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Effects of glucose on the uptake and
metabolism of glycine in pakchoi
(Brassica chinensis L.) exposed to various
nitrogen sources
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Abstract

Background: Plants can absorb amino acids as a nitrogen (N) source, and glucose is an important part of root
rhizodeposition and the soil sugar pool, which participates in the regulation of plant growth and uptake. In pakchoi,
the effect of glucose concentration on the glycine N uptake from a nutrient mixture composed of glycine, ammonium,
and nitrate, or from a single N solution of glycine alone was studied using specific substrate 15N-labeling and 15N-gas
chromatography mass spectrometry.

Results: The optimal glucose concentration for plant growth was 4.5 μM or 25 μM when supplied with glycine alone
or the N mixture, respectively, and resulted in a >25% increase in seedling biomass. The addition of glucose
affected the relative contribution from organic or inorganic sources to overall N uptake. When glucose was added at
optimal concentrations, glycine was preferentially used as an N source, while the relative contribution from
nitrate was reduced. The limiting step for glycine N contribution was active uptake in the roots in high glucose
and single-N-source conditions; however, root metabolism of glycine to serine was limiting in high-glucose and
mixed-N-source conditions.

Conclusions: The addition of low concentrations of glucose increased the relative uptake of organic nitrogen
and reduced the uptake of nitrate, suggesting a feasible way to decrease nitrate content and increase the edible
quality of vegetables.
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Background
Nitrogen (N) is a major component of proteins and is
important for plant growth. To date, most studies of N
uptake focus on inorganic N sources such as ammonium
and nitrate and have shown that the addition of excess
inorganic N has significant negative effects on both soil
and environmental health [1]. In contrast to inorganic
N, organic N sources from amino acids, nucleic acids,

quaternary ammonium compounds, and proteins can be
directly acquired and metabolised by plants [2–5],
bypassing the need for decomposition by microorgan-
isms. Amino acids account for more than 50% of the
total N uptake in low-temperature ecosystems including
the arctic, alpine tundras, boreal forests, and heathlands
[6–9]. Although the actual contribution of amino acids
to overall N uptake in natural environments has not
been determined due to the lack of an accurate assess-
ment method, organic N, especially amino acids, may be
an unrecognised resource for plant N nutrition.
The uptake and metabolism of organic N is affected

by several abiotic and biotic factors that include light in-
tensity, pH, soil moisture and texture, and CO2 level
[10–14]. For example, at 11 °C glycine uptake is limited,
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while at 21 °C the metabolic conversion of glycine to
serine is the limiting step in its N contribution [15]. In a
previous study, we showed that higher light intensities
increased the uptake of glycine and nitrate, and lower
light intensities increased the percentage of ammonium
uptake; moreover, we found that the metabolism of am-
monium produced by glycine might limit the relative
contribution from glycine to the overall N uptake under
high light conditions [16]. An in-depth understanding of
how environmental factors affect N uptake and metabol-
ism could aid in regulating plant nutrition and the data
could be used to predict the future performance of
plants in response to global climate change.
Nitrogen uptake and metabolism are closely linked to

carbon (C) content, as the carbon skeleton is essential for
the assimilation of inorganic N into amino acids, nucleic
acids, and proteins [17]. Enhanced supplies of C increase
the uptake and metabolism of N [18, 19] because the
process of N metabolism requires energy and C skeleton
consumption [20]. Multiple studies have shown that N-
responsive genes are closely related to C signalling path-
ways [21, 22], but the mechanisms associated with crosstalk
between C and N remain obscure [17]. Therefore, an in-
depth knowledge of these interconnections could aid in un-
derstanding the regulation of plant nutrition especially N
uptake and ultimately apply to crop quality improvement.
The effect of sugars on nitrate uptake is well studied,

but no studies have examined the effect of sugars on
amino acid uptake and metabolism. Sugars enhance ni-
trate reductase activity and decrease its degradation [23].
Therefore, changes in the sugar supply can lead to alter-
ations in the expression of numerous genes involved in
ammonium metabolism, nitrate uptake, reduction, amino
acid synthesis, and protein synthesis [24]. De et al. (2014)
suggested that sucrose in roots affects both NO3

− trans-
porters and assimilatory genes, and showed that glucose
stimulates the expression level of the high-affinity trans-
porter NRT2.1 protein and nitrate transport activity inde-
pendent of the stimulation of protein expression. It has
also been demonstrated that post-transcriptional mecha-
nisms influence NO3

