and Mexico [1]. There is evidence for two
centers of domestication for P. vulgaris, specifically that
of small seeded beans in Mexico (Mesoamerican) and
large seeded beans in the South American Andes [2, 3].
Although, Andean cultivars (e.g., cranberry bean) are
genetically distinct from Mesoamerican cultivars (e.g.,
pinto) [4], both are susceptible to postharvest-related
seed coat darkening [5, 6].

At harvest, cranberry beans are characterized by the
presence of red-coloured mottling on a cream coloured
seed coat. The light background colour is transformed into
a beige/brown colour with postharvest handling [5, 6].
Similarly, the beige background of pinto beans is suscep-
tible to postharvest darkening [6-8]. Typically, seed coat
darkening is promoted by light, humidity, atmospheric O,,
and high temperatures during storage, as well as high
moisture content in seeds [6, 9, 10]. In pinto bean,
postharvest-related seed coat darkening is controlled by
the presence of one dominant J allele, whereas seeds of
homozygous recessive (jj) plants do not darken [6]. Control
of postharvest-related seed darkening is an economically
important issue as it is one of the factors that can lead to
reduced quality and an overall lower grade for the dry bean
market [11]. In addition, darkened seed coats tends to be
associated with a hard-to-cook trait [12, 13]. To date, the
biochemical and molecular factors underlying the
darkening of cranberry beans during postharvest storage
remain unknown.

In legume seeds, proanthocyanidins accumulate within
the endothelium of the seed coat [14, 15]. Their oxida-
tion to reactive quinones promotes an interaction with
proteins, culminating in brown deposits within this cell
layer, including in pinto bean cultivars that are suscep-
tible to seed coat darkening [7, 15]. Thus, seed coat
darkening in legumes (e.g., dry bean, pea and soybean) is
associated with the availability of proanthocyanidins, and
similar phenomena occur amongst members of the Bras-
sicaceae, including the model plant Arabidopsis thaliana
[7, 16-21]. Proanthocyanidins (otherwise known as con-
densed tannins) are oligomers or polymers of flavan-3-
ols (e.g., catechin and epicatechin) which are derived
from the flavonoid biosynthesis pathway [22] (Fig. 1).
Proanthocyanidin metabolism is well described for
Medicago truncatula, Vitis vinifera and Arabidopsis.
Moreover, the availability of a number of Arabidopsis
pale seed or TRANSPARENT TESTA (TT) mutants has
facilitated the elucidation of structural and regulatory
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steps that are functionally relevant for this pathway [23].
In Arabidopsis, proanthocyanidin biosynthesis gene
transcripts are co-ordinately regulated and accumulate
with seed development, reaching maximal levels at the
mid to late torpedo stage of embryogenesis [24]. By
contrast, gene expression for this pathway is highest at
early stages of pea seed development, and in advance of
proanthocyanidin accumulation in seed coats [19].

Proanthocyanidins are metabolically derived from
phenylalanine in a series of steps catalysed by enzymes
encoded by early biosynthesis genes; specifically: PHENYL-
ALANINE  AMMONIA-LYASE, CINNAMATE  4-
HYDROXYLASE, 4-COUMAROYL: COENZYME A LIG-
ASE, CHALCONE SYNTHASE, CHALCONE ISOMERASE,
FLAVANONE 3-HYDROXYLASE (F3H) and FLAVONOID
3"-HYDROXYLASE (F3'H). It is worth mentioning that the
first three enzymes provide precursors for all phenylpropa-
noids, including flavonoids such as flavonols, anthocyanins
and proanthocyanidins (Fig. 1). Proanthocyanidin formation
is dependent upon the expression of late biosynthesis genes,
DIHYDROFLAVONOL 4-REDUCTASE (DFR), LEU-
COANTHOCYANIDIN REDUCTASE (LAR), ANTHO-
CYANIDIN SYNTHASE (ANS) and ANTHOCYANIDIN
REDUCTASE (ANR) (Fig. 1). The conversion of flavanones
to flavan-3-ols begins with the DFR-mediated stereospecific
reduction of dihydroflavonols to leucoanthocyanidins and
their subsequent reduction by LAR (Fig. 1; [19, 25-27]).
Leucoanthocyanidins are converted to anthocyanidins by
ANS [28]. Thereafter, anthocyanidins can be reduced to
flavan-3-ols, such as epicatechin in the presence of ANR
[18, 29, 30]. In Arabidopsis and M. truncatula, proantho-
cyanidin accumulation and seed coat darkening are also
dependent upon the presence of multidrug and toxic
extrusion (MATE) transporters, which are involved in
ATP-dependent transport of epicatechin 3'-O-3-glucoside
across the vacuolar tonoplast [31, 32]. These late proantho-
cyanidin biosynthesis genes are positively regulated by a
myeloblastosis proto-oncogene (MYB)-basic helix-loop-
helix (bHLH)-WD40 repeat transcription factor complex in
seeds, leaves, flowers and fruits; in addition, MYBs are dis-
tinguished on the basis of whether their activity activates or
represses transcription of proanthocyanidin biosynthesis
genes [22, 33-37]. It is postulated that free flavan-3-ols are
condensed into proanthocyanidin oligomers/polymers by
hitherto unknown enzymes, which are subsequently
oxidized [23].

The genome of a P. vulgaris Andean landrace,
G19833, was recently sequenced, and its annotation was
facilitated by RNA-sequencing (RNA-seq) data [3].
RNA-seq overcomes the limitations encountered in trad-
itional transcriptome approaches (e.g., microarrays) as it
is capable of detecting low-abundance transcripts [38].
Moreover, the availability of this newly released genome
enabled the identification of tissue-specific transcript
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Proposed model of the proanthocyanidin biosynthesis pathway in cranberry bean seed coats. The proposed biosynthetic genes are based on
information that is available for Arabidopsis and M. truncatula [17, 20, 22-24]. Structures corresponding to underlined anthocyanins, flavan-3-ols, and
proanthocyanidins are based on HPLC-MS metabolite data described by Chen et al. [5, 41]. Gene abbreviations include: ANR, ANTHOCYANIDIN REDUCTASE;
ANS, ANTHOCYANIDIN SYNTHASE; AGT, URIDINE DIPHOSPHATE-GLUCOSE: ANTHOCYANIDIN 3-O-GLUCOSYLTRANSFERASE; CHS, CHALCONE SYNTHASE; CHI,
CHALCONE ISOMERASE; C4H, CINNAMATE 4-HYDROXYLASE; 4CL, 4-COUMAROYL:COENZYME A LIGASE; DFR, DIHYDROFLAVONOL 4-REDUCTASE; F3'H, FLAVONOID

3"-HYDROXYLASE; F3H, FLAVANONE 3-HYDROXYLASE; LAR, LEUCOANTHOCYANIDIN REDUCTASE; PAL, PHENYLALANINE AMMONIA LYASE

abundance patterns in developing dry bean plants, as
well as those challenged by a fungal pathogen [39, 40].
Recently, research by our group determined that
proanthocyanidin B dimers and a C-type trimer, as well
as their precursors, catechin and epicatechin, are present
at high concentrations in the seed coats of fully mature
cranberry beans with known susceptibility to postharvest
darkening [5, 41]. By contrast the levels of these metabo-
lites are very low in non-darkening seeds. Together,
these metabolite profiles suggest the proanthocyanidin
pathway is functional in seed coats of darkening cran-
berry bean seeds and absent in non-darkening seeds
(Fig. 1). In the present study, RNA-seq analysis was used
to monitor global transcript abundance profiles in seed
coats of darkening and non-darkening cranberry bean
recombinant inbred lines (RILs) at three developmental
stages in order to test the hypothesis that the accumula-
tion of proanthocyanidins in seed coats of postharvest-
darkening susceptible cranberry beans is associated with

increased expression of proanthocyanidin metabolism
genes.

Results

Morphological and proanthocyanidin phenotypes in the
seed coats of cranberry bean RILs

RILs were generated from a cross between the postharvest
darkening-susceptible cranberry bean ‘Etna’ and the non-
darkening cranberry-like bean, ‘Wit-rood boontje, and
herein are referred to as darkening and non-darkening
RILs. A qualitative analysis confirmed that a darkening of
the seed coat background occurred in beans collected from
mature pods of the darkening RIL following storage under
greenhouse conditions for 22 days (Fig. 2a). During the
same period, there was no change in the seed coat colour
background of mature beans sampled from non-darkening
RIL plants. Similarly, these visual phenotypes were apparent
in seeds left at 4 °C for 48 months (Fig. 2b). These aged
seeds were incubated with 4-dimethylaminocinnamaldehyde

Non-darkening RIL

Storage

Storage
(Day 22)

Darkening RIL

Fig. 2 Effect of postharvest storage on seed coat quality of darkening and non-darkening cranberry bean RILs. For both RILs, mature cranberry
beans were maintained under (@) greenhouse conditions for 22 d or (b) in a sealed plastic bag at 4 °C for 48 months () DMACA staining of aged
seeds from both RILs as described under Methods. Scale bar represents 2 cm
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(DMACA), which interacts with proanthocyanidin terminal
units and/or their monomeric precursors in plant tissues
[42]. Thereafter, staining was evident in seeds of the dark-
ening RIL, indicating the presence of proanthocyanidins
and their related metabolites (Fig. 2c). No staining was
evident in aged seeds of the non-darkening RIL.

