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Abstract

Background: Flower phylogenetics and genetically controlled development have been revolutionised during the
last two decades. However, some of these evolutionary aspects are still debatable. MADS-box genes are known to
play essential role in specifying the floral organogenesis and differentiation in numerous model plants like Petunia
hybrida, Arabidopsis thaliana and Antirrhinum majus. SEPALLATA (SEP) genes, belonging to the MADS-box gene
family, are members of the ABCDE and quartet models of floral organ development and play a vital role in flower
development. However, few studies of the genes in Prunus mume have yet been conducted.

Results: In this study, we cloned four PmSEPs and investigated their phylogenetic relationship with other species.
Expression pattern analyses and yeast two-hybrid assays of these four genes indicated their involvement in the
floral organogenesis with PmSEP4 specifically related to specification of the prolificated flowers in P. mume. It was
observed that the flower meristem was specified by PmSEPT and PmSEP4, the sepal by PmSEPT and PmSEP4, petals
by PmSEP2 and PmSEP3, stamens by PmSEP2 and PmSEP3 and pistils by PmSEP2 and PmSEP3.

Conclusion: With the above in mind, flower development in P. mume might be due to an expression of SEP genes.
Our findings can provide a foundation for further investigations of the transcriptional factors governing flower
development, their molecular mechanisms and genetic basis.
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Background

Flower emergence is a vast step in the evolutionary
history of plants [1], and its diversification overtime has
largely altered the interaction patterns of the plant
kingdom [2]. Furthermore, floral structures are
controlled by a number of environmental and genetic fac-
tors. In recent years, consistent strides have been made to
uncover the molecular basis behind flowering [3].

Prunus mume Sieb. et Zucc. (Rosaceae, Prunoideae), a
traditional ornamental plant, has been cultivated in China
for more than 3,000 years. During this long period of do-
mestication and cultivation, the phenotypic characteristics
of its flowers (such as single petal, double petal, multi-
sepals, multi-pistils and prolificated flowers) have revolu-
tionised. These variations have added more ornamental
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value to P. mume and are also useful when studying floral
organ development. A series of flower development
models are proposed for specimen plans [4, 5]. Genetic
control of flower identity has been largely affected by the
ABC model [6]. According to this model, three different
gene classes signal floral organogenesis. The outermost
sepals are specified by the A class (API and AP2), petals
are controlled by the combination of A and B (AP3 and
PI) and C class genes (AG) and the carpels are specified
by C class genes [7, 8]. MADS-box genes are of vital im-
portance for ascertaining the genetic basis of plant devel-
opment [9]. Among these, E class genes play a significant
role in flower development. Scientists have already carried
out investigations of the MADS-box gene family and the
cloning of C class genes in P. mume [10]; however, the
molecular mechanisms behind flower organ development
and morphology remain unclear. Therefore, an expression
and functional analysis of SEP genes is required to un-
cover these processes. Transcriptional regulators encoded
by MADS-box genes have critical role in flower organ
development [11]. A series of genes controlling flower
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development in ornamental plants have been identified as
a result of continuous research on MADS-box genes. In
peaches (Prunus persica), five MADS-box genes
(PpMADSI, PpMADSI0, PrpMADS2, PrpMADS5 and
PrpMADS?7) have been cloned [12, 13]. Among these,
PrpMADS2, PrpMADS5 and PrpMADS7 are homologous
to SEP genes and have been shown to be preferentially
expressed in flowers and fruit and to have the expression
features of E class genes. Furthermore, the overexpression
of these SEP genes in Arabidopsis produces different
phenotypes. However, there is no phenotypic difference
between the PrpyMADS2-transgenic type and wild type in
Arabidopsis; the overexpression of PrpMADSS5 and
PrpMADS7 can cause early blossoming. In addition, the
early blossoming phenotype of PrpMADS2-transgenic
plants is more powerful, and its extreme phenotype shows
blooming even after germination [12]. Two C class genes
(CeMADSI and CeMADS2) of Cymbidium ensifolium
have been cloned and shaped into dimers after mixing
with E class genes using yeast two-hybrid tests [14]. In an-
other orchid, Phalaenopsis, four E class genes, belonging
to the PeSEP1/3 and PeSEP2/4 branch, are expressed in
all floral organs. In addition, these can form heterodimers
with B, C, D and AGL6 proteins. Sepals of Phalaenopsis
turn leafy when PeSEP3 is silent, but there is no function
in the flower phenotype when PeSEP2 is silent [15]. In
Arabidopsis thaliana, four E class genes are indispensable
in determining the flower organs and meristem [16-19].
Similarly, there are four E class genes (PmMADS28,
PmMADS17, PmMADSI4 and PmMADS32) in the P.
mume [10].