− uptake in response to sucrose [25].
Remarkably, most experiments have been conducted with
nitrate only, and information on the effects sugar has on
the relative uptake of different sources of N is limited. It is
interesting that amino acids can be taken up by plants dir-
ectly and that partial replacement of nitrate by amino
acids could improve vegetable quality; however, they also
reduce biomass compared to nitrate supplementation
[26]. The absorption of amino acids by plant roots is asso-
ciated with two benefits: 1) amino acids are already in the
required reduction state for N uptake, which saves the en-
ergy required for inorganic N metabolism; and 2) the as-
similation of pre-formed carbon skeletons from organic
nitrogen sources reduces the biosynthetic costs of plant

growth [27]. Consequently, the effects of externally sup-
plied C on amino acid uptake and metabolism may differ
with the source of inorganic N and may alter the relative
uptake of inorganic and organic forms of N.
Pakchoi (Brassica chinensis L.) is cultivated over a

large northern to southern range in China. Most soil so-
lutions contain high glycine content [28], and therefore,
we selected it as a representative amino acid for testing
how glucose affects N uptake in pakchoi. To avoid the
decomposition of amino acids by microorganisms, pak-
choi seedlings were hydroponically cultivated in a steri-
lised environment and 15N labelling was used to test the
following: (1) how glucose affects pakchoi growth and the
relative uptake of different N forms; (2) how different glu-
cose concentrations affect the uptake and metabolism of
glycine; and (3) whether the effect of glucose on glycine
uptake and metabolism was influenced by the N supply.

Methods
Seedling culture conditions
Pakchoi plants were cultured in a sterile environment as
described [16]. Briefly, pakchoi seeds (provided by Zhejiang
Academy of Agricultural Sciences) were soaked in purified
water overnight and then sterilised using the method previ-
ously described [29]. The seeds were placed into sterilised
culture dishes for 3 d with day/night temperatures of 25/
20 °C, humidity of 60%/40%, and a 12 h light cycle
(360 μmol⋅m−2⋅s−1). Seedlings were transferred to a 50-mL
centrifuge tube containing 0.3% cooled agar dissolved in
water and placed in a sterilised culture room under the
aforementioned conditions. After 1 day of growth, the
seedlings began to grow out of the holes in the tube caps
and the holes were then sealed with silicone rubber (Nanda
704, China). The seedling and the tube cap were trans-
ferred to a new centrifuge tube that was filled with a nutri-
ent solution. The nutrient solution contained 2 mM
K2SO4, 4 mM CaCl2, 1.4 mM MgSO4 · 7H2O, 2 mM
KH2PO4, 0.1 μM NaMoO4 · 2H20, 1 μM ZnSO4 · 7H2O,
0.4 μM CuSO4 · 5H2O, 8 μM H3BO3, 5 μM Na2EDTA,
18.3 μM FeSO4 · 7H2O, and 10 μM MnCl2. The pH of the
solution was adjusted to 6.2, and the composition of solu-
tion were the same in each experiment (except N). The N
mixtures used in the different experiments were filter-
sterilised through a 0.22-μm membrane filter (Millipore,
PES Membrane, Ireland) and added to the nutrient solu-
tion before use. The materials and nutrient solution with-
out N were autoclaved at 121 °C for 30 min. The nutrient
solutions were changed every 3 d at a clean bench in the
sterilised culture room.

Experiment 1: Effect of glucose concentration on the
growth and N uptake in pakchoi
Pakchoi seedlings were pre-cultured as described in
3 mM mixed N (1 mM glycine + 1 mM nitrate + 1 mM
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ammonium) for 6 d before 48 similarly sized seedlings
were selected for experimentation to compensate for the
natural growth difference in plant populations. Glucose
was then added at concentrations of 0, 1.5, 4.5, 10, 25,
50, 500, and 5,000 μM to the nitrogen-containing nutri-
ent solutions and the mixtures were filter-sterilised. The
seedlings were cultured as described for 15 d with suffi-
cient nutrient supply, after which shoots and roots were
harvested separately. The roots were washed in 50 mM
CaCl2 in an ultrasonic bath for 1 min and then washed
three more times in purified water. The shoots and roots
were freeze-dried (Labconco Freeze System, USA) and
ground into a fine powder using a ball mill (Retsch
MM301, Germany). The N content was determined in
six replicates from each treatment using the Micro-
Kjeldahl method.
Seventy-two similar seedlings were pre-cultivated for

15 d, after which the roots and centrifuge tubes were
washed with sterilised purified water. The seedlings were
cultivated in 1 mM 10.0% 15N-glycine with glucose con-
centrations of 0, 0.5, 1.5, 4.5, 10, 25, 50, and 500 μM for
15 d before the shoots and roots were harvested separ-
ately. The highest glucose level (5,000 μM) was not used
because it killed the pakchoi seedlings. Three seedlings
were pooled to account for variation between plants in
each treatment, and each treatment was replicated three
times. The roots were washed and the shoots and roots
were freeze-dried separately and ground into a powder as
described above. The N content and 15N incorporation
into the samples were determined using an Elemental
Analysis-Stable Isotope Mass Spectrometer (IsoPrime100,
UK). In addition, three “blank” seedlings were reserved for
each treatment by providing unlabelled N at the same
composition as the treated plants. This control design was
the same in Experiments 2 and 3 as well. The variation in
the growth between the different treatments can affect the
natural 15N abundance in tissues; therefore, we detected N
content for each treatment, and three seedlings were
pooled and treated as one replicate.

Experiment 2: Effect of glucose on the N contribution
from ammonium, nitrate, and glycine using mixed
sources of N
Pakchoi was pre-cultivated as described in Experiment 1
for 6 d, and 81 similar seedlings were selected. The
glucose concentrations used were 0, 25 (the optimal con-
centration for pakchoi growth as shown in Experiment 1),
and 500 μM (an excessive concentration for pakchoi
growth); and three N mixtures of the same concentration
were prepared for each glucose condition (1 mM NO3

−,
NH4

+, and glycine) where only one N source was labelled
by 15N (5.0% 15NO3

−, 5.0% 15NH4
+, or 5.0% 15N-glycine).