Previously, we determined that high levels of
proanthocyanidins and their precursors are present in
mature bean seed coats of the darkening RIL, but other-
wise absent in the non-darkening RIL seed coats [5].
The aforementioned study did not analyze proanthocya-
nidin content in seed coats of immature beans. Here, the
levels of total extractable proanthocyanidins were
measured in the seed coat of both cranberry bean RILs
as a function of seed development. This assessment was
based on a simple spectrophotometric assay following
the incubation of seed coat extracts with acidified
DMACA to yield a chromophore having a maximum
absorbance at 640 nm [43, 44]. Total extractable
proanthocyanidin levels in cranberry bean seed coats
were quantified by comparison to a known range of
authentic procyanidin A2 dimer standard [41]. Flavan-3-
ol standards were not chosen for this comparison as
there is a precedent for underestimating proanthocyani-
din concentrations [44]. In the darkening cranberry bean
RIL, the levels of these metabolites in seed coats of
intermediate stage seeds were approximately 2-fold that
of the early stage seed coats (Fig. 3). The levels of these
metabolites remained unchanged thereafter. By contrast,
total extractable proanthocyanidin levels were negligible
in seed coats of non-darkening cranberry bean RIL,
regardless of seed developmental stage.

Analysis of the seed coat transcriptome

RNA-seq analysis was used to evaluate whether changes
in the seed coat transcriptome were associated with
proanthocyanidin levels as a function of seed develop-
ment in cranberry beans. For maximal read depth, all
cDNA libraries were prepared following rRNA depletion,
as it is known that this highly abundant RNA strongly
interferes with many RNA-seq platforms [45, 46]. The
[lumina HiSeq 2500 platform was used to generate
paired-end reads for 18 seed coat cDNA libraries, repre-
senting three greenhouse replicates of both cranberry
bean RILs at early, intermediate and mature stages of
seed development. For libraries of both RILs at all three
developmental stages, the average number of raw
sequence reads of 101 bp length ranged from 50.6 to 57
million (Table 1). The quality trimming procedure
generated a total of 889.8 M reads for all 18 seed coat
libraries. Bowtie2 and TopHat mapped approximately
95% of these reads to the P. vulgaris G19833 reference
genome (Version 1.0) [3]. The analysis revealed that
1.5% of the total mapped reads aligned to more than one
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Fig. 3 Seed coat proanthocyanidin levels in developing cranberry beans.
Total extractable proanthocyanidin levels were determined in seed coats
isolated from darkening and non-darkening cranberry bean RILs at early,
intermediate and mature stages of bean seed development. Total
extractable proanthocyanidin levels are expressed as procyanidin A2
equivalents as described under Methods. Each datum represents the
mean = standard error of three greenhouse replicates. The proanthocya-
nidin level data were analyzed for statistical differences with a one-way
analysis of variance; for both RILs and their developmental stages, means
were compared with the Tukey’s test. Shared letters indicate no
significant differences at p < 0.05

location in the reference genome. Cufflinks was used to
estimate the abundance of ambiguous reads in each
biological replicate, including splice variants [47], and
this approach yielded an average of 41,746 transcripts
across all biological replicates. The original estimation of
protein coding loci in P. vulgaris was 27,197 [3], whereas
31,638 genes are projected in the Phaseolus vulgaris
Gene Expression Atlas [39]. Gene counts for all seed
coat libraries were normalized in Cuffnorm, yielding an
average of 27,751 genes. Transcript levels (expressed as
fragments per kilobase of exon per million fragments
mapped, FPKM) are provided for all 18 seed coat
libraries, including those genes annotated to the P.
vulgaris genome (see Additional file 1).

Differential gene expression analysis

A total of 1336 genes were differentially expressed
between darkening and non-darkening seed coats with a
relative expression ratio of >1.4, a P value <0.01 and non-
zero raw read counts for one or more cDNA libraries.
Moreover, a comparison of developmental stage-specific
¢DNA libraries revealed genes were differentially
expressed between the RILs at early, intermediate and ma-
ture stages of seed coat development (Table 2). The differ-
entially expressed genes for each developmental stage
were classified into two groups: genes up-regulated in
darkening RIL seed coats and genes up-regulated in non-
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Table 1 Metrics for cranberry bean seed coat transcripts generated by lllumina sequencing

Darkening RIL seed coats

Non-Darkening RIL seed coats

Early Intermediate Mature

Early Intermediate Mature

55,936,639 (+5.9%)
51,875,329 (£5.0%)
50,185,242 (£ 4.8%)
49,391,395 (+ 4.8%)
793,847 (£ 4.1%)

50,956,017 (+4.4%)
47,244,783 (£ 4.4%)
45,620,314 (+ 4.5%)
45,003,334 (+ 4.5%)
616,980 (+ 6.4%)

Raw reads
Trimmed reads 47,241,601
Total mappings
Single mappings

Multi mappings

50,662,455 (+ 5.4%)
+ 4.9%)
45,831,924 (+ 4.9%)
45,174,334 (+4.8%)
657,590 (& 7.7%)

54,666,751 (+
50,916,550 (x 7.5%)
49,381,726 (+ 7.5%)
48,592,490 (+7.5%)
789,237 (£ 6.4%)

+ 7.5%) 52473537 (+6.2%)
48,876,790 (£ 5.9%)
47,212,581 (£ 5.9%)
46,573,926 (+ 5.9%)

638,656 (+5.7%)

54,424,625 (+ 6.4%
50,446,588 (+ 5.4%
48,831,478 (£ 5.2%
48,173,184 (£ 5.2%
658,294 (+ 5.8%)

Alignment (%) 95.3 (+ 0.3%) 95.3 (+ 0.2%) 95.7 (+ 0.1%) 95.5 (+0.2%) 954 (+ 0.2%) 95.6 (+ 0.2%)
Transcripts 42,715 (+£0.7%) 41,368 (+ 0.3%) 41,077 (£ 04%) 42,921 (+0.5%) 41,400 (+ 0.2%) 40,993 (+ 0.2%)
Gene counts 27915 27,727 27,661 27,897 27,683 27,626

For each RIL developmental stage, data represents the mean * percent standard error (denoted in brackets) of three greenhouse replicates.

darkening RIL seed coats (see Additional files 2 and 3). Of
these, the largest number of differentially expressed genes
was apparent at the mature stage of development, with
64% of these upregulated in the darkening RIL seed coats,
and the remainder were upregulated in the non-darkening
RIL (Table 2). It is worth mentioning that 57 genes were
upregulated in darkening RIL seed coats, regardless of de-
velopmental stage (see Additional file 2). By contrast, 26
genes were upregulated in the non-darkening RIL seed
coats in all three stages analyzed (see Additional file 3). In
addition, in both RILs there was evidence for genes upreg-
ulated in two of the three stages analyzed (see Additional
files 2 and 3). For example, 99 genes were upregulated in
seed coats at both early and intermediate stages in the
darkening RIL relative to the non-darkening RIL, but un-
affected at the mature stage. We determined that 29 genes
were differentially expressed in a stage-specific manner in
both darkening and non-darkening RILs (e.g., upregulated
in early and intermediate stages of the darkening- and
non-darkening RIL, respectively; see Additional file 4).
The remainder and bulk of the differentially expressed
genes were upregulated solely at one developmental stage.

Using model clustering techniques, the differentially
expressed seed coat genes were clustered into 14 groups;
the number of genes per cluster ranged from 49 to 168
(Additional file 5). For all clustered genes, their expres-
sion patterns across seed maturation stages were visual-
ized after normalization of the raw read counts to FPKM

Table 2 Summary of differentially expressed genes between
darkening and non-darkening RIL seed coats at each
developmental stage

Seed developmental Differentially expressed Up-regulated genes

stage genes (P < 001) Darkening Non-

RIL darkening RIL
Early 595 361 234
Intermediate 439 262 177
Mature 711 456 255

(Fig. 4; see Additional file 5). Genes belonging to cluster
5, 6 and 9 displayed the highest transcript abundance at
the early stage, whereas transcript levels were greatest at
the intermediate stage in clusters 2, 3, 8 and 14. More-
over, cluster 2 genes were more highly expressed in the
darkening RIL relative to the dramatically lower
transcript levels in the non-darkening RIL. A similar ex-
pression profile pattern was apparent for various genes
from cluster 14. Transcript levels were maximal at the
mature stage for genes belonging to clusters 1, 4, 7 and
13. Gene ontology (GO) enrichment analysis revealed
that 197 differentially expressed genes belonging to
clusters 1, 2, 9 and 14 were associated with biological
processes, which included metabolic processes related to
amino acids, amines, lipids, organic acids, redox pro-
cesses and small molecules (Fig. 5). In addition, the GO
enrichment analysis identified 287 genes belonging to
cluster 1, 2, 4, 7 and 9 that were categorized as 15
separate molecular function GO terms, ranging from
catalytic activity, hydrolase activity, and metal ion bind-
ing. No significant GO terms were associated with genes
belonging to cluster 5, 6, 8, and 11-13.

