Copley et al. BMC Plant Biology (2017) 17:84

DOI 10.1186/512870-017-1020-8 BMC Plant BIOlogy

An integrated RNAseg-'H NMR ® e
metabolomics approach to understand

soybean primary metabolism regulation in
response to Rhizoctonia foliar blight

disease

Tanya R. Copley', Konstantinos A. Aliferis?, Daniel J. Kliebenstein® and Suha H. Jabaji'”

Abstract

Background: Rhizoctonia solani AG1-IA is a devastating phytopathogen causing Rhizoctonia foliar blight (RFB) of
soybean worldwide with yield losses reaching 60%. Plant defense mechanisms are complex and information from
different metabolic pathways is required to thoroughly understand plant defense regulation and function. Combining
information from different “omics” levels such as transcriptomics, metabolomics, and proteomics is required to gain
insights into plant metabolism and its regulation. As such, we studied fluctuations in soybean metabolism in response to
R. solani infection at early and late disease stages using an integrated transcriptomics-metabolomics approach, focusing
on the regulation of soybean primary metabolism and oxidative stress tolerance.

Results: Transcriptomics (RNAseq) and metabolomics (‘"H NMR) data were analyzed individually and by integration using
bidirectional orthogonal projections to latent structures (O2PLS) to reveal possible links between the metabolome and
transcriptome during early and late infection stages. O2PLS analysis detected 516 significant transcripts, double that
reported in the univariate analysis, and more significant metabolites than detected in partial least squares discriminant
analysis. Strong separation of treatments based on integration of the metabolomes and transcriptomes of the analyzed
soybean leaves was revealed, similar trends as those seen in analyses done on individual datasets, validating the
integration method being applied. Strong fluctuations of soybean primary metabolism occurred in glycolysis, the TCA
cycle, photosynthesis and photosynthates in response to R. solani infection. Data were validated using quantitative real-
time PCR on a set of specific markers as well as randomly selected genes. Significant increases in transcript and
metabolite levels involved in redox reactions and ROS signaling, such as peroxidases, thiamine, tocopherol, proline,
L-alanine and GABA were also recorded. Levels of ethanol increased 24 h post-infection in soybean leaves, and alcohol
dehydrogenase (ADH) loss-of-function mutants of Arabidopsis thaliana had higher necrosis than wild type plants.

Conclusions: As a proof-of-concept, this study offers novel insights into the biological correlations and identification of
candidate genes and metabolites that can be used in soybean breeding for resistance to R. solani AG1-IA infection.
Additionally, these findings imply that alcohol and its associated gene product ADH may have important roles in plant
resistance to R. solani AG1-IA causing foliar blight.
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Background

Rhizoctonia foliar blight (RFB) caused by Rhizoctonia
solani anastomosis group (AG) 1 intraspecific group IA
is a serious disease that causes rapid and severe destruc-
tion of soybean (Glycine max L. Merr) [1, 2]. Outbreaks
of AGI-IA on soybean in Brazil, the southern states of
the U.S.A. and China have caused yield losses of 30-60%
[3, 4]. Protection against RFB is difficult as the use of
less-susceptible cultivars is limited due to a lack of avail-
ability [1] resulting in the use of chemical pesticides.
Because of the impact of RFB on agriculture, it is im-
portant to identify factors that regulate plant resistance;
however, no studies have been published examining the
molecular responses of soybean due to R. solani AG1-1A
infection. Understanding the effect of R. solani AG1 on
soybean defense pathways and their regulation will
greatly assist breeding efforts towards the development
of cultivars with improved resistance to RFB by applying
biomarker-assisted selection.

There is growing interest in linking transcriptomics to
metabolomics, which in turn could contribute to the
comprehensive biological understanding that gene ex-
pression studies alone would otherwise not achieve. A
large body of literature exists reporting on metabolic
perturbations of plants caused by abiotic or biotic
stresses through parallel or comparative analysis of
microarray and metabolomics experiments [5-8]. More
extensive analyses of the linkage between gene expres-
sion and metabolite biosynthesis is now possible given
the recent advancements in tools and platforms to
characterize various molecular entities of plant cells pro-
viding insights into the linkages between changes in
gene expression and metabolite levels [8—12].

High-throughput multi-omics methods generate large
and complex datasets that must be related to the bio-
logical system of interest, in this case soybean responses
to RFB. Within this context, it is necessary to develop
strategies that allow relevant biological processes to be
described and easily interpreted in order to efficiently
extract biologically significant information from analyses
carried out with different omics profiling platforms. The
bidirectional orthogonal projections to latent structures
(O2PLS) is a new multivariate technique that integrates
data from different datasets or “omics” levels (e.g.,
mRNA and metabolites), and supports multi-block
bidirectional correlations [13, 14]. O2PLS is an extension
of orthogonal projections to latent structures (OPLS)
where as OPLS analyzes a single dataset, O2PLS assesses
systemic trends across multiple datasets. This viable stat-
istical method allows data to be integrated with equal
weight allocated to each dataset irrespective of whether
the number of data points in each dataset differs signifi-
cantly. By observing the joint systematic variation, one
can identify shared responses and utilize the model to
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predict biological responses between the datasets [9, 14].
Unlike pairwise correlation analyses that result in poten-
tially hundreds of significant correlations [8, 15], O2PLS
modelling reduces the number of correlations to those
having the most dominant effects on the model [9].
Additionally, results can be interpreted based on both
the predictive (joint variation) sources as well as on the
unique, individual variables from each dataset [9]. To
date, there are relatively few examples using O2PLS to
integrate plant transcript and metabolite data [9, 11, 12]
and, so far, no studies using O2PLS to uncover missing
functional links between different “omics” levels for
monitoring multi-level responses of plants to disease.

Phytopathogen infections lead to changes in secondary
metabolism (i.e, metabolism not directly involved in
maintaining growth, development or reproduction) as
well as changes in primary metabolism (i.e., metabolism
and its products required in all cells to maintain normal
functions) that affect growth and development of the
plant. While the regulation of defense responses has
been intensively studied [16, 17], less is known about the
effects of necrotrophic pathogen infection, such as R.
solani, on primary metabolism. We have recently dem-
onstrated the effectiveness of metabolomics for the ana-
lysis of plant primary metabolism during Rhizoctonia
root rot and stem canker diseases of soybean hypocotyls
and potato sprouts [18, 19] with results indicating that
host plants reorganize their primary metabolism to
mount defense mechanisms, while, pathogens might
simultaneously manipulate plant metabolism to promote
infection to support replication and spreading within the
plant [20, 21]. The increased demands of redirection of
primary metabolites involved in photosynthesis, carbo-
hydrate and amino acid metaboism, glycolysis and TCA
cycles suggest that reprogramming of vital functions in
infected tissue occurs and is a necessary defense require-
ment [22-25]. Taken together, examining alterations in
soybean primary metabolism to early and late infection
stages of the foliar pathogen R. solani AG1 can provide
insights on how to develop soybean lines with more re-
sistance to foliar blight disease.

In the present study, we aimed to show that: 1) by in-
tegrating multiple omics levels, we were able to assess
systemic and functional trends across transcripts and
metabolites of soybean primary metabolism in response
to a foliar necrotrophic fungal pathogen; 2) there is tight
coordination in the context of known regulatory mecha-
nisms and pathway level regulation of metabolism; and
3) the effect of a novel defense modulator can be exam-
ined using loss-of-function mutants.