For example, under 500 μM glucose, the N mixtures were
composed of NO3

−:NH4
+:15N-glycine, NO3

−:15NH4
+:glycine,

or 15NO3
−:NH4

+:glycine, and the N uptake and contribution
from the different N sources could be separated based
on this labelling scheme. The nine treatments (3 N
sources × 3 glucose concentrations) were replicated
three times, the cultivation solution was changed
every 3 d, and the plants were harvested at 21 d. The
shoots and roots were harvested separately and three
seedlings were pooled into a single sample. The sam-
ples were washed, dried, ground, and the 15N content
was detected as described in Experiment 1.

Experiment 3: Effect of glucose on the short-term uptake
of glycine
Pakchoi seedlings were pre-cultivated for 25 d and 180
similar seedlings were selected. Seedlings were “starved”
overnight in an N-free nutrient solution before begin-
ning the short-term (4 h) glycine uptake tests. The glu-
cose concentration in this experiment was determined
based on the N source. The optimal glucose concentra-
tion for pakchoi growth was 4.5 μM when a single N
source was used and 25 μM under the mixed nitrogen
conditions (Experiment 1). Therefore, 45 seedlings were
cultivated in 1 mM 98.10% 15N-glycine for 4 h at glucose
concentrations of 0, 4.5, and 500 μM; and an additional 45
seedlings were cultivated for 4 h with 1 mM NO3

− + 1 mM
NH4

+ + 1 mM 98.10−15N-glycine at glucose concentrations
of 0, 25, and 500 μM.
Simultaneously, the protonophore carbonyl cyanide

m-chlorophenylhydrazone (CCCP) [30], that inhibits the
active uptake of glycine was used to examine the effect
of glucose on the active and passive uptake of glycine.
Ninety seedlings were starved overnight in an N-free nu-
trient solution and pre-treated with 50 μM CCCP for
1 h, after which 45 seedlings were cultivated for 4 h with
either 1 mM 98.10%-15N-labelled glycine in glucose con-
centrations of 0, 4.5, and 500 μM, or 1 mM NO3

− + 1 mM
NH4

+ + 1 mM 98.10 15N-glycine in 0, 25, and 500 μM glu-
cose. The uptake tests for CCCP-treated and untreated
specimens were conducted simultaneously with three rep-
licates per treatment. The roots and shoots were harvested
separately and five seedlings were pooled as one sample
for each experimental replicate. The roots were washed,
dried, and analysed as described in Experiment 1. The 15N
values obtained from CCCP-treated samples represented
the passive uptake of glycine in pakchoi.

Experiment 4: Effect of Glucose on N metabolic enzyme
activity
After root N uptake, several enzymes metabolise glycine;
is the metabolism of glycine changed by the uptake of
glycine? Ninety-six seedlings were pre-cultured for 22 d
and then starved overnight as previously described in
Experiment 3. Forty-eight seedlings were cultivated for 4
d in 1 mM glycine in glucose concentrations of 0, 4.5,
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and 500 μM. The remaining 48 seedlings were cultivated
in glucose concentrations of 0, 25, and 500 μM added to
a mixed N source solution of 1 mM NO3

− + 1 mM NH4
+

+ 1 mM glycine. The nutrient solution was changed
every 2 d. The seedlings were harvested and six seed-
lings were pooled to represent one sample in each of the
four experimental replicates. The activities of glutamine
synthetase (GS) [31], glutamic-pyruvic transaminase
(GPT), and glutamic oxaloacetic transaminase (GOT)
[32] were measured in roots and shoots.

Experiment 5: Effect of glucose on amino acid content of
pakchoi
Pakchoi seedlings were pre-cultured for 25 d and the 72
uniform seedlings were washed and N-starved overnight.
They were then cultivated in 1 mM NO3

− + 1 mM NH4
+ +

1 mM glycine with 0, 25, and 500 μM glucose for 12 h
(25 °C, 60% humidity, 360 μmol⋅m−2⋅s−1 light). The
shoots and roots were harvested separately and the roots
were washed as described in Experiment 1. The experi-
ment included six replicates with four seedlings in each
replicate to reduce individual plant variation. Aliquots of
1 g fresh shoots and roots were ground in 4 ml of 5%
sulfosalicylic acid and incubated for 1 h. The extracts
were centrifuged at 14 000 × g for 10 min and the super-
natant was passed through a 0.22-μm membrane filter
(Millipore, PES Membrane, Ireland). Amino acid content
was measured with an automatic amino-acid analyzer
(L-8900, Hitachi, Japan).