The GO enrichment analysis identified several genes be-
longing to cluster 2 as biosynthetic genes (see Additional
file 5). Upon further examination, it was determined that
many of these genes were annotated as flavonoid/
proanthocyanidin biosynthesis genes in the P. vulgaris
genome. Furthermore, these were classified here on the
basis of their similarity at the amino acid level to known
structural and regulatory proanthocyanidin pathway genes
from other plants, such as Arabidopsis, M. truncatula,
Glycine max and Vitis species. Thus we identified changes
in their respective seed coat transcript levels as a function
of seed development (Fig. 6). The late proanthocyanidin
biosynthesis genes, PvF3HI, PvDFRI1, PvLAR, PvANS and
PvANRI were expressed at all stages of seed maturation in
the darkening cranberry bean RIL. The highest transcript
levels were detected in cDNA libraries prepared from seed
coats of intermediate stage beans. Thereafter, a decline in
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Fig. 4 Clustering of differentially expressed seed coat genes in darkening and non-darkening cranberry bean RILs. For the 14 gene clusters, expression
patterns demonstrate seed development and/or RIL-specific expression patterns. For each cluster, the transcript levels for individual genes (represented by
various coloured lines) are given in FPKM at early (E), intermediate (I) and mature (M) stages of development for the darkening and non-darkening RILs

transcript abundance was apparent at the mature stage for
all three genes. Conversely, transcript levels were very low
in seed coats of the non-darkening RIL, regardless of
developmental stage. A second DFR gene, PvDFR2, was
also identified, but transcript levels were not different in
early and intermediate stage seed coats. In addition,
PvDFR2 transcript levels in darkening beans were 15 to
32% lower than those apparent for PvDFRI. Similar tran-
script profile patterns were apparent for the late biosyn-
thesis gene PvANS. For early biosynthesis genes (e.g.,

PHENYLALANINE AMMONIA-LYASE 2), transcript
abundance levels in the darkening RIL were comparatively
lower than the aforementioned genes, although for the
most part expression peaked at the intermediate stage. A
number of genes were annotated as proanthocyanidin
pathway transporters (e.g., PvMATEI) and transcription
factors (e.g., PvMYB6 and PvMYBI11). In general, their
respective transcript levels peaked at the intermediate
stage and were as much as two orders of magnitude lower
than that of the late biosynthesis structural genes in the
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darkening RIL, although 1.4 to 410 times greater than the
non-darkening RIL. Genes annotated as bHLH and WD40
REPEAT transcription factors were also upregulated in the
darkening RIL, although none of the bHLH candidates
belonged to cluster 2 (see Additional files 2 and 5).

A comparison of in silico translations of all differentially
expressed PvMYBs with amino acid sequences of known
MYBs from other plant species revealed PvMYB6 and
PyMYBI11 were phylogenetically similar to MYBs from
other plant species that are known to positively regulate
proanthocyanidin biosynthesis gene expression (Fig. 7).
Moreover, PvMYB6 and PvMYB11 were well separated
from clades containing R2R3-MYBs that negatively regu-
late proanthocyanidin/anthocyanin biosynthesis in various
plant species. None of the differentially expressed
PvMYBs clustered with MYBs known to activate the
biosynthesis of flavone/flavonol, or with those involved in

anthocyanin biosynthesis and seed mucilage production.
For all differentially expressed genes identified in this
study, a transcription factor binding site (TFBS) enrich-
ment analysis was performed to determine whether
sequences upstream of the transcription start site (-500 to
-1 bp) contained putative MYB and bHLH binding sites
similar to those known for Arabidopsis and Brassica
napus proanthocyanidin biosynthesis genes [20, 48, 49].
The TEBS enrichment analysis revealed the percentage of
genes containing MYB and bHLH binding sites within
regions upstream of the transcription start site were com-
parable for genes upregulated in the darkening RIL versus
the non-darkening RIL (Table 3). By contrast, the TEBS
analysis revealed a higher percentage of transcription
factor binding sites were present in the regions upstream
of cluster 2 genes relative to the complete list of genes
upregulated in darkening cranberry beans.



Freixas Coutin et al. BVIC Plant Biology (2017) 17:89 Page 9 of 23

120

ro2 PVPAL2 C i PVF3H1 r PVAGT
- 1200 - 52 a a
g or s i g€ [
a o 800 — o 30—
[ [ b b & E [ N be
40 L L
- ﬂ 400 - 15
C C c c E C c ¢ .C C
° m )] [ oL = m — 0F
C :Eli: PvC4H r T PvDFR1 60 a PvMYB6
80 1500 — C T
= C g C S s
L b 40
5 [o @ 1000 - £
[ C [
40 L r b
C ﬂ c 500 |- 20 -
c c E L c
ok - — oL - cCc c © ok Ij -— C i C
- ' a E
12  a PvactL1 g L PWFR2| 100 =& PYMYB9
C i 300 - T F
L o 75 -
ol 5 ol -
o o L o F b
w C w u & 50
4 100 |- 25 £
o - c =8 o E L bbb 0 E = c c ¢
[ a
- o - PvMYB11
450 C :kl): PvCHS3 a0 a PVLAR 45 r a
C g .
- = o - a
g 300 ¥ 200 g o=
o r a a r o r
[ L w r [y L
150 — 100 = b 15 —
L C b L b
\ S, oo ok b D.:. b ol P
L a PvCHI2 - - PVYMATE1
wol T 300 [ £ PANS| oo £ ¢
s [ r C
a0l b Ezoo—b S160 -
w r a L o L
L w C w L
150 |- c ¢ = C 100 _—ﬂ 80 -
3 u c c L b b b b
sl . PUFIH r f PVANR1 L a PYMATE2
C . 9l o T
[ T a 2400 L
= == F = [T
X ar € 1600 i 6
™ C o __ b & -
L w - L
20 b = 800 |- 3
oL 5 b t c ¢ coc ol L bbb
E I M EI M E I M EI M E I M E I M
Darkening Non-darkening Darkening Non-darkening Darkening Non-darkening
RIL RIL RIL RIL RIL RIL

Fig. 6 Proanthocyanidin pathway gene expression in seed coats of darkening and non-darkening cranberry beans. Transcript levels for each gene
are shown for seed coats isolated from seeds of both RILs at early (E), intermediate (I) and mature (M) stages of development, and are expressed
as FPKM. Each datum represents the mean + standard error of three greenhouse replicates. Transcript level data for each gene were analyzed for
statistical differences with a one-way analysis of variance; for both RILs and their developmental stages, means were compared with the Tukey's
test. Shared letters indicate no significant differences at p < .05. For each gene transcript, the corresponding gene accession number is provided
in brackets: PvPAL2, PHENYLALANINE AMMONIA LYASE 2 (Phvul.001G177700, Phvul.001G177800); PvC4H, CINNAMATE 4-HYDROXYLASE
(Phvul.008G247400); Pv4CL1, 4-COUMAROYL:COENZYME A LIGASE 1 (Phvul.002G040100); PvCHS3, CHALCONE SYNTHASE 3 (Phvul.002G038700); PvCHI2,
CHALCONE ISOMERASE 2 (Phvul.009G143100); PvF3'H, FLAVONOID 3'-HYDROXYLASE (Phvul.009G192400); PvF3H1, FLAVANONE 3-HYDROXYLASE 1
(Phvul.003G261900); PvDFR1, DIHYDROFLAVONOL 4-REDUCTASE 1 (Phvul.001G012700); PvDFR2, DIHYDROFLAVONOL 4-REDUCTASE 2 (Phvul.001G012800);
PVLAR, LEUCOANTHOCYANIDIN REDUCTASE (Phvul.007G102100); PvANS, ANTHOCYANIDIN SYNTHASE (Phvul.002G152700); PvANRT, ANTHOCYANIDIN RE-
DUCTASE 1 (Phvul.002G218700); PvAGT, URIDINE DIPHOSPHATE-GLUCOSE: ANTHOCYANIDIN 3-O-GLUCOSYLTRANSFERASE (Phvul.002G214300); PvMYB6,
MYELOBLASTOSIS PROTO-ONCOGENE 6 (Phvul.006G114800); PvMYB9, MYELOBLASTOSIS PROTO-ONCOGENE 9 (Phvul.011G105600); PvMYBT 1, MYELO-
BLASTOSIS PROTO-ONCOGENE 11 (Phvul.003G222400); PYMATET, MULTIDRUG AND TOXIN EXTRUSION 1 (Phvul.008G197000); PvMATE2, MULTIDRUG AND
TOXIN EXTRUSION 2 (Phvul.006G028700)

In order to assess which of the aforementioned

proanthocyanidin pathway genes were most highly asso-
ciated with proanthocyanidin accumulation in seed coats
of the darkening RIL, a principal component analysis
(PCA) was performed for the transcript abundance pro-
files of all 1336 differentially expressed genes. To this

end, the normalized gene expression data (represented
as FPKM) for all 18 RNA-seq libraries were converted
into 18 uncorrelated variables, herein referred to as prin-
cipal components (PCs). PCs 1 to 4 accounted for 95.2%
of total variance (Fig. 8a). In order to determine which
of these PCs accounted for proanthocyanidin
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(See figure on previous page.)