Results and discussion
The complexity of plant metabolism necessitates the
employment of multi-level approaches and integration
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of the obtained information for a comprehensive under-
standing of its regulation in response to stimuli. Initially,
datasets were analyzed individually to identify substan-
tially altered transcripts and metabolites of soybean
responses to R. solani, followed by the discovery of joint
variation between the two datasets by applying O2PLS,
and focusing on the regulation of soybean primary me-
tabolism (Fig. 1).

Previous studies examining soybean responses to
fungal pathogens have mainly focused on fluctuations
occurring in components of secondary metabolism,
such as the phenylpropanoid, flavonoid and isoflavo-
noid pathways [17, 18, 26, 27]. Fluctuations in these
pathways were observed during the soybean-R. solani
interactions of this study (data not shown); however
as few studies have examined the fluctuations in plant
primary metabolism in response to R. solani [24], we
focused on primary metabolism for this study.
Additionally, to the best of our knowledge, no studies
exist on soybean primary metabolism regulation
in response to fungal attack using integrated omics
approaches. Studies examining the primary metabolic
responses of plants to fungal pathogens have sug-
gested that rapid onset of certain genes or metabolites
may be key components of plant resistance [21-23],
emphasizing the role of primary metabolism in plant
defense responses. The current study examined, for
the first time, the overall metabolic responses of soy-
bean to R solani AG1-IA causing RFB disease.
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Overview of analyses

Principal component analysis (PCA) was initially per-
formed for the overview of 'H NMR and RNAseq data-
sets, the detection of outliers and trends, and the
evaluation of robustness and reproducibility of the ex-
perimental protocol (Fig. 2). PCA revealed no outliers
(P < 0.05) and a variable discrimination between the re-
corded metabolite profiles of mock-inoculated (control)
and Rhizoctonia-infected leaves (Fig. 2). Moderate dis-
crimination between the metabolic profiles of mock-
inoculated (control) and infected leaves was observed
12 h post-inoculation (h.p.i.) (Fig. 2a) and is reflected by
the early response to infection, signs of disease and de-
velopment of several infection cushions on the leaf (Fig.
2d, f). A strong discrimination however, is observed 12 h
later (24 h.p.i.) indicating the general disturbance of soy-
bean metabolism (Fig. 2b) and establishment of the dis-
ease with full-blown symptoms (Fig. 2e). Based on these
findings, the second time-point (24 h.p.i.) was selected
for integration of NMR and RNAseq datasets. Similarly,
PCA analysis of the RNAseq dataset (24 h.p.i.) revealed
no outliers (P < 0.05) and a strong discrimination be-
tween the mock-inoculated and infected leaves (Fig. 2c),
as supported by disease progression (Fig. 2e).

Metabolite abundance changes in response to RFB

Analysis of "H NMR profiles of R. solani hyphae of similar
surface area to that found at the necrotic lesions revealed a
negligible impact of fungal metabolites on the total
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Fig. 2 Soybean metabolite and transcript PCA score plots 12 and 24 h.p.i. with R solani AG1-IA. PCA score plots of soybean metabolites from R. solani
AG1-A infected (squares) and control (circles) leaves 12 (a) and 24 (b) hours post-inoculation (h.p..), and RNAseq transcripts (€) 24 h.pi. Ellipses represent Ho-
telling T2 with a 95% confidence interval. Six biological replicates were analyzed per treatment per time point. Soybean unifoliate leaves infected with R.
solani AG1-1A and mock-inoculated controls 12 (d) or 24 (e) h.p.i. (f) Hyphal invasion and spread of R. solani over the soybean leaf and initials of infection

recorded metabolic profiles (Additional file 1: Figure S1).
However, for accuracy, bins of fungal profiles were sub-
tracted from the corresponding recorded bins of infected
leaf profiles. Partial least squares-discriminant analysis
(PLS-DA) has an improved ability for biomarker discovery
compared to PCA (Fig. 3) [28]. Thus, here, biomarker dis-
covery was based on PLS-DA (P < 0.05) to examine the
metabolic fluctuations in soybean occurring during the
early infection stage (12 h.p.i.) at which infection cushions
develop (Fig. 2f), and during the late infection stage
(24 h.p.i.) at which necrotic lesions develop. The tight clus-
tering within the two treatments at both time points (Fig.
3a, b) is indicative of the robustness of the method and of
the substantial differences between the metabolomes of
control and infected leaves. A total of 126 bins represent-
ing seventeen uniquely identified metabolites of primary
metabolism (Additional file 2: Table S1) were mapped onto
metabolic pathways to view the temporal fluctuations in
response to infection in a more dynamic manner (Fig. 4).
Fluctuations of soybean metabolites within the glycolysis

pathway, TCA cycle, starch and sucrose metabolism,
and amino acid biosynthesis showed similar trends at
early (12 h.p.i) and late (24 h.p.i.) stages of infection
(Fig. 4; Additional file 2: Table S1) with the exception
of GABA, L-asparagine, L-glutamate and proline,
which increased and then decreased at 12 h.p.i. and
24 h.p.i. compared to controls, respectively.

Effect of RFB on soybean transcript abundance

High-throughput sequencing allows for an in-depth ana-
lysis of the genome or transcriptome, however limits the
number of biological replicates that can be sequenced in
similar conditions (i.e., in one lane). Barcoding of sam-
ples permits pooling of multiple replicates allowing for
the use of shallow-end sequencing to study a biological
system. Due to the diminishment of the number of reads
per sample, shallow-end sequencing can effectively be
used to determine the fluctuations occurring in differen-
tially expressed (DE) transcripts across a larger array of
conditions than typically studied [29, 30]. It has been
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suggested that analyzing the top 2500 transcripts can in
fact cover over 80% of the biological information in an
Arabidopsis transcriptomic project [30], and as little as
100,000 reads per samples are required for accurate pre-
diction of mRNA fluctuations in human studies [31]
suggesting that shallow-end RNAseq can provide sub-
stantial information. In this study, shallow-end RNAseq
was used to determine soybean responses to R. solani
24 h.p.i. and resulted in 3 M reads per treatment represent-
ing a total of 12,926 expressed genes (Additional file 3:
Table S2), with expressed genes defined as the transcript
having a minimum of two reads per sample and detected in
a minimum of 4 out of 6 biological replicates in one treat-
ment [32, 33]. Reads aligning to the R. solani genome rep-
resented less than 2% of the total reads and as such were
not analyzed further. Low read counts is a common occur-
rence in dual plant-pathogen sequencing projects as typic-
ally the number of pathogen cells is much lower than those
of the plant [32, 34].

A total of 258 DE genes were detected between infected
and mock-inoculated leaves based on traditional univariate
statistical analyses (Additional file 4: Table S3). These
results are similar to RNAseq analyses of other plant-
pathogen interactions [32]. Of the 258 DE genes, 79% were
up-regulated in response to infection, out of which 16%

could only be detected in infected plants, possibly due to
detection limits. Enrichment tests of Gene Ontology (GO)
terms [35] among the DE genes revealed the functional dif-
ferences of the DE genes upon R. solani AG1-IA infection:
a decrease in transcription of soybean genes functioning in
photosynthesis was observed, whereas an increase in
genes involved in secondary metabolism, redox reac-
tions and carbohydrate metabolism was seen 24 h.p.i.
(Fig. 5; Additional file 4: Table S3).