Experiment 6: Effect of glucose on the metabolism of
glycine
Pakchoi seedlings were pre-cultured for 25 d and 96
similar seedlings were selected for further cultivation.
The roots were washed several times with purified water
and the seedlings were N-starved for 12 h. Then, the
seedlings were cultivated in 1 mM NO3

− + 1 mM NH4
+ +

1 mM 98.1% 15N-glycine with 25 μM and 500 μM glu-
cose for 12 h (25 °C, 60% humidity, 360 μmol⋅m−2⋅s−1

light). The pakchoi roots and shoots were harvested sep-
arately; eight seedlings per treatment were pooled and
each treatment had 6 replicates. The roots were washed,
dried, and ball milled as previously described. The 15N-
labelled amino acids were detected by gas chromatog-
raphy–mass spectrometry (GC-MS) as previously de-
scribed [15] with minor modifications. Briefly, 20 mg
aliquots of ball milled root and shoot samples were ex-
tracted in 3 ml 80% ethanol for 1 h with gentle shaking
every 10 min. The extracted solutions were centrifuged
at 3,500 × g for 15 min and the supernatant was col-
lected. The extraction and centrifugation of these sam-
ples was repeated once more. Each supernatant from the
two extractions were combined and dried in a rotary
evaporator (EYELA, SB-1100) at 25 °C and resuspended

in 1 ml of 0.1 M hydrochloric acid. This solution was
centrifuged at 12,000 × g for 15 min and the supernatant
was added to the Dowex 50WX8-200 cation exchange
columns (Sigma-Aldrich, St Louis, MO, USA) (2 ml bed
volume, H+ form). The cation exchange columns were
washed with 20 ml ultrapure water, and 20 ml of 4 M
ammonia solution was used to wash out the amino
acids. The eluate was blown for 8 h with N2 to remove
the NH3, and then freeze-dried (Labconco Freezen
System, U.S.A.). Amino acids in the resultant extracts
were derivatised to t-butyldimethylsilyl in 10 μL N-methyl-
N-tert-butyldimethylsilyl-trifluoroacetamide. Finally, the
15N-labelled amino acids in the roots and shoots were
detected by GC-MS.

Calculations
The uptake of N from different sources was determined
based on the 15N concentration in treated seedlings rela-
tive to that in “blank” seedlings that were not exposed to
labeled N. The amounts of NO3

−, glycine, and NH4
+ taken

up from the labeled N were calculated using the follow-
ing equation [33]:

Nuptake ¼ NTotal−N
As−Ac

Af
ð1Þ

where Nuptake is the amount of a given N source taken
up in the shoots or roots of pakchoi seedlings; NTotal-N

is the total N content of the roots or shoots; As is the
15N atom % in the roots or shoots; Ac is the

15N atom %
in the “blank” seedlings that were supplied with un-
labeled N; Af is the

15N atom % of the labeled-N source
(10.0% glycine for Experiment 1; 5.0% glycine, 5.0%
NO3

−, or 5.0% NH4
+ for Experiment 2; and 98.1% glycine

for Experiment 3, 6).
The proportion of total N taken up from different

sources was calculated using the following equation:

Ncontribution ¼ Nuptake

Ntotal‐N
� 100 ð2Þ

where Ncontribution is the proportion of total N taken up
as glycine, NO3

−, or NH4
+ by whole pakchoi seedlings;

Nuptake is the amount of a given N source taken up into
the roots or shoots, as calculated from equation (1); and
Ntotal-N is the total N total mass of N contained in pak-
choi seedlings.

Statistical analysis
Data are presented as the mean ± standard error (SE).
We applied one-way analysis of variance (ANOVA)
followed by Duncan’s multiple range method (p < 0.05)
to assess differences between treatments. All statistical
analyses were performed using SAS 8.2 (SAS Institute

Ma et al. BMC Plant Biology  (2017) 17:58 Page 4 of 13



Inc., Cary, NC). Figures were created using Origin 8.1
(OriginLab, Northampton, MA).

Results
Low concentrations of glucose preferentially increase
long-term N uptake and pakchoi biomass
The growth of pakchoi shoots and roots and the uptake
of N increased in ≤ 50 μM glucose concentrations, but
were reduced in glucose concentrations >500 μM. In
mixed N-source conditions, the optimal glucose concen-
tration that supports pakchoi growth and N uptake was
25 μM (Fig. 1a, b), resulting in a 25% increase in bio-
mass compared to growth in the absence of glucose.
When glycine was supplied as the sole source of N, the
optimal glucose concentration for pakchoi growth and
15N-glycine uptake was 4.5 μM (Fig. 1c, d), which was
lower than that observed under mixed N source condi-
tions. These results indicate a preferential increase in
pakchoi N-assimilation and growth in the presence of
low levels of glucose.