Fig. 7 Phylogenetic comparison of P. vulgaris MYB amino acid sequences with known repressor and activator MYBs from other plant species. In silico
translations of P. vulgaris MYB coding sequences corresponding to genes that were differentially expressed between darkening and non-darkening
cranberry bean RILs were aligned to amino acid sequences of other plant MYBs using ClustalW (www.genome jp/tools/clustalw; [81]). The maximum
likelihood method in MEGA 6.06 was used to construct the unrooted tree [82]. Numbers proximal to each node represent the percent support values
from the bootstrap analysis using 500 iterations. Previously characterized MYBs are represented in black font, and PYMYBs are represented in blue font.
GenBank™ accession numbers for each MYB are provided in parentheses: Antirrhinum majus MYB MIXTA, AmMMYB MIXTA (CAA55725.1); AMMYB-ROSEA2
(ABB83827.1); AmMMYB-VENOSA (ABB83828.1); Arabidopsis thaliana MYB3, AtMYB3 (AAS10027.1); AtMYB4 (AAP13410.1); AtMYB5 (AEE75369.1); AtMYB12

(AEC10843.1); AtMYB16 (ABI49476.1); AtMYB32 (ABD91498.1); AtMYB75 (AAG09100.1); AtMYBOO (AEE34503.1); AtMYB123 (AAK54744.1); Diospyros kaki
MYB2, DkKMYB2 (BAI49719.1); DkMYB4 (BAI49721.1); Epimedium sagittatum MYB12, ESMYB12 (AFH03064.1); Fragaria x ananassa MYB1, FaMYB1
(AAK84064.1); FaMYB10 (ABX79947.1); Gossypium hirsutum MYB1, GhMYB1(AAN28270.1); Garcinia mangostana MYB10, GmMYB10 (ACM62751.1);
Gentiana triflora MYB, GtMYB3 (BAF96933.1); GtMYBP3 (BAM71801.1); Leucaena leucocephala MYB1, LIMYB1(ADY38393.2); Lotus japonicus MYB TT2a,
LiIMYB-TT2a (BAG12893.1); LIMYB-TT2b (BAG12894.1); LIMYB-TT2c (BAG12895.1); Malus x domestica MYB10, MdMYB10 (ACQ45201.1); Medicago truncatula
MYB, MtMYB (KEH30894.1); MtMYB2 (AES99346.1); MtMYB14 (AFJ53057.1); MtLAPT (ACN79541.1); MtLAP2 (ACN79539.1); MtLAP3 (ACN79542.1); MtLAP4
(ACN79540.1); Prunus avium MYB, PaMYB (ADY15314.1); Picea glauca MYB4, PgMYB4 (ABQ51220.1); Petunia x hybrida AN2, PAMYB-AN2 (AAF66727.1);
PhMYB1 (CAA78386.1); PAMYB4 (ADX33331.1); PAMYB PH4 (AAY51377.1); PAMYB-DPL (ADW94950.1); PhMYB27 (AHX24372.1); PhAMYB-PHZ
(ADW94951.1) Pinus taeda MYB4, PtMYB4 (AAQ62540.1); Populus tremula x Populus tremuloides, PtrMYB182 (AJI76863.1); Solanum lycopersicum MYB12,
SIMYB12 (ACB46530.1); Sorghum bicolor Yellow Seed1, Sb-Yellow Seed1 (AAX44239.1); Theobroma cacao Transparent Testa 2-Like MYB, TcMYB-TT2
(ADD51352.1); Trifolium affine MYB14, TaMYB14 (AFJ53046.1); Trifolium arvense MYB14, TarMYB14 (AFJ53053.1); Trifolium occidentale MYB14, ToMYB14
(AFJ53052.1); Trifolium repens MYB4, TrMYB4 (AMB27079.1); TrMYB7 (AMB27080.1); TrMYB14 (AFJ53050.1); TrMYB133 (AMB27081.1); TrVIYB134
(AMB27082.1); Tr RED LEAF (AIT76557.1); Tr RED LEAF DIFFUSEa (AIT76556.1); Tr RED LEAF DIFFUSED (AIT76560.1); Tr REDVa (AIT76565.1); Vitis labrusca x
Vitis vinifera MYBA1-1, VIMYBA1-1 (BAC07537.1); Vitis vinifera MYBPAT, VWMYBPA1 (CAJ90831.1); WMYB4a (ABL61515.1); VwMYB5a (AAS68190.1);
VWMYB5b (AAX51291.1); VWMYBC2 (ABW34393.1); VWMYBC2-L1 (AFX64995.1); WMYBC2-L2 (ACX50288.1); VWMYBC2-L3 (AIP98385.1); WMYB-PA2
(ACK56131.1); Zea mays MYB P1, ZmMYB P1 (ABM21535.1). In silico translations of cranberry bean MYBs were annotated as PYMYB1 to PPMYB15 and
their corresponding gene accession numbers are provided in parentheses: PYMYB1 (Phvul.001G219000); PYMYB2 (Phvul.001G221500); PvMYB3
(Phvul.003G203900); PvMYB4 (Phvul.002G092100); PvMYBS5 (Phvul.009G158200); PvMYB6 (Phvul.006G114800); PMYB7 (Phvul.009G228200); PvMYB8
(Phvul.005G114100); PvMYB9 (Phvul.011G105600); PvMYB10 (Phvul 002G163500); PvMYB11 (Phvul.003G222400); PYMYB12 (Phvul 002G306000); PvMYB13
(Phvul.004G053600); PvMYB14 (Phvul.007G093100); PvMYB15 (Phvul.001G227900). Scale bar represents 0.2 amino acid substitutions per site

accumulation within the seed coats of the darkening
cranberry bean RIL, a correlation analysis was per-
formed. Positive correlation coefficients were observed
between total proanthocyanidin levels and PCs 1, 2 and
3 (Fig. 8b), with the largest influence attributable to PC3.
The score plots revealed that PC2 explained 22.86% of
the total variance, yielding a clear separation of tran-
script profiles for all three developmental stages. In
addition, PC3 explained 13% of the total variance, and
transcript profiles for the darkening RIL were separated
from those of the non-darkening RIL (Fig. 8c). To iden-
tify which gene transcript levels were associated with the
difference in proanthocyanidin levels between darkening
and non-darkening RILs, a correlation loading plot ana-
lysis was implemented for all differentially expressed
genes (Fig. 8d). Here, five genes displayed high positive
coefficients for both PCs, and were associated with
proanthocyanidin accumulation. This included transcript
profiles for two genes of unknown function,

Phvul.006G097300 and Phvul.003G174200. In silico
translation revealed these encode small proteins of 66
and 73 amino acids, respectively. In the darkening RIL,
transcripts for the Phvul.003G174200 gene were greatest
at the mature stage of bean development and were 2.3-
fold that of the levels apparent at early and intermediate
stages (see Figure S1 in Additional file 6). By compari-
son, Phvul.006G097300 transcript levels were decreased
at the mature stage relative to the immature develop-
mental stages in the darkening RIL. In either case,
expression of these unknown genes was minimal in seed
coats of the non-darkening RIL. Clustering analyses can
identify groups of genes with similar expression patterns;
moreover, this information can be used to infer the
biological function of unknown genes based on their
association with genes of known function [50].
Phvul.006G097300 belonged to cluster 2 genes, many of
which are annotated as flavonoid/proanthocyanidin
structural and regulatory genes (see Additional file 5). A

Table 3 Analysis of the conserved MYB and bHLH core consensus sequences in the region upstream of the putative transcription

start site of differentially expressed seed coat genes

Conserved regulatory sequence

Percentage of genes containing putative binding site

Non-darkening RIL upregulated genes

Darkening RIL upregulated genes Cluster 2 genes

MYB-core
bHLH E-box

CIAGCTIGTTIAG] 538
CACGTG 19.7

556 725
26.1 66.7

The percentage of genes containing a putative binding site is expressed as the number of genes containing the conserved regulatory sequence divided by the
total number of genes in the group. The total number of annotated genes in each group is provided in brackets: Non-darkening RIL upregulated genes (529);
Darkening RIL upregulated genes (804); Cluster 2 genes (51)
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Fig. 8 Relationship between proanthocyanidin levels and gene expression in cranberry bean seed coats. a Scree plot of the percentage of total
variance explained by each principal component (PC). b Correlation matrix of the relationship between seed coat total proanthocyanidin levels and
PCs accounting for 95% of the total variance. For each comparison, the strength of the correlation is represented by the corresponding correlation
coefficient value. ¢ Score plot of PC2 versus PC3. Biological replicates of darkening and non-darkening RIL seed coat are represented by red and green
symbols, respectively. Dashed circles within the score plot are used to identify grouping of darkening and non-darkening RIL seed coat transcriptomes
at each developmental stage. d Correlation loading plot analysis of PC2 versus PC3. Scatter dots represent the contribution of each of the 1336
differentially expressed genes. Genes with absolute coefficients greater than 0.1 for PC2 and/or PC3 were labelled with their corresponding gene a
nnotation or accession numbers. Pv, Phaseolus vulgaris; PPvANRT, ANTHOCYANIDIN REDUCTASE 1 (Phvul.002G218700); PvAS, ASPARAGINE SYNTHETASE
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FLAVANONE 3-HYDROXYLASE 1 (Phvul.003G261900); PvGARP, GIBBERELLIC ACID REGULATED PROTEIN (Phvul.001G006300); PVIFR, ISOFLAVONE REDUCTASE
(Phvul.009G059000); PvLTP, LIPID TRANSFER PROTEIN (Phvul.008G137100); PvPCD, PROGRAMMED CELL DEATH PROTEIN (Phvul.004G174800); PvSCP, SERINE
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BLAST search of the non-redundant protein database in
NCBI determined that the in silico translation of
Phvul.006G097300 has similarity to small proteins of
hypothetical function, including an adzuki bean leucine-
rich repeat extensin-like protein. Phvul.003G174200
belonged to cluster 7, which was comprised of many
genes involved in DNA binding. Interestingly a GO en-
richment analysis revealed that genes encoding binding
proteins (GO:0005488) represented the largest group of
differentially expressed seed coat genes (Fig. 6). Apart
from these unknown genes, proanthocyanidin accumula-
tion was strongly associated with an increase in
transcripts corresponding to the proanthocyanidin bio-
synthesis genes PvF3H1, PvDFRI, and PvANRI. PvANRI
transcript levels were more strongly associated with
proanthocyanidin levels in the darkening RIL cranberry
bean than PvF3H1 and PvDFRI transcript levels (Fig. 8).