Quantitative real time-PCR (qRT-PCR) validated
RNAseq results for genes involved in primary metabol-
ism (Table 1) and showed similar expression patterns of
the transcripts compared to RNAseq. A general trend of
up-regulation of transcripts was observed (Fig. 4) imply-
ing an increased need for their products or downstream
products. An exception was beta-glucosidase, whose
abundance fluctuated (Table 1; Fig. 4). Validation of ran-
domly selected transcripts also confirmed the results of
RNAseq data (Additional file 5: Table S4).

Metabolomics and transcriptomics integration

Aiming to discover signatory genes and metabolites
involved in soybean defense against RFB and to highlight
functional links between them, data integration using
pairwise correlations and O2PLS was performed.
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Pairwise correlation analysis revealed 382 very strong
correlations (r > 0.9 or < — 0.9) and an additional 2494
strong correlations (r > 0.8 or < — 0.8) between metabo-
lites and transcripts (Fig. 6; Additional file 6: Table S5).
This large number of correlations results in challenging
interpretation of which are the most biologically signifi-
cant. As such, O2PLS analysis was performed on both
datasets to reduce the noise and number of dominant
correlations allowing for more confident biological

interpretation and predictions. O2PLS identified 2 latent
variables in the predictive dataset, with the transcript-
predictive structures accounting for 52.9% of the total
variation in the transcript dataset, the metabolite-
predictive structures accounting for 90.9% of the total
variation in the metabolite dataset, and a cumulated pre-
dictive power (Q(zcum)) of 61.3% (Fig. 7a). O2PLS score
plots of the combined transcriptomics-metabolomics
dataset revealed a tight clustering of the two treatments
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(Fig. 7b), results similar to those observed when analyz-
ing the datasets alone. With the significance threshold
set at a confidence level of 99% or 90% for transcripts
and metabolites, respectively, the identified loading coeffi-
cients thresholds were lower for the transcriptomics data-
set than for the metabolomics dataset (Additional file 7:

Table S6). Based on loading coefficients, O2PLS analysis
detected a total of 516 significant transcripts in the first
two latent variables (Additional file 8: Table S7), double
the transcript number that was found in the univariate
analysis, while a total of 20 substantially altered metabolite
bins were observed (Additional file 9: Table S8).

Table 1 Fold change values of soybean genes affected by R. solani AG1-IA infection and involved in primary metabolism

Pathway

Gene ID

Gene annotation?

RNAseq Fold Change®

(P value)

gRT-PCR Fold Change®

(P value)

12h

24 h

Starch metabolism

Carbohydrate metabolism

TCA cycle

Amino acid metabolism

Glutathione metabolism

GLYMAQ08G45210

GLYMAO4G01950
GLYMA15G10480
GLYMAQO5G04290

GLYMA12G05780
GLYMA19G01200
GLYMA17G13730
GLYMAQO1G23790

GLYMA03G04990

GLYMA02G39320
GLYMAQ1G24530

GLYMAO03G12240
GLYMA19G36620

GLYMA10G33650

Alpha-glucan phosphorylase
(AGP)

Alpha-amylase (AMY)
Beta-amylase (BAMY)

Beta-fructofuranosidase
(BFF) or invertase

Beta-glucosidase (BGLUC)
Formate dehydrogenase (FDH)
Malate synthase (MLS)

Phosphenolpyruvate
carboxykinase 1 (PEPC)

Alanine-glyoxylate transaminase

(AGT)
Asparagine synthetase (ASN)

Delta 1-pyrroline-5-carboxylate
synthase 2 (DPSC2)

Glutamate-5-kinase (G5K)

Phenylalanine ammonia
lyase 1 (PALT)

Glutathione-S-transferase (GST)

0305 (0.0196)

5.898 (0.0052)
2.800 (0.0200)
39.717 (<0.0001)

INFY (0.0319)
7.092 (0.0020)
10.718 (<0.0001)
INF (0.0058)

10.792 (0.0201)

INF (0.0038)
INF (<0.0001)

25.089 (0.0084)
6.144 (0.0095)

INF (0.0200)

0.793 (0.3489)

1.059 (0.6037)
1.523 (0.0854)
0.909 (0.3517)

0.317 (0.0164)
1.080 (0.6075)
1.249 (0.5463)
INF (0.0487)

1.164 (0.7345)

2.178 (0.0403)
4450 (0.0424)

1.289 (0.9217)
1.362 (0.1645)

1578 (0.3678)

0.574 (0.0216)

2.190 (<0.0001)
1.509 (0.0249)
1.763 (0.0196)

INF (<0.0001)
1453 (0.0212)
2.145 (0.0094)
INF (<0.0001)

2.592 (0.0003)

2.159 (0.0277)
3486 (0.0003)

3.806 (0.0001)
2.588 (<0.0001)

8.812 (<0.0001)

2Gene annotations based on the SoyBase database
PRNAseq fold change values based on pairwaise comparisons using the negative binomial test and an FDR correction <0.1 using Benjamini-Hochberg multiple

corrections [87]

“gRT-PCR fold changes based on [81] efficiencies and P values based on pairwise comparisons using Student’s t test comparisons
9INF represents transcripts that were detected in infected samples, and not detected (below the detection threshold) in control samples

Transcript changes were deemed statistically and biologically significant if P < 0.1 for RNAseq or P < 0.05 and fold changes were >1.5 or <—1.5
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Fig. 6 Heatmap of Pearson pairwise correlations between metabolites and transcripts. Correlations were calculated between the 126 metabolite bins and
the top 241 transcripts based on variable importance (VIP) values using O2PLS analysis. Blue indicates a strong positive correlation between metabolites and
transcripts, while red indicates a strong negative correlation. Refer to Additional file 6: Table S5 for metabolite and gene names

As a proof-of-concept, and in order to better visualize
the functional links (i.e. correlations) between the me-
tabolome and transcriptome, a reduced dataset was cre-

done elsewhere [12]. The selection of transcripts was
based on their involvement in primary metabolism
using GO terms and O2PLS variable importance (VIP)

values above 2. In total, 241 transcripts were selected
(Additional file 10: Table S9), whereas all 126 bins of