Glucose preferentially enhances glycine-derived N uptake
from mixed N sources
Experiment 1 showed that glucose had a significant ef-
fect on the growth and N uptake in pakchoi, but how do
different levels of glucose affect the uptake of glycine, ni-
trate, and ammonium? Externally supplied glucose had a
significant effect on the relative uptake of N from mixed
N sources (Fig. 2). For example, the uptake of 15N-gly-
cine and the relative contribution of glycine to overall N
uptake when plants were supplied with 25 μM glucose
were significantly higher in shoots and roots than in
plants grown in the control (0 μM glucose) and high
glucose concentrations (500 μM). The uptake and con-
tribution of 15N-ammonium to the overall N uptake was
highest in the absence of glucose. These results are evi-
dence that glucose can alter N uptake from preferred ni-
trogen sources, providing a potential tool for supporting
amino acid supplementation in pakchoi cultivation. Fur-
thermore, the N contribution from glycine in the shoots
and roots of plants grown in the three glucose levels was

Fig. 1 Pakchoi biomass and N uptake under different glucose concentrations. a Shoot and root biomass under mixed N source conditions (n = 6);
b N content under mixed N source conditions (n = 6); c shoot and root biomass under single N source conditions (n = 3); d 15N-glycine uptake
under single N source conditions (n = 3). Bars indicate mean values ± SE
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27.6–37.5% and 35.0–44.3%, respectively, while the N con-
tribution from nitrate in shoots and roots was 26.4–35.3%
and 14.4–19.8%, respectively.

Glucose concentrations affect the active short-term up-
take and transport of glycine
Glucose changed the uptake and N contribution of gly-
cine whether in single or mixed N sources (Experiment
1 and 2), but was this great difference was caused by
root uptake? In roots, glucose had a significant effect on
only the active uptake of glycine under both mixed N
and single N source conditions (Fig. 3). Under single N
source conditions, the active uptake of 15N-glycine in
the roots at the optimal glucose concentration (4.5 μM)
was 29.0% and 45.0% higher than the control (0 μM)
and high glucose (500 μM) concentrations, respectively.
In mixed N source conditions, the active uptake of 15N-
glycine in the roots at 25 μM glucose was much higher
than that observed in the absence of glucose; however, a
similar amount of 15N-glycine was detected between the
optimal and high glucose treatments in the mixed N

conditions. Moreover, in mixed N source conditions, the
uptake of 15N-glycine with the high glucose concentra-
tion was 22.0% higher than the control, which was sig-
nificantly different from that observed under the single
N conditions.

Glucose concentration can alter the activity of glycine
metabolic enzymes in mixed-N conditions
Under mixed N source conditions, the N contribution of
glycine decreased under high glucose level in the long-
term N uptake test (Experiment 2), but the glycine short-
term N uptake amount in high glucose conditions was
similar with the optimal glucose level, which prompts the
question of whether glycine metabolism inhibits the N
contribution of glycine rather than root uptake under high
glucose level. Using glycine as a single N source identified
no significant differences in the activities of GPT, GOT,
and GS in the roots between plants that received the
optimal or high glucose treatments (Table 1). How-
ever, when supplied with mixed N sources, the GS ac-
tivity in the shoots and roots were significantly lower

Fig. 2 Effects of glucose on 15N uptake under mixed N source conditions. The uptake of glycine, nitrate, and ammonia in (a) shoots and (c) roots.
The N contribution of each form of N to the total N uptake (%) in (b) shoots and (d) roots. Bars indicate mean values ± SE; n = 3
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at high glucose concentrations than at the optimal
glucose concentrations.

Amino acid content in pakchoi is altered by external
glucose concentrations
The content of amino acids and ammonia in pakchoi
were significantly affected by a 12 h glucose treat-
ment (Fig. 4). Compared to plants with no glucose
supplementation, the content of NH3 and total amino
acids (Σ) in shoots and roots were significantly lower
than those in the optimal glucose treatment (25 μM).
While the content of total amino acids in shoots
showed little difference in optimal and high glucose
treatment levels, it was significantly higher in roots of
plants that were supplemented with the optimal
glucose concentration compared to that of the high
glucose treatment. In addition, the content of glycine
in roots treated with the high glucose concentration
was much higher, and the content of serine was

significantly lower than that of plants treated with the
optimal glucose concentration, respectively.

15N-labelled amino acid levels in shoots and roots are
affected by glucose supplementation
Experiment 5 shows that glycine root content in high glu-
cose was higher than in the glucose optimal level; serine
was much lower under the same glucose conditions, indi-
cating that the metabolism of glycine compared to serine
inhibited the N contribution of glycine at high glucose
levels. However, the data collected by the amino-acid ana-
lyser has two disadvantages: 1) the amino-acid analyser
cannot detect asparagine and glutamine, which are im-
portant in glycine metabolism; and 2) whether the de-
tected amino acids are from root uptake of glycine or
from the metabolism of nitrate and ammonium cannot be
determined. To explore the effect of high glucose levels
on the metabolism of glycine, 15N labelling and GC-MS
were used to detect the 15N-labelled amino acids in the
pakchoi shoots and roots. Glucose treatment had a

Fig. 3 Effects of glucose on the short-term uptake of glycine-15N. The Glycine-15N uptake was measured in a shoots and b roots in single N (glycine)
source conditions, and in c shoots and d roots in mixed N conditions. Bars indicate mean values ± SE; n = 3. Different letters indicate significant
differences between glucose levels (p < 0.05)
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significant effect on the 15N-labelled amino acid content
in pakchoi (Fig. 5). The 15N-amino acids varied greatly
between shoots and roots. In roots the main 15N-labelled
amino acids were glycine, serine, glutamine, and glutamic
acid; in shoots, the major labelled amino acids were
glutamine, glutamic acid, asparagine, and gamma-
aminobutyric acid. In roots, 15N-glycine was significantly
higher in plants cultivated in the high glucose treatment,
while serine, gamma-aminobutyric acid, and asparagine
levels were significantly lower than those measured in
plants treated with the optimal glucose concentration
(Fig. 5a). In shoots, asparagine, glutamic acid, and glutam-
ine were significantly higher in the optimal glucose treat-
ment than in the high glucose concentrations (Fig. 5b).