Biochemical properties of a recombinant cranberry bean
ANR

As part of this study, it was our aim to investigate the
biochemical properties of PvANR1 due to the strong
association between the transcriptional regulation of this
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putative proanthocyanidin biosynthetic gene and the ac-
cumulation of these metabolites in seed coats of the
darkening cranberry bean RIL. Recombinant PvANRI1
was expressed and purified from Escherichia coli.
Denaturing gel electrophoresis and immunoblotting
revealed the eluate collected from an immobilized metal
affinity chromatography (IMAC) step contained a single
hexahistidine (Hisg)-tagged polypeptide of 43.7 kDa (Fig. 9).
Immunoblot analysis demonstrated that the subsequent in-
cubation with enterokinase removed the Hisg-tag, yielding
a homogenous preparation of a 37.4 kDa polypeptide
matching the predicted molecular mass of this protein. For
all recombinant protein preparations, approximately
26 + 2.4% of the Hisg-tag free PvANRI1 was recovered after
the enterokinase cleavage step. With this purification
strategy, a 6 L bacterial culture yielded an average of
6.75 + 1.05 mg of recombinant PvANRI.

A phylogenetic comparison revealed that the PvANR1
amino acid sequence is closely related to other legume
ANRs, including pea and soybean representatives that
are expressed in seed coats and utilize cyanidin as a
substrate (See Figure S2 in Additional file 6). In vitro
PvANRI1 activity was assessed in the presence of
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Fig. 9 Biochemical analysis of the recombinant PvANR1 enzyme. Coomassie Brilliant Blue stained SDS-PAGE (a) and immunoblot (b) analysis of the
expression and purification of the recombinant PVANR1 from E. coli BL21 cells. With exception of lanes where corresponding protein amount is indicated,
lanes were loaded by equal volume (15 pL) in a final of 1x SDS sample buffer. The immunoblot was subjected to a chromogenic stain following successive
probing with an anti-Hiss antibody and a secondary antibody conjugated to alkaline phosphatase. Abbreviations include: Hiss, hexahistidine; IMAC,
immobilized metal affinity chromatography; IPTG, isopropyl 3-D-thiogalactopyranoside; M,, relative molecular mass. ¢ HPLC-DAD analysis of in vitro PvANR1
activity. The grey chromatogram represents authentic (—)-epicatechin and (+)-catechin standards. The blue chromatogram represents products formed
from assays containing PvANR1, 100 uM cyanidin and 800 uM NADPH. The black chromatogram represents the analysis of an assay performed in the
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cyanidin, the predominant anthocyanidin occurring in
seed coats of the darkening cranberry bean RIL [5], and
the hydride donor NADPH. When PvANRI1 was incu-
bated with fixed concentrations of NADPH and cyanidin
at pH 7.0, HPLC-DAD analysis revealed the formation
of two peaks at retention times 3.9 and 4.7 min, which
co-migrated with authentic standards of catechin and
epicatechin, respectively (Fig. 9c). There was no evidence
of spontaneous formation of these products in assays
performed in the absence of PvANRI. The kinetic
properties for cyanidin and NADPH were established
using this HPLC-DAD based assay (Table 4). For
PvANR]I, plots of cyanidin concentration versus the rate
of epicatechin and catechin formation did not fit a
Michaelis-Menten relationship. A non-linear regression
model determined that the K5 and apparent V,,,, for
cyanidin-derived epicatechin and catechin formation
were highly similar. Interestingly, product formation was
dramatically inhibited at cyanidin concentrations greater
than the Kj,s the observed K; for epicatechin and
catechin formation were 4.8 and 4.2-fold higher than the
Kys for these products, respectively. Similarly, a
sigmoidal relationship was observed for plots of epicate-
chin and catechin formation as a function of NADPH
concentration in PvANRI1 assays performed at a fixed
cyanidin concentration of 100 pM. The highest specifi-
city constant (K.,/K,s) was revealed for cyanidin-
derived epicatechin formation.

Seed germination

In order to assess the impact of seed coat proanthocya-
nidins and darkening on seed germination, we analysed
the percentage of aged seeds exhibiting emerged radicles
as a function of imbibition time. On average, 26% of
non-darkening seeds germinated after 2 d, whereas no
germinated seeds were observed for the beans of the
darkening RIL during this period (Fig. 10). Thereafter, an
increase in germination percentage was apparent for
both RILs, although these proportions were 25 and 20%
higher in non-darkening relative to darkening seeds on d
3 and 4, respectively. After 9 d, germination percentages
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were 92% or higher, and not statistically different
between seeds of both RILs.

Discussion

Proanthocyanidins accumulated with development in
seed coats of a cranberry bean RIL susceptible to
postharvest darkening

Plant tissues and their derived foodstuffs are the sole
source of proanthocyanidins, including baking chocolate,
cinnamon, grape seed, sorghum, chokeberries and dry
beans [51]. Moreover, these metabolites exert numerous
benefits in humans, including antioxidant and cardio-
protective effects [42]. Unfortunately, the presence of
these polyphenolic compounds is associated with dark-
ening in dicotyledonous seed coats [15, 18-21]. Seed
coat darkening tends to occur in susceptible legumes,
such as faba beans, and certain cultivars of edible dry
bean, including pinto and cranberry beans [8, 10, 52].
This was also evident in seeds of a cranberry bean
darkening RIL derived from a cross between the post-
harvest darkening susceptible parent ‘Etna’ and the non-
darkening ‘“Wit-rood boontje, but otherwise absent in a
non-darkening RIL (Fig. 2a, b). Here, we report
darkened cranberry beans were DMACA-stained and
contained dramatically more total extractable proantho-
cyanidin levels than its non-darkening counterpart at all
stages of seed development (Figs. 2c and 3). For mature
stage seed coats, these trends are in agreement with an
HPLC-MS analysis of total extractable proanthocyanidin
metabolite levels [5]. It is worth mentioning that the
current study reports an approximately 100% higher
level of seed coat proanthocyanidins in mature darkening
RIL beans relative to our earlier study. Quantification in
the previous study was based on catechin equivalents; the
molecular mass of this compound is 50% that of the pro-
cyanidin A2 standard employed in Fig. 3. Moreover, the
chromogenic response generated for procyanidin A2 in
the in vitro DMACA assay is less than that observed for
catechin [44]. Proanthocyanidin levels were greater at the
intermediate and mature stages in darkening cranberry
bean seed coats. This is not without precedent as

Table 4 Kinetic parameters for PvANR1 in assays containing varying amounts of cyanidin and NADPH

Varying Product Kos K; Vimax Kear keaKo s
substrate (UM) (UM) (nmol min~" mg™") s "M
Cyanidin Epicatechin® 1142 £ 190 631.5+ 1199 11.57 £ 1.13 0.0072 + 0.0007 654+ 138
Cyanidin Catechin® 1165 + 10.7 5838 £ 116.1 832+ 073 0.0052 + 0.0004 454 + 642
NADPH Epicatechmb 1035+ 74 - 334 +£021 0.0021 + 0.0001 20.1 £ 049
NADPH Catechin® 1023+78 - 244 +0.18 0.0015 + 0.0001 149 +1.03

The K. (also referred to as turnover rate) was calculated using a molecular mass of 37.4 kDa for the final recombinant PvANR1 preparation, following removal of

the Hise tag

A non-linear regression model for substrate inhibition (as described under Methods) was used to determine apparent kinetic parameters for cyanidin. These

assays were performed at a fixed NADPH concentration of 800 pM

PThe Hill equation was utilized to determine kinetic parameters for NADPH. These assays were performed at a fixed cyanidin concentration of 100 uM; the Hill
coefficient for epicatechin and catechin formation was 2.5 £+ 0.19 and 2.5 + 0.15, respectively
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Fig. 10 Seed germination rates in darkening and non-darkening cranberry
beans. For both RILs, aged mature cranberry beans were sown on sterile
agar plates and incubated at 25 °C under darkness for 9 d, as described
under Methods. For each RIL in the experiment, the seed germination
percentage was determined daily and represents the number of seeds
exhibiting radicle emergence relative to the total number of seeds. Each
datum represents the mean + standard error of three separate
experiments. The seed germination percentage data were analyzed for
statistical differences with a one-way analysis of variance; within each day
of the time course, means were compared with the Tukey's test. Asterisks
are used to indicate significant differences at p < 005

proanthocyanidins tend to be largely absent or minimal at
early stages of seed development in Arabidopsis and pea,
but are increased thereafter [19, 24].

Proanthocyanidin accumulation in darkening cranberry
bean seeds was associated with the co-ordinated
upregulation of proanthocyanidin metabolism genes
An RNA-seq approach revealed that 1336 genes were
differentially expressed in seed coats of a darkening
cranberry bean versus those of a non-darkening geno-
type. Our findings are consistent with a transcriptome
analysis of Brassica juncea seed coat genes, which re-
ported 1304 genes are differentially expressed between a
brown seed line (proanthocyanidin containing) and a
yellow seed line (proanthocyanidin deficient) [53]. More-
over, the majority of the differentially expressed genes in
B. juncea seed coats are not associated with the
proanthocyanidin pathway, which is consistent with the
majority of the differentially expressed seed coat genes
identified in this study (see Additional files 2, 3 and 5).
A MYB-bHLH-WD40 repeat complex encoded by
TT2-TT8-TTGI drives expression of late proanthocya-
nidin biosynthesis genes (e.g., the ANR gene BANYULS)
in developing Arabidopsis seeds [24, 33, 35]. In our
study, a TFBS analysis of all cluster 2 genes (predomin-
antly flavonoid/proanthocyanidin metabolism genes)
revealed an enrichment in putative MYB and bHLH
binding sites that match those known for Arabidopsis
(Table 3) [20, 48, 49]. In fact, transcript levels for
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PvMYB6, PvMYB9 and PvMYBI11 were co-ordinately en-
hanced in darkening cranberry beans and negligible in
the non-darkening genotype (Fig. 6). In addition, their
expression patterns were correlated with those of
proanthocyanidin structural genes (Figs. 4 and 6). Interest-
ingly, PvMYB6 and PvMYBI1 belong to two separate
phylogenetic clades containing MYBs known to activate
expression of proanthocyanidin biosynthesis genes (Fig. 7).
All of this information taken together indicates that the
transcriptional activation of late proanthocyanidin biosyn-
thesis genes is critical for proanthocyanidin content in the
seed coats of cranberry beans.