ated composed of transcripts and metabolites involved
in soybean primary metabolism, similar to methods
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Fig. 7 O2PLS integration of soybean metabolites and transcripts in response to R. solani AG1-/A. O2PLS integration performance overview plot (@), joint score
plot (b) and loadings plot () of metabolites and transcripts involved in primary metabolism. All 12,926 transcripts were used for model development and
validation (Q?). The top 241 transcripts from primary metabolism based on O2PLS variable importance >2 were chosen for correlations between "H NMR and
RNAseq integration for better visualization of trends between the two datasets (c). a Overview of cumulative predictive and orthogonal variation explained by
the first two variables for the transcripts (RZX(Cum)) and metabolites (R?Y <y, and the predictive power of the model (Q(zcum)). b Joint score plot of the
transcript scores (t). ¢ Joint loadings plot from the transcript (p) and metabolite (g) loadings blocks of the top 241 transcripts and all metabolites. Transcripts
(triangles) and metabolites (squares) represent individual transcript and metabolite loading values (Additional file 8: Table S7 and Additional file 9: Table S9).
Variables located to the left of the y-axis represent transcripts and metabolites that decreased, while those on the right increased, compared to controls in re-
sponse to R. solani disease progression. Metabolite abbreviations: Asn, asparagine; £tOH, ethanol; Fruc, fructose; GABA, y-aminobutyrate; Gin, glutamine; Gluc,
glucose; Phe, phenylalanine; Ser, serine; Suc, succinate; Sucr, sucrose; Thr, threonine; Tyr, tyrosine. Transcript abbreviations: AGP alpha-glucanphosphorylase; BFF,
beta-fructofuranosidase; ChiA/B, chlorophyll A/B binding protein; PER, peroxidase; PR4, pathogenesis-related protein 4; TH, thiamine biosynthesis
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'"H NMR spectra were used. The reduced subset was
then subjected to O2PLS to improve the visualization
of their correlations that were generated in the fully in-
tegrated analysis (i.e. 12,926 transcripts by 126 metab-
olite bins) using variable loadings (Fig. 7c¢; Additional
file 6: Table S5). Strong correlations could be seen be-
tween glucose and transcripts involved in photosyn-
thesis (Rubisco, PSII), while negative correlations were
observed between glucose and transcripts for thiamine
biosynthesis (THI) (Fig. 7c). Of particular interest, were
the correlations of alpha-glucan phosphorylase (AGP), a
transcript involved in starch formation, with GABA,
phenylalanine and tyrosine, all known for their roles in
stress responses [16, 18, 21]. Moderately strong correla-
tions (r 0.78 and 0.81) between peroxidase (PER,
GLYMA16G27990) and beta-fructofuranosidase (BFE
GLYMAO05G04290) with ethanol (Fig. 7c; Additional file 6:
Table S5) were detected. Their importance may have been
over-looked as their pairwise correlation values were
below <0.9 and would not have been deemed significant
(Fig. 7; Additional file 6: Table S5). The exact biological in-
terpretation of these correlations remains unclear, and
whether these metabolites/transcripts can in fact be used
as biomarkers for each other requires further validation
under various growth and biological conditions.

Univariate vs. multivariate comparisons

Differences were observed between analyses of the
datasets as stand-alone versus integrated with some
transcripts or metabolites being identified as signifi-
cant in one analytical method or both (Fig. 8), results
similar to those reported elsewhere [9]. This can be
observed in Fig. 4 with some differentially expressed
transcripts and metabolites that are coordinately mod-
ulated in response to RFB using only traditional ana-
lyses, or using O2PLS analysis (indicated by yellow
stars). Differences between univariate and multivariate
analyses are not unexpected due to the methods by
which the analyses calculate variation within the data:
univariate analyses will calculate the variation between
the two treatments, whereas O2PLS methods will cal-
culate the direction within the two datasets (X and Y,
or in this case transcripts and metabolites, respect-
ively) that has the largest amount of variability [9].
Despite the differences, similar trends were observed
between the two methods (data not shown).

Biological interpretation

Metabolite fluctuations

Different temporal shifts occurred in the majority of
metabolites and DE transcripts that were tightly associ-
ated suggesting that the metabolites are being utilized
faster than they can be synthesized, or that their bio-
synthetic pathways are being shunted towards other
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Fig. 8 VVenn diagrams of altered transcripts and metabolites. Overlap
of differentially altered transcripts (a) and metabolites (b) between
traditional and O2PLS analyses

products (Fig. 4). Exceptions were formate and ethanol
whose associated transcripts were expressed, but not
differentially in response to R. solani infection. Formate
is a known fungitoxin [36], and a trending increase in
its abundance at both time points may indicate an im-
portant role at later stages of infection. Ethanol levels,
but not transcripts encoding alcohol dehydrogenase
(ADH), increased before the appearance of necrotic
lesions (12 h.p.i.) suggesting that ethanol may be a reli-
able disease biomarker.

To estimate the degree by which transcript changes
and disease development occur, we selected Arabidop-
sis plants with an ADH loss-of-function. An increase
in overall necrosis was observed in the mutants com-
pared to controls (Fig. 9) suggesting that alcohol
dehydrogenase and ethanol may have a role in RFB
resistance. Consistent with our results, woody and
herbaceous plants exposed to abiotic stress accumu-
lated substantial levels of ethanol under aerobic condi-
tions [37]. On the other hand, transcripts encoding
soybean ADH were present in the RNAseq data, but
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Fig. 9 Role of alcohol dehydrogenase loss-of-function on R. solani AGT-IA
infection in Arabidopsis. Generalized symptoms of RFB (a) and average
percent infected area of leaves (b) in Arabidopsis wild type (Wt) and
mutant (adh”) plants 72 and 96 h post-inoculation. Asterisks denote
significant differences at P < 0.05 using Student’s ¢ test comparisons

were not affected during R. solani AG1-IA infection
(Fig. 4; Additional file 3: Table S2) despite increases in
the amount of ethanol produced during infection, sug-
gesting that post-transcriptional or -translational modi-
fications may play a role in ethanol production in
soybean.

One may argue that ethanol presence in infected
soybean leaves signals an anaerobic state or is fungal-
derived. In our study, ethanol was also present in
mock-inoculated leaf samples (controls) where ample
oxygen was available to the leaves. Additionally, the
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levels of pathogen-derived metabolites were below the
detection threshold or minimal when analyzing simi-
lar amounts of R solani hyphae to those present on
infected soybean leaves using 'H NMR (Additional
file 1: Figure S1). Although the exact origin and
mechanism(s) by which ethanol and alcohol dehydro-
genase were up-regulated are not fully understood,
this study is the first to demonstrate that they may
have a role in plant defense against necrotrophic
pathogens. While ADH activity has been reported to
modulate the susceptibility of barely to the biotrophic
obligate parasite Blumeria graminis and may support
biotrophy by maintaining glycolytic metabolism in
pathogen-stressed barley [38], this may not be the
case with necrotrophic fungal pathogens such as R.
solani. Supporting evidence shows that plants have
differential mechanisms to respond to different necro-
trophic and biotrophic pathogens [39, 40]. Taken
together, our study suggests that ethanol may have an
important role in plant resistance to the necrotrophic
fungal pathogen R. solani and may help modulate
plant resistance to RFB.

Transcript fluctuations

Although a portion of the transcripts can be linked
directly with metabolites in primary metabolic path-
ways, this was not the case for all transcripts. These
include some pathogen-responsive genes involved in
defense and stress responses (Additional file 4: Table S3),
such as glutathione-S-transferase and glutathione-
peroxidase, two well-established genes with antioxidant
capacity [16]. Interestingly, no up-regulation of ascorbate-
related genes was observed, suggesting that glutathione
was acting independently of the glutathione-ascorbate
cycle [41] or that increases in ascorbate can occur in the
absence of an increase in its transcript abundance [42, 43].
Several soybean peroxidases were up-regulated in re-
sponse to RFB. This was expected as plants exposed to
stress up-regulate their overall peroxidase activity result-
ing in plant defense either passively by building up stron-
ger cell walls or actively via production of ROS molecules
during the oxidative burst [16, 21].