Discussion
Effects of glucose on pakchoi growth and N uptake
depend on the N conditions
The results of this study indicate that relatively low con-
centrations of glucose accelerated pakchoi growth, while
excessive glucose levels retarded both growth and N ac-
cumulation (Fig. 1). A previous study showed that high
glucose in plants reduced the rates of photosynthesis
and sugar transport, and low glucose in plants led to in-
creased sugar transport activities [34]. In our study, we
found that glucose levels alter N uptake, indicating that
its regulation is another example of how glucose affects
pakchoi growth. The optimal glucose concentration for
pakchoi grown in a mixed N source conditions was

Table 1 Effects of glucose on the activity of N metabolic enzymes in pakchoi

Glucose
concentration (μM)

GPT (μmol · g-1 · 30 min) GOT (μmol · g-1 · 30 min) GS (A · mg-1 protein · h-1)

shoot root shoot root shoot root

0 3.8 ± 0.4a 7.8 ± 1.5a 9.8 ± 0.2ab 12.5 ± 0.2a 19.1 ± 0.7a 23.5 ± 0.6a

4.5 5.7 ± 1.3a 5.7 ± 0.8ab 10.3 ± 0.1a 11.9 ± 0.5a 19.9 ± 0.2a 24.5 ± 2.9a

500 5.9 ± 0.6a 3.9 ± 0.5b 9.6 ± 0.2b 11.2 ± 0.3a 21.3 ± 1.8a 23.4 ± 0.9a

0 4.5 ± 0.9a 5.2 ± 2.7a 12.1 ± 0.2a 13.8 ± 0.4a 19.2 ± 0.4b 24.7 ± 1.0a

25 5.1 ± 0.5a 6.3 ± 1.8a 10.5 ± 0.2b 13.2 ± 0.3a 23.0 ± 0.8a 24.0 ± 0.9a

500 5.9 ± 1.2a 7.2 ± 0.8a 10.2 ± 0.1b 13.1 ± 0.1a 20.7 ± 0.5b 20.5 ± 0.5b

Values represent the mean ± SE (n = 3). Different letters in each column indicate significant differences between treatments at p < 0.05. The first three rows
represent the enzymes under conditions where glycine was supplied as a single N source, and the last three rows represent the enzymes under conditions where
glycine was supplied in a mixed N source

Fig. 4 Effects of glucose on amino acids and ammonia contents in pakchoi shoots a and roots b after a 12-h treatment with 1 mM NO3
− + 1 mM

NH4
+ + 1 mM glycine. Bars indicate mean values ± SE; n = 6. Different letters indicate significant differences between glucose levels (p < 0.05)
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25 μM, which is more than five times higher than that
observed in single N conditions. This result indicates
that the effect of glucose on pakchoi growth is related to
the N supply. Similarly, nitrate levels affected the glucose
sensitivity of wild-type Arabidopsis during germination
[35]. There is a growth inhibition effect at 3% (166 mM)
glucose with only 0.1 mM nitrate, but this inhibitory ef-
fect was not observed at 5% (275 mM) glucose with ei-
ther 1 or 5 mM nitrate. In addition, optimal glucose
concentrations were found to be 1–3% (55–166 mM) in
Arabidopsis thaliana seedlings cultivated on agar media
[36], which is hundreds of times higher than the optimal
concentrations (4.5 or 25 μM) we detected in pakchoi.
This large discrepancy may be caused by differences be-
tween the plant species and the glucose availability dis-
solved in water versus that in agar.
Plants possess the ability to take up sugars, which can

regulate plant growth and N uptake. Massive amounts
of sugar were detected in the xylem sap, which indicated
that the glucose in roots might be acropetally trans-
ported to the shoots and leaves [37, 38]. Glucose is not
only regarded as an energy and carbon resource for bio-
mass production, but it also acts as a rapid molecular

signal to coordinate root and shoot development [37].
We show that the optimal concentrations of glucose (4.5
or 25 μM) for pakchoi growth were very low and there-
fore, might play little role in providing energy and C
skeletons for biosynthesis, which suggests that the posi-
tive effect of lower glucose concentrations on pakchoi
growth results from its role as a signal molecule.