In our study, transcript profiles for three proanthocya-
nidin biosynthesis genes, PvF3HI, PvDFRI and PvANRI
were highly associated with proanthocyanidin accumula-
tion (Fig. 8). Similarly, the expression of ANR genes is
restricted to proanthocyanidin accumulating-cells in
seed coats of B. napus and Arabidopsis [20, 49]. Further-
more, ANR expression is well associated with proantho-
cyanidin accumulation in seed coats of pea and soybean
[18, 19]. PvANRI transcript levels were negligible in the
seed coat of the non-darkening cranberry bean RIL. This
finding is consistent with the reduced expression of
ANR in red-brown soybean seeds, as opposed to the
brown seed coat present in cultivars displaying a non-
defective ANR gene [18]. Interestingly, the P. vulgaris
genome contains a second ANR, annotated here as
PvANR2, which was phylogenetically similar to a ubiqui-
tously expressed ANR2 from Glycine max [18] (see
Figure S2 in Additional file 6). PvANR2 transcript levels
were dramatically lower than PvANRI, and not differen-
tially expressed in the RNA-seq analysis investigated in
this study. It is worth mentioning that the PCA analysis
did not identify PvLAR as one of the genes associated
with proanthocyanidin accumulation in darkening cran-
berry beans. This is most likely due to the fact that this
gene was expressed at early and intermediate stages in
the non-darkening RIL, albeit at lower levels than the
darkening RIL (Fig. 6). Similarly, LAR is expressed in
developing M. truncatula seeds, but unlike DFR, ANS
and ANR, its transcript profiles are not well associated
with proanthocyanidin accumulation [54]. Conversely,
LAR and ANR contribute to the respective production
of catechin and epicatechin in pea seeds and Theobroma
cacao [19, 27]. Thus, the possibility remains that LAR
contributes to proanthocyanidin biosynthesis in cran-
berry bean seed coats.

Recombinant PvANR1 produced catechin and epicatechin
Seed coats of mature cranberry beans of the darkening
RIL contain high levels of catechin and epicatechin, as
well as their proanthocyanidin dimers and trimers [5].
Here, we purified a recombinant PvANR1 following its
expression in E. coli (Fig. 9a). The molecular mass of the
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recombinant PvANR1 (37.4 kDa) is similar to that of
GmANRL1 [18]. In vitro biochemical assays revealed that in
the presence of the hydride donor NADPH, cyanidin was
converted into products that co-chromatographed with au-
thentic catechin and epicatechin standards (Fig. 9¢). A kin-
etic analysis of this enzyme determined that these products
were formed with similar catalytic efficiencies (Table 4).
For PvANR], the apparent V,,,,, for epicatechin formation
from cyanidin is within the range of those detected for
other ANRs [19, 55]. Similarly, recombinant ANRs from
Arabidopsis, Gossypium hirsutum, M. truncatula, Vitis bel-
lula and Camellia sinensis form both flavan-3-ol products
in vitro [29, 55-58]. Moreover, the intrinsic epimerase
activity of a V. vinifera ANR promotes the stereospecific
reduction of cyanidin at the C2 and C4 positions to form
both (+)-epicatechin and (-)-catechin [59]. It is unclear as
to whether a similar mechanism is apparent for PvANR1,
as chiral chromatography was not used in our study.
Together with the transcriptome analysis, the in vitro
biochemistry of the recombinant PvANRI1 suggests it is a
major enzyme involved in the production of proanthocya-
nidin precursors in cranberry bean, although the possibility
remains that LAR activity could also contribute to catechin
formation in cranberry bean seeds. At concentrations
above the apparent Kj s for cyanidin, PvANR1 activity was
inhibited by this substrate. This is not without precedent
as reduced specific activities are evident for GmANRI1 at
cyanidin concentrations in excess of 100 uM [18]. More-
over, non-hyperbolic kinetic relationships have been
described for a recombinant V. bellula ANR enzyme [58].
In terms of the biological significance, this could represent
a mechanism for feed-forward inhibition of this enzyme as
a means of limiting the over-accumulation of proanthocya-
nidins, and allowing ample substrate for simultaneous
anthocyanin formation in cranberry bean seed coats.

Seed coat germination was delayed in non-darkening
cranberry bean seeds

In darkening cranberry seeds, germination was delayed
by 1 d and consistently lower over the first 4 d of imbi-
bition relative to the non-darkening RIL (Fig. 10). This is
most likely due to the dramatic difference in proantho-
cyanidin content within the seed coats of these two
genotypes. This is in agreement with a report demon-
strating that germination is inhibited in Arabidopsis and
B. napus seeds following the application of exogenous
proanthocyanidins [60]. In Arabidopsis, seed coats that
are high in proanthocyanidins promote strong seed
dormancy, as these are less permeable to water and pro-
mote de novo formation of the growth inhibitor, abscisic
acid [60, 61]. The accelerated germination capacity in
non-darkening cranberry bean seeds was correlated with
an absence of proanthocyanidin content in their seed
coats, but their impact on hormone-related processes is
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not known. A putative gibberellic acid-regulated protein
gene, Phvul.001G006300, was negatively associated with
proanthocyanidin accumulation in cranberry beans (Fig. 8d).
Interestingly, this gene was upregulated in the non-
darkening RIL (Additional file 3). Gibberellic acids are plant
hormones with numerous biological roles in the plant,
including the activation of starch breakdown enzymes in
embryonic seed tissues leading to a release from dor-
mancy [62]. Furthermore, seed coat growth is linked
to accumulation of bioactive gibberellic acids, specif-
ically 13-hydroxylated gibberellic acids in these tissues
during pea seed maturation [63]. Phvul.001G006300
was one of 67 genes belonging to cluster 4, which in-
cluded hormone-related genes that were more upreg-
ulated in non-darkening than darkening RIL seed
coats (see Additional file 5). Biochemical and func-
tional characterization studies of the proteins encoded
by these hormone-related genes are required to better
understand their respective relevance for seed coat
development in non-darkening cranberry beans. As
the non-darkening cranberry beans are proanthocyani-
din deficient, the possibility remains that hormonal
regulation of the dormancy period is varied from that
operating in darkening cranberry beans.

Conclusions

Seed coat darkening in dicotyledonous species is
dependent upon proanthocyanidin oxidation to reactive
quinones [7, 15-17]. Interestingly, this phenomenon is
apparent in genotypes with a ready availability of seed
coat proanthocyanidins, including the postharvest dark-
ening susceptible cranberry bean RIL germplasm investi-
gated in this study. Moreover, research on the model
plant organisms Arabidopsis and M. truncatula has
established that proanthocyanidin levels in the seed coat
are associated with a fully functional biosynthetic path-
way [23-25, 31-33]. An RNA-seq analysis revealed that
nearly 5% of all seed coat genes were differentially
expressed between a darkening- and a non-darkening
cranberry bean RIL, which is consistent with the tran-
scriptomic analysis of seed coats from diversely coloured
B. juncea seeds [53]. All proanthocyanidin biosynthesis
genes (including PvLAR and PvANRI) were co-
ordinately upregulated in the darkening RIL, and their
seed developmental profiles were consistent with the
expression of PvMYBs. These phenomena were largely
absent in non-darkening cranberry beans. Notably,
proanthocyanidin accumulation in seed coats of the
darkening susceptible RIL was highly associated with the
upregulated expression of three proanthocyanidin bio-
synthesis genes, PvF3H1, PvDFRI, and PvANRI. Like
the majority of ANRs characterized to date [29, 55-59],
PvANRL1 activity was NADPH-dependent and catalyzed
the formation of epicatechin and catechin from cyanidin.
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All three of these phenolic compounds are evident in
seed coats of darkening cranberry beans, but absent in
non-darkening seeds [5, 41]. Interestingly, PvANRI ac-
tivity was inhibited by high concentrations of cyanidin.
Together the findings in this study suggest that: (i)
proanthocyanidin accumulation in cranberry bean seed
coats is linked to transcriptional regulation of the
proanthocyanidin pathway; (ii) PvANRI1 serves as the
major enzyme for proanthocyanidin formation; and (iii)
substrate inhibition of this activity could represent an in
vivo control mechanism for limiting proanthocyanidin
accumulation. The combined transcriptomic and
biochemical information given here is of critical import-
ance for future breeding strategies aimed at limiting
darkening in P. vulgaris seeds.