Many compounds have ROS quenching capabilities
in plants, such as thiamine, tocopherol and tocotrie-
nol. Thiamine was implicated in Arabidopsis resist-
ance to Sclerotinia sclerotiorum, possibly by limiting the
effects of oxalate suppression on ROS signaling [44].
Thiamine transcripts were up-regulated in response to R.
solani infection (Additional file 4: Table S3), and whether
this is a result of R. solani oxalate or is a response to the
oxidative stress caused by necrosis is not clear and merits
further investigation to determine its role in soybean
defense and responses to necrotrophic pathogens. Tran-
scripts leading to the biosynthesis of tocopherol and
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tocotrienol (vitamin E vitamers) were up-regulated in
response to infection (Additional file 4: Table S3). To-
copherols have long been speculated to have an essential
function in protecting photosynthetic organisms against
photo-oxidative stress [45]. Increased transcript abun-
dance of genes involved in tocopherol and tocotrienol bio-
synthesis in response to R. solani infection may reflect
lipid peroxidation, a common occurrence during plant-
pathogen interactions [46].

Fluctuations in photosynthesis, glycolysis and the TCA cycle
in response to RFB

Pathogen infection often leads to the development of chlor-
otic and necrotic areas, and decreases in photosynthesis
transcript abundance and photosynthetic assimilate pro-
duction [47, 48]. Down-regulation of transcripts involved in
photosynthesis at 24 h.p.i. (Additional file 4: Table S3) was
observed, implying a decrease in photosynthetic activities.
This was paralleled by increases in transcript abundance of
genes involved in starch and carbohydrate catabolism, as
well as decreased levels of sucrose cleavage products (i.e.
glucose and fructose) as early as 12 h.p.i. (Table 1; Fig. 4).
This suggests either an increase in soybean energy
demands, a typical plant stress response to disease [21], or
manipulation of the plant sugars by the pathogen to
promote infection.

A common trend is observed for the rapid increase in
levels of invertases (e.g., beta-fructofuranosidase) after
plant infection by bacteria and fungi (Table 1 our study;
[49]). Similar to other necrotrophic pathogens, R. solani
has faster growth on sucrose or other disaccharides as
the carbohydrate source than when grown on their
cleavage products [50]. Therefore, from the plant’s point
of view, it is advantageous to modulate sugar partition-
ing and limit sucrose availability, thus limiting R. solani
growth. Moreover, during infection invertase activity
triggers plant defense responses such as induction of
defense-related gene expression, callose deposition and
reduction of photosynthesis or cell death [49, 51], and
increases in invertase transcript abundance are often
correlated with the role of hexoses as signaling mole-
cules for defense gene activation [49]. Beta-glucosidase,
which degrades beta-glucan to glucose, and whose tran-
script abundance increased at the late infection stage,
may have had an important role in modulating soybean
glucose concentrations; however, we cannot rule out the
possibility that it also may have had a role in the degrad-
ation of R solani hyphae, as beta-glucan is a common
component of hyphal cell walls [52]. How carbohydrates
and their presence as mono- or di-saccharides influence
soybean resistance to RFB and other pathogens, and
how they affect microbial growth, requires further
investigation.
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During stress responses as a result of pathogen invasion,
plant defense mechanisms display coordinated fluctuations
of genes and metabolites involved in glycolysis and the
TCA cycle in an attempt to adapt to stress [24, 25, 53]. Des-
pite the increases in storage carbohydrate catabolic genes,
the majority of genes involved in glycolysis and the TCA
cycle were not differentially expressed in response to
RFB (Fig. 4). Several factors might help to explain this:
1) the timing of sampling (24 h.p.i.) was not the opti-
mal time point to detect transcriptional changes; 2)
other biological factors such as post-transcriptional or
post-translational modifications occurred [42, 43]; 3)
sufficient energy sinks were available to combat the
infection at this time point; or 4) the genes require
more time for differential expression to be detected.
Homeostasis of metabolic pathways, particularly primary
metabolic pathways, is essential for survival and the tim-
ing of induction or suppression of these pathways is most
likely crucial for survival [21].

Fluctuations in amino acid biosynthesis in response to RFB
In response to infection, the strong demand to obtain car-
bon will likely shuttle amino acids into energy generating
pathways such as the TCA cycle [21]. It has been proposed
that plants may mobilize some nitrogen sources away
from infection sites to deprive pathogens of nutrients.
This diversion leads to drastic changes in source-sink rela-
tionships [54]. Shifts in amino acid concentrations with
some being up-regulated and others down-regulated dur-
ing early and late plant responses to R. solani infection are
similar to what has been reported in other pathosystems
[55, 56]. In this study, amino acid fluctuations (Fig. 4)
could be grouped into: 1) those that were up-regulated
(glutamine, alanine, threonine and serine) at both time
points; 2) those that were down-regulated (phenylalanine
and tyrosine) at 24 h.p..; and 3) those that were up-
regulated as early as 12 h.pi. and then decreased at
24 h.pi. (L-asparagine, glutamate, proline and GABA).
Fungi derive amino acids from plants by recycling or via
proteolysis [57], and the different temporal fluctuations of
amino acids observed in this study may indicate differen-
tial amino acid requirements for R. solani due to an inabil-
ity to synthesize certain amino acids, different amino acid
requirements during different infection stages (onset ver-
sus necrosis), or differential amino acid requirements of
the plant during defense responses.

In many higher plants, the nitrogen-rich amino acids as-
paragine and glutamine represent central intermediates in
nitrogen as they contribute to nitrogen transport, and their
encoding genes are up-regulated under biotic stresses
[22, 23]. Asparagine along with proline, GABA and its pre-
cursor glutamate, and the non-polar amino acids phenyl-
alanine and tyrosine, exhibited slight increases at the onset
of fungal infection and decreases at the late infection stage,
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although levels of transcripts associated with their produc-
tion (except for GABA and tyrosine) increased in abun-
dance at the late infection stage (Table 1, Fig. 4). This may
suggest that early on, the infection sites represent strong
local metabolic sinks that drain nutrients from uninfected
healthy regions, and as the infection becomes established
different scenarios are favored: they are utilized down-
stream and the biosynthesis rate is slower than the con-
sumption rate [21], they are being utilized by R. solani, or
R. solani is capable of manipulating its host's metabolism
for particular amino acid homeostasis [57, 58].

Proline and GABA have been shown to be important
amino acid signaling molecules during plant stress
[21, 59]. GABA is known to help support energy re-
quirements via the GABA shunt pathway during times
of high-energy requirements [60] and high oxidative
stress [61, 62]. The decrease in both GABA and its pre-
cursor glutamate at the late infection stage coupled with
the increase in antioxidant producing genes (RNAseq
only) discussed earlier indicate a state of high oxidative
stress that could be overcome by shifting these resources
through the GABA shunt pathway.

Similarly, proline is a stress-related metabolite that has
been shown to have a role in stabilizing and protecting
proteins and membranes from cellular ROS during fun-
gal infection [63]. The oxidation of proline provides
electrons for mitochondrial respiration resulting in in-
creased energy supplies for the TCA cycle [63]. The de-
crease in proline observed during the necrotic stage of
infection may suggest an increase in energy require-
ments at this stage causing proline to be shunted to-
wards the TCA cycle, or an increased demand for ROS
signaling, a common response during plant-pathogen in-
teractions [16, 21]. Glutamine and alanine concentra-
tions increased during R. solani AG1-IA infection.
Similar findings were reported in rice infected with com-
patible but not incompatible Magnoportha grisea strains
[23]. Alanine has also been linked to induction of pro-
grammed cell death in Concord grape (Vitis labrusca)
cell cultures [64]. It is possible that successful penetra-
tion of the pathogen triggers an increase in alanine levels
to promote cell death of the infected tissue, which R.
solani then exploits to facilitate invasion.