Effects of glucose on the relative uptake of glycine,
nitrate, and ammonium
Several studies have shown that biotic and abiotic factors
affect the uptake and metabolism of organic and inor-
ganic N. The optimal glucose concentration increased
the relative N contribution from glycine; however, it de-
creased the N contribution from nitrate and both the
optimal and high glucose concentrations decreased the
N contribution from ammonium (Fig. 2). Nitrate taken up
by roots is transferred to ammonium and assimilated into
glutamine by GS, which needs C skeletons for amino acid
assimilation [39, 40]. Compared to amino acids, externally
supplied glucose may theoretically have a significantly
positive effect on the uptake of inorganic N due to the
high C demand of inorganic N. However, the opposite

Fig. 5 Effects of glucose on the content of 15N-labelled amino acids in pakchoi roots (a) and shoots (b) after a 12-h treatment with 1 mM
NO3

− + 1 mM NH4
+ + 1 mM 98.1% 15N-glycine. Bars indicate mean values ± SE; n = 6; asterisks indicate significant differences between glucose

levels (p < 0.05)
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effect was observed, as the uptake and N contribution
from nitrate in mixed N source conditions was lower at
optimal and high glucose concentrations than in glucose-
free conditions (Fig. 2b, d). These results could be ex-
plained in two ways: first, most studies were conducted
under single N source conditions, which neglects to con-
sider the effect of other N sources on the uptake of nitrate.
In other words, the uptake of one form of N has an effect
on the uptake of other forms [15, 41]. For example, am-
monium hinders the uptake of nitrate and the addition of
amino acids inhibits the uptake of both ammonium and
nitrate [42]. Therefore, the increased uptake of glycine
could inhibit the uptake of ammonium and nitrate, as we
observed in pakchoi. Second, the optimal glucose concen-
trations (4.5–25 μM) are very low compared to the con-
centration of sugars in the plant itself [37, 38], suggesting
that sugar may be involved in nutrient signalling and regu-
lation, rather than act as C source.
Significant differences were detected between the rela-

tive N contributions from nitrate and glycine in shoots
and roots (Fig. 2b, d). Nitrate contributed 26.4–35.3%
of total N in shoots, while it accounted for only
14.4–19.8% in roots. By contrast, glycine accounted for
27.6–37.5% and 35.0–44.3% in shoots and roots, respect-
ively. The N contribution of nitrate in shoots was much
higher than it in roots, while the contribution of glycine in
shoots was much lower than it in roots. This difference
likely resulted from variations in both N transportation
and metabolism in these two tissues. Most nitrate taken
up by roots is transported to and metabolized in shoots
[40], which leads to relatively high N levels in shoots.
Plants can take up amino acids at a faster rate than nitrate
[15, 43, 44]; however, most amino acids are metabolized in
the roots [45] and amino acids are allocated to shoots at a
slower rate than nitrate [43]. Overall, the differences in
the metabolism of glycine and nitrate resulted in signifi-
cant differences in their relative N contributions.
The objective of reducing nitrate content in vegetables

is important because of its potential impact on human
health. For example, 80% of human dietary intake of ni-
trate comes from vegetables [46] and the consumption
of leafy vegetables can lead to excessive nitrate ingestion
[47]. Excessive amounts of ingested nitrate could be con-
verted to nitrite, which can result in serious potential
threats to human health, including the accumulation of
carcinogenic nitrosamines or methemoglobinemia [48].
The partial replacement of nitrate with amino acids can
be an effective and feasible way to reduce the nitrate
content in crop plants. By doing so, plant quality can be
enhanced to improve the content of soluble sugar, sol-
uble protein, and free amino acids; however, the biomass
of vegetables may also be reduced under these nutrient
conditions [49, 50]. In contrast, the present study dem-
onstrates that a higher biomass can be achieved with the

addition of glucose at concentrations of 25 μM when
compared to the control treatment, and the uptake rates
of glycine increase under these conditions, while nitrate
uptake decreases. These results suggest that cultivation
at the optimal glucose concentration might aid in the re-
duction of nitrate uptake over other organic N sources,
which could ultimately improve vegetable quality. More-
over, studies have shown that most plants possess the
ability to utilise amino acids as an N source, but the N
contribution from glycine in the sterilised environment
may have been overestimated with respect to that in the
natural environment. Our results clearly show that pak-
choi possesses a strong ability to absorb amino acids,
and that glucose plays an important role in this N up-
take. Therefore, the results of this study provide a new
way to reduce the nitrate content in vegetables via the
addition of amino acids in combination with small
amounts of glucose to their cultivation conditions.

Effects of glucose on the uptake and metabolism of
glycine
Environmental factors control plant growth by affecting
the levels of nutrient uptake, metabolism, transport, stor-
age, and reallocation [51]. Studies of signalling pathways
and bottlenecks in amino acid metabolism in plants grown
in different environments could help improve the effi-
ciency of N usage [52].
Externally supplied glucose enhanced glycine N contri-

bution by increasing its active uptake and had little effect
on its passive uptake. The optimal concentration of glu-
cose increased the active uptake of glycine whether it was
included in a single N solution of glycine or in an N mix-
ture (Fig. 3b, e). Most amino acid uptake in plant roots is
driven by H+-ATPases [53]. This is consistent with
our results that show glycine uptake in CCCP un-treated
plants was 5.0–7.5 fold greater than that of CCCP-treated
plants. Externally supplied glucose might improve active
glycine uptake by providing energy or regulating the active
uptake. Further research is needed to better describe
how glucose is involved in glycine uptake mechanisms
in plants.
The mechanism of high glucose inhibited glycine N