Methods
Chemicals and plant material
Unless otherwise mentioned, chemicals were purchased
from Sigma-Aldrich (Oakville, Ontario, Canada). Dark-
ening and non-darkening cranberry bean RILs were
created by the Bean Breeding Program at the University
of Guelph (Guelph, Ontario, Canada) from a cross
between a parental line, ‘Etna) that is susceptible to post-
harvest darkening [41] and ‘Wit-rood boontje, a
cranberry-like bean parental line obtained from the
USDA National Center for Genetic Resources Preserva-
tion at Ft. Collins, CO (GRIN Accession number: PI
439540) that does not undergo postharvest-related dark-
ening [6], and herein is referred to as non-darkening.
The ‘Etna’ parental line was obtained from Seminis
Vegetable Seeds. Inc. (Woodland, California, USA).
Briefly, crosses between the parents were made in a
growth room at the University of Guelph. The F; and F,
seeds were allowed to self and the F; seeds were
screened for their reaction to ultraviolet C light [8] to
identify lines that were darkening and non-darkening.
The lines were selfed for additional generations to produce
darkening and non-darkening recombinant inbred lines.
On September 11, 2012, 135 seeds of a non-darkening
RIL and 135 seeds of a darkening RIL from the afore-
mentioned cross (F5 progeny) were sown in 1.5 L pots
(one seed per pot) containing Sunshine Mix #2 / LB2
soil (SunGro Horticulture, St. Catharines, Ontario,
Canada) saturated with a water soluble fertilizer (N:P:K,
20:8:20) (Plant Products, Ancaster, Ontario, Canada) at
1.25 g L. In each of three separate greenhouses at the
University of Guelph, 45 darkening and 45 non-
darkening RIL cranberry bean plants were cultivated in a
completely randomized design under constant day and
night temperatures of 26 and 16 °C, respectively. Supple-
mental high pressure sodium lighting was supplied
between 06:00 and 22:00 h when the incident sunlight
was less than 200 watts m > Plants were irrigated daily
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with the aforementioned fertilizer mixture for 30 min
until the last day of seed pod harvesting (November 28,
2012). In each greenhouse, seed pods of both RIL plants
were harvested at early, intermediate and mature stages
of development, which corresponded to pod lengths of
9-15 cm, 15-20 cm, and 20-28 cm, respectively. For
each greenhouse replicate, RIL-specific seed pods were
pooled from 45 plants at each developmental stage.
Thereafter, seeds were removed from pods and seed
coats were manually decorticated and frozen in liquid
N,. The frozen seed coat material was powdered with a
mortar and pestle under liquid N,, and stored at —80 °C
until required for proanthocyanidin and transcript
analyses. For both RILs, the remainder of the harvested
mature seeds were stored in sealed plastic bags at 4 °C
for up to 48 months.

DMACA staining

In order to visualize proanthocyanidin accumulation in
whole seeds, aged seeds of both RILs were subjected to
DMACA staining, using a previously described method
with the following modifications [37]. Briefly, seeds
previously stored at 4 °C were transferred to ambient
temperature and soaked in water for 24 h. Thereafter, the
imbibed seeds were immersed in a solution of ethanol con-
taining 0.8% (w/v) HCl and 0.5% (w/v) DMACA for 60 min,
followed by washing in 70% (v/v) ethanol for 60 min.

Proanthocyanidin extraction and quantification

For each biological replicate, frozen cranberry bean seed
coat powder (1.5 g) was extracted with 10 volumes of
acetone: MilliQ-processed water (13:7, v/v) as described
previously [64], by pulsing the suspension ten separate
times for 30 s with a sonic dismembrator set to 80% of
the maximum amplitude (Thermo Fisher Scientific,
Mississauga, Ontario, Canada). Pauses of 30 s were used
between successive pulses. Thereafter, tissue extracts
were rotated on an orbital shaker (Adams™ Nutator;
Becton, Dickinson and Company, Franklin Lakes, New
Jersey, USA) for 2 h at 24 °C, and pelleted at 2500 x g
for 10 min at 24 °C. Aliquots (70 pL) of the supernatants
were transferred to microplate wells and combined with
DMACA colorimetric assay reagent to final volumes of
280 pL. Proanthocyanidin levels were detected at
640 nm, as described previously [44, 64], using a Spec-
traMax Plus 384 Microplate Reader (Molecular Devices,
Sunnyvale, California, USA) and compared to known
amounts (0.34 to 2.02 ug) of an authentic procyanidin
A2 standard (Extrasynthese, Genay, France). For each
biological replicate, proanthocyanidin determinations
were performed in triplicate. One-way analysis of
variance in SAS 9.3 (SAS Institute Inc., Cary, North
Carolina, USA) was used to analyse the total proantho-
cyanidin data at the a = 0.05 level.
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RNA preparation and sequencing

High-quality total RNA was isolated from cranberry
bean RIL seed coats following a modified procedure for
the exclusion of polyphenolic compounds [65]. Briefly,
frozen pulverized seed coat powder (500 mg) samples
were homogenized with 3 mL of 100 mM Tris-HCl
(pH 7.5) containing 2% (w/v) hexadecyltrimethylammo-
nium bromide detergent, 2% (w/v) polyvinylpyrrolidone
(average molecular weight of 40,000 g mol™), 25 mM
ethylenediaminetetraacetic acid, 2 M NaCl, 2% (v/v) B-
mercaptoethanol and 0.5 g L™ spermidine, and incu-
bated at 65 °C for 10 min. The samples were inverted
periodically during the incubation period. The cell
residues were pelleted by centrifugation at 10000 x g for
30 min at 4 °C, and the aqueous phases were combined
with equal volumes of chloroform and re-centrifuged, as
described previously. The aqueous phases were
combined with 2 M LiCl and total RNA samples were
precipitated for 18 h at 4 °C. Thereafter, the RNA
samples were pelleted by centrifugation at 20000 x g for
15 min at 4 °C, and washed with ice-cold 70% (v/v) etha-
nol. RNA was quantified with a NanoDrop 1000 UV/Vis
spectrophotometer (NanoDrop Technologies, Wilming-
ton, Delaware, USA) and analyzed for quality and integ-
rity with standard molecular biology techniques [66].

For each greenhouse/developmental stage replicate,
RNA preparations were depleted of rRNA with an
[lumina Ribo-Zero magnetic kit (Mandel Scientific
Company Inc., Guelph, Ontario, Canada,), and verified
for the absence of rRNA contaminants with the Agilent
RNA 6000 Pico Kit (Agilent Technologies, Mississauga,
Ontario, Canada) on an Agilent 2100 Bioanalyzer as per
the manufacturers’ instructions. Preparation of cDNA li-
braries and next generation sequencing was performed
at The Centre for Applied Genomics, Hospital for Sick
Children (Toronto, Ontario, Canada). Briefly, for each
sample 400 ng of mRNA was used for library prepar-
ation with the Illumina TrueSeq RNA sample prepar-
ation kit v2. The cDNA libraries were subsequently
sequenced in two lanes of Illumina HiSeq 2500 platform
to generate paired-end reads of 101 bp.

Seed coat transcriptome assembly and analysis

The paired sequence reads were trimmed for adapter re-
moval with FASTQ Quality Trimmer [67] to a minimum
of 80% of the original sequence length, poor quality
reads were eliminated using a minimum Phred score of
32. For each seed coat ¢cDNA library, the Illumina
sequence reads (in FASTQ format) were mapped to the
genomic sequence of the P. vulgaris G19833 reference
genome (assembly version 1.0; [68, 69]) with Bowtie2
using default parameters, including a maximum sum of
mismatch qualities across the alignment of 70. The data
was analyzed for exon-exon junctions in TopHat as
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described previously [70]. Transcriptome assemblies
were generated in Cufflinks, and annotation was per-
formed with Cuffcompare. Differentially expressed genes
were identified with Cuffdiff, and transcript abundance
was reported as FPKM, using cummeRbund in R [71].

A cluster analysis was performed to identify genes with
similar expression patterns in the seed coat transcriptome.
To this end, raw read counts for all differentially expressed
genes were obtained from Binary Alignment/Map (BAM)
files using samtools [72] v0.1.17 and HTSeq v0.6.1p2 [73].
Clustering of genes was performed with the HTSCluster
v2.0 package [74] in R [71] with the number of clusters
ranging from 1 to 50. A model containing 14 clusters was
selected a posteriori using the model selection criterion
Dimension jump [75]. Thereafter, GO enrichment analysis
was performed on the gene cluster model conducted using
the Singular Enrichment Analysis tool available on
AgriGO v1.0 [76] with a significance level of 5% using
Fisher statistical testing and Yekutieli multi-test
adjustment.

A TFBS enrichment analysis was performed for all dif-
ferentially expressed genes. To this end, we downloaded
the Phaseolus vulgaris genome assembly (Pvulgar-
is_218 v1.0.fa) and its annotation (Pvulgaris_218 v1.0.-
gene.gff3) from Phytozome [68, 69]. All scaffolds were
removed from the genome assembly, and chromosomal
sequences were retained. To investigate groups of genes
for transcription factor binding sites, gene start positions
were isolated from the .gff3 file. Differentially expressed
genes with no annotated sequence in the bean genome
were excluded from the analysis. For each gene group, we
extracted sequence 500 bp upstream from each transcrip-
tion start site, excluded Ns (and nucleotides upstream of
Ns), and searched the sequence and its reverse comple-
ment for one or more motif binding sites. The analysis
searched the following sites: C[AGCT]GTT[AG] and
CACGTG, where [AGCT] indicates any single nucleotide,
and quantified the number of genes within each group of
differentially expressed genes with at least one binding
site. All analyses were performed with custom perl scripts.

PCA was performed in R [71] to determine whether
there was an association between RNA-seq transcript
profiles and proanthocyanidin accumulation patterns in
cranberry bean seed coats. In order to generate scores
for the PCA, transcript levels of the differentially
expressed genes (expressed as FPKM) corresponding to
each of the 18 seed coat replicates were converted to
uncorrelated variables using an orthogonal linear trans-
formation. Thereafter, the components accounting for
95% of the cumulative variance were considered for the
correlation analysis. A correlation analysis was per-
formed between the selected PCs and the seed coat total
extractable proanthocyanidin levels in R. A score plot
was generated for the PCs that were highly correlated
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with seed coat proanthocyanidin levels. Finally,
transcripts with the highest contribution for each of
these PCs were identified with a loading plot analysis.