Regulation of primary metabolic pathways is crucial
for soybean to maintain vital functions in addition to
regulating soybean defense responses to RFB and pos-
sibly altering oxidative stress responses. The integrative
analysis of transcript and metabolite profiling using
O2PLS provided a powerful tool to better understand
gene-to-metabolite networks over a time course of R
solani infection of soybean by identifying: 1) significant
transcripts and metabolites not deemed significant using
traditional analytical approaches; 2) shared regulatory
mechanisms through identification of joint systemic
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variation (example ethanol with beta-fructofuranosidase
and peroxidase transcripts); and 3) reducing the number
of significant correlations to those with the most signifi-
cant effect on the biological system of interest (i.e. soy-
bean-R. solani). Through validation experiments, we
demonstrated changes within selected major biochem-
ical pathways during disease establishment, and conse-
quently, the identification of correlative biomarkers for
genetic improvement and breeding assisted programs.
We strongly believe that one important approach to gain
knowledge in plant-microbe interactions is to combine
results from different types of analyses, as done here.

Conclusion

In conclusion, analyses of large multi-omics datasets
represent one of the major challenges towards the un-
derstanding of the molecular regulation of a biological
system [9, 12, 65]. As integrated omics studies are ex-
pected to expand our understanding on the molecular
regulation of biological systems, including cause-and-
effect and identification of correlative biomarkers [66], it
will be important to compare different datasets using
multiple analytical methods in order to avoid overlook-
ing potentially important information.

Methods

Biological material and inoculation of soybean leaves

To study soybean responses to RFB disease, the fully se-
quenced model and reference cultivar Williams 82
(USDA-ARS, Washington, DC, USA) was used. Seeds
were surface sterilized in 30% hydrogen peroxide for
7 min followed by three rinses in sterile water. Germi-
nated seeds were planted in 5 cm pots containing Agro-
Mix® G10 (Fafard Ltd.) and sand (1:1, v/v) with one seed
per pot and placed in a growth cabinet with 12/12 h of
day/night, 25/23 °C day/night temperatures, 210 photons
um 2 s7', and humidity maintained at 65% throughout
the entire day. Fully expanded unifoliate leaves (approxi-
mately 10 days post-planting) were detached and placed
on dampened sterile filter paper in previously autoclaved
Pyrex® dishes (25 x 15 cm).

To investigate the role of ethanol in RFB resistance,
the wild type Arabidopsis thaliana (ecotype Bensheim,
Be-0, TAIR germplasm #CS964) and the mutant (ADH-
R002, TAIR germplasm #CS8102) with a truncated ver-
sion of the alcohol dehydrogenase protein (described in
Jacobs et al. [67] and Dolferus et al. [68]), were obtained
from the Arabidopsis Biological Resource Center (ABRC,
Ohio State University, Columbus, OH, U.S.A.). No over-
expressing lines were available and thus only loss-of-
function of ADH was examined. The seeds were surface
sterilized in 2.75% sodium hypochlorite with 0.05%
Tween® 20 for 20 min and rinsed 7 times with sterile
distilled water. Three seeds of either wildtype or adh™
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mutants were pipetted into 10 cm pots containing Agro
Mix® G10 (Fafard Ltd., St. Bonaventure, Canada) and
grown under the same conditions as soybean. Pots were
thinned to one plant per pot 2 weeks after planting.

A starter culture of a highly pathogenic Rhizoctonia
solani AG1-IA strain ROS 2A4 (obtained from Dr. Paulo
Ceresini, Sdo Paulo State University, Brazil) was grown
for 3 days on potato dextrose agar (PDA) from stock
cultures kept in 20% glycerol at —80 °C. The inoculum
for soybean consisted of R. solani-infested millet seeds
prepared as follows: millet seeds obtained from Living
World (Baie D’Urfé, Canada) were de-hulled, sterilized
and placed as a single layer on the surface of one-week-
old PDA fungal cultures originated from the starter cul-
tures. Millet seeds became completely colonized by R.
solani mycelia after one week of incubation at 24 °C.
Sterile millet seeds placed on clean PDA plates for one
week served as mock inoculum (control treatment). The
inoculum for A. thaliana consisted of 3 mm plugs of 3-
day-old R. solani strain ROS 2A4 grown on PDA. Sterile
PDA plugs served as controls.

Soybean leaf inoculation was performed by placing
one infested or sterile (control) millet seed in the middle
of the detached unifoliate soybean leaf. One unifoliate
leaf from each plant was used for infection treatments
and the other for the mock-inoculation (control) treat-
ments. The Pyrex dishes were wrapped in saran wrap
and placed in a growth cabinet under the same condi-
tions as plant growth described above.

Arabidopsis thaliana leaves from the second whorl of
six-week-old plants were removed and inoculated with
3 mm plugs of 3-day-old R. solani ROS 2A4 grown on
PDA or mock-inoculated with sterile PDA plugs (con-
trols). PDA plugs were used for inoculation in Arabidopsis
rather than colonized millet seeds to limit the effect of
prior glucosinolate exposure (contained within the millet)
on the Arabidopsis-R. solani interaction. Glucosinolates
are important for Arabidopsis defense, and as such may
have affected the interaction. Glucosinolates are not pro-
duced in soybean and as such would not have affected the
soybean-R. solani interaction. Disease progression on Ara-
bidopsis was monitored over a period of 96 h, and photos
were taken every 24 h for necrosis analysis using Image]
software version 1.49 [69] by thresholding and quantifying
the amount of brown-yellow pixels and total leaf area
[70]. Total necrosis and chlorosis were calculated as the
percentage of the leaf (i.e., amount of brown-yellow pixels
compared to total leaf area pixels) and results compared
using Student’s ¢ test comparisons with JMP software ver-
sion 11.0 (SAS Statistics).

Sampling
To study soybean metabolite and transcript fluctuations
in response to R. solani infection, infected and mock-
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inoculated soybean leaves were harvested 12 and 24 h
post-inoculation (h.p.i.). Samples were processed by cut-
ting the leaf area containing the R. solani hyphae plus an
additional 0.5 cm beyond the hyphae with a sterile scal-
pel, and frozen in liquid nitrogen. Similar size leaf areas
from mock-inoculated leaves (control) were excised. Six
excisions were pooled together for one biological repli-
cate and a total of six replicates were analyzed per treat-
ment. Transcripts and metabolites were extracted from
the same samples to minimize variation between the
metabolomic and transcriptomic datasets.

To control for the detection of R. solani metabolites in
the infected leaves, hyphae of 12-h-old and 24-h-old R.
solani cultures grown on PDA were harvested such that
their amount was representative of the hyphal expansion
area on the soybean leaves. Hyphae of six R. solani sam-
ples of similar size to those on the leaves were pooled
together. Two biological replicates were done for the R.
solani culture controls.

Metabolite extraction and "H NMR metabolomics analysis
Chemicals and reagents used for all experiments were of
the highest grade commercially available. Deuterium
oxide (D,0) for 'H NMR analyses was purchased from
Sigma-Aldirch.