contribution depending on the N supply. I In the single
N solutions composed of glycine alone, active glycine
uptake was the limiting step in high glucose concentra-
tions (Fig. 3). Glycine uptake was much lower when glu-
cose was supplied at 500 μM compared to the optimal
25 μM concentration during long-term N uptake tests.
In the short-term N uptake tests, the active uptake of
glycine was much lower in the high glucose concentra-
tion than the optimal concentration, indicating that the
active N uptake limiting factor is associated with lower
N contribution. Moreover, the N metabolic enzyme ac-
tivities did not differ significantly between the optimal
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and high glucose concentrations, suggesting that active
uptake is the limiting step rather than the subsequent ni-
trogen metabolism (Table 1).
Under mixed N conditions, the metabolism of glycine

to serine was the limiting step for glycine N contribu-
tion. The rate of glycine uptake at the high glucose con-
centration was much lower than that at 25 μM glucose

in the long-term test; however, in the short-term test,
the uptake of glycine at 500 μM glucose was similar with
it at 25 μM glucose, showing that root N uptake was not
the limiting step for glycine-N contribution in the mixed
N conditions. After root uptake, glycine is converted to
serine by serine glyoxalate aminotransferase (SGAT),
serine can then be converted to other amino acids and

Fig. 6 A simplified model of the effect of high glucose on glycine (Gly) metabolism in root and shoot. Gly is transported in root by amino acid
transporters, and it is converted to serine (Ser) catalysed by SGAT. Ser can be converted to other amino acids (AAs), and NH4

+ can be converted to
glutamine (Gln) catalysed by glutamine synthetase (GS). In addition, Gln with 2-oxoglutarate (2-OG) can be converted to glutamate (Glu), which is
catalysed by glutamine synthetase-glutamate synthase (GOGAT). Glu can be converted to aspartic acid (Asp) catalysed by glutamic oxalacetic
transaminase (GOT), and Asp can be assimilated into asparagine (Asn). Additionally, NH4

+ can be assimilated to Glu by glutamate dehydrogenase
(GDH) and Glu can be converted to alanine (Ala) by glutamic pyruvic transaminase (GPT). 15N-labelled Gly was rarely detected in the shoot,
indicating that little glycine was transported to shoot. Gln, Glu, Asn, and Asp are the four main amino acids transported from root to shoot, of
which Gln is the most important. AA metabolism in the shoot is similar to that in the root. In the root, Gly is high at high glucose, whereas the
levels of Ser and Asn are lower compared with the optimal level, indicating that the conversion of Gly to Ser under high glucose level limits Gly
metabolism in the root. In the shoot, Asn, Gln, and Glu are low at high glucose, which may be attributable to poor metabolism in root
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ammonium can be assimilated into glutamine catalysed
by GS [40]. Glutamine, along with 2-oxoglutarate, can
then be converted to glutamate, which is catalysed by
glutamate synthase-glutamine oxoglutarate aminotrans-
ferase (GS-GOGAT). Glutamate can be further con-
verted to aspartic acid catalysed by GOT, or converted
to be alanine catalysed by GPT [40] (Fig. 6). In pakchoi
roots, higher 15N-glycine was detected by GC-MS, while
little serine, asparagine, gamma-aminobutyric acid, and
glutamine was measured under high glucose, indicating
that the metabolic process of glycine to serine was inhib-
ited under high glucose. In pakchoi shoots, little 15N-gly-
cine was measured, and asparagine, gamma-aminobutyric
acid, glutamate, and glutamine were the main 15N-labelled
amino acids. This is consistent with a previous study that
showed that glycine was metabolised by deamination in
roots and U-13C; 15N-glycine was not detected in xylem
sap [45]. Furthermore, aspartic acid, asparagine, glutamic
acid, and glutamine are the main amino acids transported
to the shoots [40]; therefore, root metabolism of glycine to
serine is thought to be the limiting step for glycine uptake
under high glucose.
Plants transport 20–50% of shoot-fixed C to the roots

[54, 55] and some of it is released to the soil as rhizode-
posits [54, 56]. Furthermore, root rhizodeposition is reg-
ulated by several innate factors and environmental
factors, such as root system architecture [57], soil type
[58], and nutrient availability [59]. Glucose is one of the
largest components of rhizodeposition and the soil sugar
pool, which changes constantly. We have shown that
small amounts of exogenous glucose can greatly change
N uptake and metabolism, which may play an important
role in regulating plant responses to biotic and abiotic
stress. In addition, high concentrations and availability
of amino acids were detected in the rhizosphere [60];
thus, glucose may play an important role in regulating
amino acid uptake and metabolism in the soil.

Conclusions
When supplied with glycine alone or the N mixture, the
optimal glucose concentration for plant growth was
4.5 μM or 25 μM respectively, and resulted in the signifi-
cantly increase in pakchoi biomass. Glycine was preferen-
tially used as an N source when glucose was added at
optimal concentrations, while the relative contribution
from nitrate was reduced. In high glucose and single-
N-source conditions, the limiting step for glycine N
contribution was active uptake in pakchoi roots, while
root metabolism of glycine to serine was limiting in high-
glucose and mixed-N-source conditions. The addition of
low concentrations of glucose increased the relative up-
take of glycine and reduced the uptake of nitrate, which
providing a feasible way to reduce nitrate content and in-
crease the edible quality of vegetables.
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