Cloning, expression and purification of recombinant
PvANR1

High-quality total RNA was extracted from seed coats of
developing cranberry beans harvested from darkening
RIL plants as described above, and assessed for quality
and integrity using standard molecular biology methods
[66]. Following DNase I treatment, a first strand cDNA
library was prepared from 2.5 pg total RNA using the
SuperScript® First-Strand Synthesis System (Invitrogen
Life Technologies, Burlington, Ontario, Canada) accord-
ing to the manufacturer’s protocol. Forward (5" C ATG
GCC ACT GTC AAG AAA ATT GGA AAG 3’) and re-
verse (3" GCA TAA CAA TTT CCA AAT TCA GTT
CTT GAG 5’) oligonucleotide primers were used to
amplify the PvANRI open reading frame from cDNA
with standard techniques [66]. PCR was performed with
the Platinum Taq DNA Polymerase High Fidelity en-
zyme (Invitrogen Life Technologies) under the following
conditions: initial denaturation step of 1 min at 94 °C
followed by 25 cycles of 94 °C for 30 s, 55 °C for 30 s,
and 68 °C for 1 min, and a final extension step at 68 °C
for 10 min. Thereafter, the amplified PCR product was
analyzed by agarose gel electrophoresis. A 1014 bp PCR
product was gel purified using a GeneJET Gel Extraction
Kit (Thermo Fisher Scientific) and ligated into pGEM-T
subcloning vector (Promega Corporation, Madison, Wis-
consin, USA). The pGEM-T-PvANRI construct was
digested with Ncol and Notl, and ligated into the corre-
sponding restriction sites of pET-30b vector, in order to
generate an N-terminal Hiss-tagged PvANR1 with a
cleavable enterokinase linker. The pET-30b-PvANRI
construct was confirmed by sequencing and transformed
into E. coli BL21 competent cells (kindly provided by Dr.
Barry J. Shelp, Department of Plant Agriculture,
University of Guelph; originally attained from EMD
Millipore, Etobicoke, Ontario, Canada). Thereafter, E.
coli pET-30b-PvANRI transformants were cultured on
Luria-Bertani media supplemented with kanamycin
(50 pg mL™") at 37 °C under continuous shaking
(180 rpm) until the Agpo reached the mid-logarithmic
growth phase. Cultures (6 L) were induced with 400 uM
isopropyl [-D-thiogalactopyranoside and shaken at
180 rpm for 3 h at 20 °C. Cells were pelleted by centrifu-
gation at 3500 x g for 10 min at 4 °C, flash-frozen in
liquid N, and stored at —80 °C (for a maximum of 5 days)
until required for protein purification.

All protein extraction steps were performed at 4 °C.
The frozen bacterial cells were resuspended in 200 mL
of protein extraction buffer containing 20 mM sodium
phosphate (pH 7.5), 500 mM NaCl, 10 mM imidazole,
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10 mM B-mercaptoethanol, 10% (v/v) glycerol, 1 mM
phenylmethanesulfonyl fluoride and 1 X Sigma Protease
Inhibitor Cocktail. The resuspended cells were sonicated
for 10 min (30 s pulses at 30% of maximum amplitude
with 30 s intervals) using a sonic dismembrator (Thermo
Fisher Scientific). The cell lysate was centrifuged at
19000 x g for 15 min and the supernatant was passed
through a 0.45 um polyvinylidene difluoride membrane
filter (Millex-HV; EMD Millipore). The clarified super-
natant was applied at 1 mL min~' onto a 1 mL HisTrap™
HP column (GE Healthcare Life Sciences; Mississauga,
Ontario, Canada) pre-equilibrated with buffer A (20 mM
sodium phosphate pH 7.5, 500 mM NaCl and 10 mM
imidazole) and coupled to an AKTA FPLC system. The
unbound proteins were removed from the column by
washing with 20 column volumes of Buffer A. The
recombinant Hisg-PVANR1 was eluted with a linear
gradient of 10-500 mM imidazole in buffer A (8 mL,
fraction size = 2 mL). Fractions containing a major Agg
peak were pooled and passed through a PD-10
Sephadex™ G-25 gel filtration column (GE Healthcare
Life Sciences) pre-equilibrated with enterokinase reaction
buffer (20 mM Tris-HCI, pH 8.0; 50 mM NaCl; and 2 mM
CaCl,). Enterokinase cleavage of the Hisg-tag from the re-
combinant PvANRI1 preparation was performed with en-
terokinase light chain (2 pg mL™") as per the
manufacturer’s protocol (New England BioLabs, Whitby,
Ontario, Canada). Modifications to the protocol included
incubating the Hisg-tagged PvANR1 with 4 ng of enteroki-
nase for 30 min at 25 °C. The cleaved protein was purified
by application on a PD-10 column pre-equilibrated with
buffer B (20 mM sodium phosphate, pH 7.5; and 500 mM
NaCl) followed by a His-Select Nickel Affinity column
pre-equilibrated with buffer B. The Hiss-tag free PvANR1
preparation was concentrated in an Amicon Ultra-15
Centrifugal Filter Device with a 10 kDa cut-off as per the
manufacturer’s instructions (EMD Millipore).

Protein concentrations were determined with the Brad-
ford method [77] via the Bio-Rad Protein Assay kit (Bio-
Rad Laboratories, Mississauga, Ontario, Canada) and
compared to known amounts of an authentic bovine y-
globulin standard. The final PvANR1 concentration was
adjusted to 1 mg mL™" in buffer B containing 20% glycerol
(v/v), divided into 200 pL aliquots, flash-frozen and stored
at —80 °C prior to their use in enzymatic assays. The re-
combinant PvANR1 preparation was evaluated for purity
and integrity by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) using 10% (w/v) acrylamide
gels according to a previously published protocol [78].
The removal of the Hisg-tag from PvANR1 was assessed
by immunoblotting. To this end, SDS-PAGE-gels were
transferred to a 045 pm polyvinylidene difluoride mem-
brane (EMD Millipore) using standard procedures [79],
immunoblots were probed with an anti-Hise-tag primary
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antibody (1:2000 dilution; Santa Cruz Biotechnology,
Dallas, Texas, USA), followed by a secondary antibody
conjugated to the enzyme alkaline phosphatase (1:30,000
dilution; Sigma-Aldrich). Immunoreactive bands were de-
tected with a chromogenic alkaline phosphatase substrate
reagent kit (Bio-Rad Laboratories) according to the manu-
facturer’s instructions.

In vitro assay of recombinant PvANRT1 activity
Recombinant PvANRI activity was assayed in vitro at 30 °
C in a final volume of 400 pL. PvANR1 activity was dir-
ectly proportional to the amount of recombinant enzyme
added (within the 10-90 ug range) to the assay mixture
and time (2 tol0 min). Unless otherwise mentioned, as-
says included 50 mM 4-(2-hydroxyethyl)piperazine-1-
ethanesulfonic acid (pH 7.0), 800 pM NADPH, 100 pM
cyanidin chloride (Extrasynthese), 50 pg recombinant
PvANR1, and 5% (v/v) methanol. Cyanidin chloride was
freshly prepared in 96% (v/v) methanol containing
0.4 mM of methane sulfonate buffer (pH 2.0), and reac-
tions were initiated by their addition to the assay mixture
and incubated for 10 min at 30 °C. All assays were termi-
nated by the addition of ethyl acetate (500 uL), and reac-
tion products were partitioned into the organic phase by
vortexing for 30 s and centrifugation at 18800 x g for
1 min. Upon removal of the organic phase, the aqueous
phase was re-extracted with ethyl acetate as described
above. The organic layers from the successive extractions
were pooled and dried under a stream of argon gas at
room temperature. As a control, assays were performed in
the absence of recombinant PvANRI.

The dried reaction residue was resuspended in 100 pL
of methanol, filtered with 0.45 um polytetrafluoroethylene
syringe filter (Mandel Scientific Company Inc.), and 5 pL
injections were separated on a Kinetex pentafluorophenyl
column (100 x 4.6 mm, 2.6 pm Phenomenex, Torrence,
California, USA) coupled to an Agilent 1200 HPLC-DAD
system. The reaction products were eluted with a gradient
of solvent B (CH3CN:C,HF50,, 99.9:0.1, v/v) in solvent A
(H,0:CH3CN:C,HF;50,, 90:9.9:0.1, v/v/v) of 0-25%, 0-
10 min; 25-81.8%, 10-20 min; and 81.8-100%, 20—
25 min at a flow rate of 0.8 mL min™". In assays containing
cyanidin, peaks corresponding to catechin (retention
time = 3.9 min) and epicatechin (retention time = 4.7 min)
were detected at 280 nm. In either case, retention times
and UV spectra were compared to known amounts of au-
thentic (+)-catechin and (-)-epicatechin standards (both
from Extrasynthese). Kinetic parameters were estimated
using non-linear regression models available in SigmaPlot
(version 12.3) Enzyme Kinetics Module.

Seed germination analysis
Seed germination assays were performed essentially as de-
scribed previously [60]. Aged seeds (previously stored at
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4 °C for 48 months) of both cranberry bean RILs were
washed with 70% (v/v) ethanol for 2 min, followed by
three successive rinses with sterile water (1 min each).
Seeds were dried for 15 min in a sterile cabinet. For each
RIL, 104 seeds were sown on 13 plates containing agar
medium, and then these were incubated at 25 °C under
darkness for 9 days in an environment-controlled cham-
ber. Seeds were analyzed daily for evidence of radicle
emergence, the first physical sign of germination. This ex-
periment was performed in triplicate. For statistical com-
parison of seed germination percentages across both RILs,
a one-way analysis of variance was performed with SAS v
9.4 (proc mixed method) and means were compared with
the least significant difference method at o = 0.05 level.
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