For metabolomics analysis, samples (12 and 24 h.p.i.
and their respectively mock-inoculated control leaves)
were ground in liquid nitrogen to a fine powder using a
mortar and pestle. Polar metabolites were extracted from
200 mg of fresh tissue for leaves, or from the total har-
vest of the R. solani hyphae. Samples were freeze-dried
for 24 h followed by addition of D,O (0.6 mL) in Eppen-
dorf tubes (2 mL). Samples were sonicated for 30 min in
a Branson® 5510 ultrasonic cleaner (Branson Ultrasonics)
in the dark followed by a 3 h extraction at 250 rpm in
the dark at room temperature. Finally, samples were
centrifuged twice at 21,460 g for 1 h at 4 °C to remove
debris and the supernatant placed in Eppendorf tubes
(2 mL) and stored at —-80 °C until NMR analysis. Two
quality control (QC) samples were prepared for each
treatment by combining equal volumes of sample ex-
tracts together.

Polar extracts of soybean leaves and R. solani hyphae
were analyzed using '"H NMR as previously described
[71] with some modifications. Briefly, NMR spectra were
recorded using a Varian Inova 500 MHz NMR spectrom-
eter (Varian) equipped with a 'H{**C,'°N} triple reson-
ance probe. A total of 128 transients of 64 K data points
were acquired per sample, with a 2 s acquisition time
and a 2 s recycle delay with pre-saturation of H,O dur-
ing the recycle delay. Spectra were then Fourier trans-
formed and the phase and baseline were automatically
corrected using the Spectrus software v.12.01 (ACD/
Labs). Binning is a commonly applied data-reduction
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method in spectroscopy, where spectra are divided in
segments, the so-called bins, which are then integrated.
Here, binning was performed using the intelligent buck-
eting option of the software, using a 0.04 ppm bin size
and 50% width looseness. By performing intelligent
bucketing, better clustering of spectra points can be
achieved than performing conventional bucketing, thus
strenghening the robustness of data. Identification of
metabolites and peak annotation was based on shifts,
coupling constant values, and comparisons with analyt-
ical standards that had been analyzed in the same system
under identidical analytical conditions. The obtained
combined NMR matrix of all samples was exported to
MS Excel® and finally to SIMCA-P+ v.13.0.3.0 software
(Umetrics) for statistical analyses.

RNA extraction and data pre-processing

Total RNA from all treatments and time points (12 and
24 h.p.i. and their respective mock-inoculated controls)
was extracted from 100 mg of infected or control soy-
bean leaves using the RNeasy plant mini kit (Qiagen) fol-
lowing the manufacturer’s protocols. RNA quality was
confirmed on a denaturing formaldehyde agarose gel
(2%) and quantified using a NanoDrop ND-100 spectro-
photometer (Thermo Fisher Scientific).

Total RNA (10 pg) from infected and control samples
at the 24 h time point was used to isolate mRNA for
RNA sequencing (RNAseq). RNAseq library preparation
was performed following modified methods of Kumar
et al. [72]. Briefly, mRNA was isolated using DynaBeads®
(ThermoFisher Scientific), and first and second strand
c¢DNA synthesis was done following the protocols of
Kumar et al. [72] with AMPure® bead purification (Beck-
man Coulter). cDNA was fragmented using Fragmentase
(NEB) with incubation at 37 °C for 20 min. End repair
and A-tailing were performed using the NEB enzyme
mix and Klenow 3’ to 5" exo (ThermoFisher Scientific).
Adapter ligation was done using 2X rapid T4 DNA lig-
ase (NEB) and NEXTflex-96 RNA-seq barcode adapters
85 to 96 (BiooScientific). Samples were then PCR
enriched using 1X Phusion High Fidelity PCR Master
Mix (NEB), 0.67 uM each primer PE1/PE2 (Bioo Scien-
tific) and 7.5 pL of the sample with the following ther-
mocycle conditions found in Kumar et al. [72] for a total
of 15 cycles. Individual library quality was assessed on a
2% agarose gel and quantified using a NanoDrop ND-
1000 Spectrophotometer (Thermo Scientific). Equal
amounts of each library were pooled together, quality
and quantity confirmed using a bioanalyzer at the UC
Davis Genome Center (University of California, Davis,
CA, USA) and sent for paired-end sequencing on an
[Mlumina HiSeq 2000 for 150 cycles at the UC Davis
Genome Center (University of California, Davis, CA,
USA).
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Sequence data were filtered using the Illumina pipeline
to separate reads belonging to different replicates by as-
sociation with their respective Illumina barcodes. The
quality of each library (sample) file was checked using
FastQC version 0.10.1 [73]. Illumina adapters and bar-
codes were removed using the software Cutadapt ver-
sion 1.2.1 [74], and further processed to obtain reads
with cumulative quality scores above 20 and minimum
sequence lengths of 40 bp using the Fastx-toolkit
version 0.0.13 commands fastq_quality_filter and fas-
tx_trimmer [75]. Sequences were aligned to the soybean
genome and annotation v1.1 available on the JGI Gen-
ome Portal (http://genome.jgi-psf.org/) [76] and the
Rhizoctonia solani AG1-IA genome Rhisol AG1-IA v1.0
available on NCBI (taxid: 983,506; BioProject Accession
PRJNA51401) [77]. Sequences were aligned to the gen-
ome and annotated using the combined programs Bow-
tie2 version 2.1.0.0 [78] and TopHat2 v2.0.8b [79] with
the following call: tophat2 —segment-length 18, —-seg-
ment-mismatches 3, —a 4, -m 1, —p 4, —-read-edit-dist
4, -g 1, -G [path to annotation file] [path to genome
indices] [data file in fastq format]. Sequences aligning
to the R. solani genome were removed prior to alignment
to the soybean genome. To do so, a high amount of mis-
matches were allowed in the alignment due to the high
genetic diversity found within R. solani anastomosis
groups. This ensured the removal of any putative R. solani
transcripts prior to alignment to the soybean genome.
After mapping, sequences and isoforms were compared to
the soybean reference transcriptome and counted using
the HTSeq version 0.5.4p3 call: -m union, —s no, -t exon,
-i gene_id [path to output sam file] [path to input sam
file] [path to annotation file] [path to feature counts file]
[80].

RNAseq validation via qRT-PCR

Total RNA was extracted from soybean leaf samples (12
and 24 h.p.i. and their respective mock-inoculated con-
trols) and processed in the same manner as described
above. cDNA was synthesized with the iScript Advanced
¢DNA Synthesis kit for qRT-PCR (Bio-Rad Laboratories
Ltd.) using 2 pg of total RNA from 12 h and 24 h time
points of both infected and mock-inoculated soybean
leaves. qRT-PCR was performed based upon genes that
were differentially expressed (DE) at the 24 h time point
RNAseq analyses. Briefly, 7 (Additional file 5: Table S4)
genes were randomly chosen for validation of the RNA-
seq analyses and were analyzed at all time points (12 h,
and 24 h post-inoculation) for all treatments. Another
14 DE genes of the primary metabolism pathways were
selected to examine the effect of RFB on soybean pri-
mary metabolism, and also for visualization of metabol-
ite fluctuations with the metabolomics data. qRT-PCR
was done under the following conditions: each 20 pL
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reaction contained 1X SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad Laboratories Ltd.), 0.175-
0.25 pM each primer (see Additional file 11: Table S10
for individual primer sequences and thermocycling con-
ditions), and 600 ng ¢cDNA. The thermocycling profile
used as initial denaturation at 95 °C for 3 min, followed
by 35 or 40 cycles of denaturation at 95 °C for 30 s, an-
nealing for 30 s and extension at 72 °C for 40 s, followed
by a dissociation curve analysis (see Additional file 11:
Table S10 for individual primer sequences and thermo-
cycling conditions). Gene expression was analyzed using
the method of Zhao and Fernald [81] with normalization
over the housekeeping gene UKN2 [82].

Statistical analysis and biomarker discovery

Statistical analysis and biomarker discovery applying
multivariate analysis for metabolomics

'"H NMR data matrices were subjected to multivariate
analyses using the SIMCA-P+ v.13.0.3.0 software for the
detection of trends and biomarker discovery as previ-
ously described with minor modifications [83]. Briefly,
PCA was initially performed for an overview of the data
and the detection of outliers. The lower and upper a/2
percentiles were chosen as significance thresholds for
the transcript and metabolite loading coefficients [9],
with a = 0.90. The performance of the obtained models
was assessed by the cumulative fraction of the total vari-
ation of the X’s that could be predicted by the extracted
components [Q*(cum)] and the fraction of the sum of
squares of all X’s (R*X) and Y’s (R%Y) explained by the
current component. Fold changes in metabolite data
were analyzed by comparing the total percent area under
the curve of individual metabolites using Student’s ¢ test
comparisons using JMP software version 11.0 (SAS
Statistics, Toronto, Canada).

Statistical analysis and biomarker discovery applying
univariate analyses for gRT-PCR and transcriptomics
Normalization and pairwise differences in soybean RNASeq
transcript counts were performed using the R version 3.0.2
[84] with package DESeq version 1.14.0 [85, 86]. Counts
were normalized using the DESeq estimateSizeFactors
function, and gene dispersion was determined using the
function estimateDispersions. Pairwise comparisons for dif-
ferences in normalized counts between treatments (6 bio-
logical replicates per treatment) were computed using the
negative binomial test in the R package DESeq. The signifi-
cance threshold was set at FDR <0.1 after correction for
multiple comparisons using Benjamini-Hochberg correc-
tion [87], and a fold change of >1.5 or <-1.5 was used as a
biological significance threshold. For identification of out-
liers within treatments, principle component analysis
(PCA) was performed on the RNAseq using SIMCA-P+
v.13.0.3.0.
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Data of qRT-PCR were analyzed using the efficiency
calibrated mathematical model [88], where efficiency
was calculated for each transcript using the method of
Zhao and Fernald [81]. Differences in relative transcript
abundance were determined using Student’s ¢ test com-
parisons (P < 0.05) with JMP software version 11.0 (SAS
Statistics), and biological significance with fold changes
>1.5 or <-1.5.

Data integration-pairwise correlations and bidirectional or-
thogonal projections to latent structures (O2PLS)

Pearson pairwise correlations between metabolite bins
and transcripts were calculated using Pearson’s correla-
tions using R statistics version 3.0.2 [84]. Heatmap
visualization of the pairwise correlations was done with
the R package corrplot version 0.77 [89].

For the integration of transcriptomics with metabolo-
mics dataset, a multivariate integrated omics model was
built employing O2PLS, which has as main objectives
the integration of multi-block datasets (i.e. X/Y) via the
discovery of the jointed variation and the unique vari-
ation [9]. Initially, the metabolomics and transcriptomics
datasets were merged in a single matrix in MS Excel,
and then imported into SIMCA-P+ v.13.0.3.0. Tran-
scriptomics data (12,926 transcripts) were assigned as
X’s (block 1) and metabolomics data (126 bins) as Y’s
(block 2). Since there are no studies on the integration
between RNAseq and 'H NMR data, preliminary ana-
lyses showed that centering without scaling for both
datasets gave the best results regarding the discrimin-
atory and predictive ability of the obtained model and
loading scattering (Additional file 12: Figure S2;
Additional file 13: Figure S3 and Additional file 14: Table
S11). In addition to optimization of scaling methods, the
model was tested for over- and under-fitting leading to
improper conclusions from the data. Therefore, to valid-
ate the model, Monte Carlo cross-validation was per-
formed with 7 groups and 200 iterations [9, 90, 91].
Briefly, the method divides the data randomly into 7
groups and predictions are made from n-1 groups
while the last group is put aside. Predictions are then
compared to the true values of the excluded group
and the prediction error sum of squares (PRESS) is deter-
mined. This is repeated until all groups have been
excluded from the predictions once. This was done for
various numbers of orthogonal components and the opti-
mal number of components selected based on the most
accurate/predictive scenario [9, 90, 91].

Variables of significant importance were selected based
on variable loading coefficients, with significant thresh-
olds set at o equal to 0.99 or 0.90 for transcripts and
metabolites, respectively. The lower and upper a/2 per-
centiles were chosen as significance thresholds for the
transcript and metabolite loading coefficients [9]. For
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clearer visualization of correlation trends in primary me-
tabolism between the two datasets, the transcriptomics
dataset was reduced to contain transcripts involved only
in primary metabolism and to contain a similar amount
of data points as the metabolomics dataset (126 meta-
bolic bins). The reduced transcriptomics dataset con-
tained transcripts involved in primary metabolism with
variable importance values above 2 as determined by
O2PLS integration (Additional file 10: Table S9), resulting
in 241 transcripts and 126 metabolite bins for
visualization of the correlations in primary metabolism.
Reduction of datasets to pathways of interest when
using integrative approaches allows for better observa-
tion of correlations between markers in the pathway(s)
of interest [12]. Correlation trends between the two
datasets in primary metabolic pathways were done by
examining the reduced set O2PLS loadings plot
(SIMCA-P+ v.13.0.3.0). The SoyBase database (soyba-
se.org) was used for transcript GO term identification.

Gene-to-metabolite and metabolite-to-gene network
analysis

The effect of R solani infection on soybean gene abun-
dance (RNAseq and qRT-PCR) and metabolite fluxes was
mapped onto the primary metabolic pathways by recon-
struction of data available in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (http://www.geno-
me.jp/kegg/) and previously published literature.
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Additional file 1: Figure S1. Representative overlapping 'H NMR
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(PPTX 349 kb)

Additional file 2: Table S1. Soybean normalized metabolite bin values
during RFB disease development at 12 h.p.i and 24 h.p.i. detected using
"H NMR. (XLSX 104 kb)

Additional file 3: Table S2. Soybean raw transcript HTSeq counts.
(PPTX 467 kb)

Additional file 4: Table S3. RNAseq transcript identification and fold
changes of differentially expressed transcripts based on pairwise
univariate analyses. (XLSX 4567 kb)

Additional file 5: Table S4. qRT-PCR analysis of randomly selected
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Additional file 6: Table S5. Pearson pairwise correlation analysis of
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Additional file 7: Table S6. Correlation-scaled loading thresholds used
for transcriptomic and metabolomic datasets. (DOCX 41 kb)
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Additional file 11: Table $10. gRT-PCR primer sequences and thermo-
cycling conditions. (DOCX 21 kb)

Additional file 12: Figure S2. O2PLS score plots comparing different
centering and scaling methods. (PPTX 467 kb)

Additional file 13: Figure S$3. O2PLS normal probability plots
comparing different centering and scaling methods. (PPTX 334 kb)
Additional file 14: Table S11. Summary of O2PLS integration using
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