In the present study, we first identified and cloned
four PmSEPs and then ascertained the functions of these
genes in flower development to formulate a model for
describing the genetic basis of floral organ development
in P. mume. This study will set the foundation for a deep
analysis of MADS-box genes in flower development and
will provide a practical and effective way to improve the
ornamental characteristics of P. mume using molecular
methods.

Methods

Plant material

Three cultivars of P. mume with different flower types,
‘Jiang Mei, ‘Sanlun Yudie’ and ‘Subai Taige’ (Additional
file 1: Figure S1), were selected from the Jiufeng
International Plum Blossom Garden, in Beijing, China
(40° 07" N, 116° 11" E). Flower buds at different develop-
ment stages (S1-S9) were harvested from each cultivar.
After every 5-7d, samples of basic consistent appearance
were collected. One of the samples was used to define
the stages of flower bud development via paraffin sec-
tioning, and the remaining samples were used for RNA
extraction. Ten samples of different organs (root, stem

Page 2 of 11

and leaf during vegetative growth; sepal, petal, stamen
and pistil of flower buds; and Frl, Fr2 and Fr3 stages of
fruit development corresponding to 10, 45 and 90 days
after blooming, respectively) were taken from ‘Sanlun
Yudie’. The pistils of ‘Jiang Mei’ and ‘Sanlun Yudie,
along with the variant pistil of ‘Subai Taige, were sam-
pled from the fourth floral whorl. All samples were
quickly frozen in liquid nitrogen and stored at -80 °C
until RNA extraction.

Identification and cloning of SEP genes

Four PmSEPs were identified in our previous study [10].
On the basis of CDS sequences annotated in the genome
database, PrimerPremier 5.0 was used to design specific
primers. Total RNA was isolated from flower buds of
‘Sanlun Yudie’ using TRIzol reagent (Invitrogen, USA)
following the manufacturer’s instructions. To remove
potentially contaminating genomic DNA, RNA was
treated with RNase-free DNase (Promega, USA). First-
strand complementary DNA (cDNA) was synthesised
from 2 pg total RNA with the TIANScript First Strand
c¢DNA Synthesis Kit (Tiangen, China) following the manu-
facturer’s protocols. Full-length cDNA was obtained by
performing PCR reactions in a 50 pl volume including
2 pl of ¢cDNA, 10 uM of each primer (Additional file 2:
Table S1), 0.4 ul Taq enzyme (Promega, USA) and 10 pl of
PCR buffer. The thermal parameters were set to the fol-
lowing limits: 5 min at 94 °C; 30 cycles of 30 s at 94 °C,
30 s at annealing temperature (Additional file 2: Table S1),
1 min at 72 °C; ending 7 min at 72 °C and preservation at
4 °C. All target fragments were recovered by Gel Extrac-
tion Kit (Biomiga, USA) and were cloned into the
pMDTM18-T vector (TaKaRa, China) to transform DH5«
(Tiangen, China). PCR-positive colonies were sequenced
by Taihe Biotechnology Co., Ltd.(China). The plasmids
were extracted by Plasmid Miniprep Kit I (Biomiga, USA)
and were stored at —80 °C. The cDNA sequences of four
PmSEPs are shown in Additional file 3 (Data S1). The
plasmids of three B class genes and one C class gene were
obtained from previous experiments.

Phylogenetic analyses

The Clustal X 2.0 program was used to perform multiple
protein sequence alignment of four PmSEPs and 23 E-type
genes in other plants (two P. persica genes, four Malus
domestica MADs-box genes, two Vitis vinifera MADs-box
genes, three Actinidia chinensis SEP genes, one Lotus
japonica SEP gene, two Oryza sativa MADs-box genes,
two Petunia hybrida FBP genes, four A. thaliana SEP
genes, one Zea mays MADs-box gene and one Fragaria
ananassa MADs-box gene) [20]. To study the phylogenetic
relationships of SEP genes, several genes (four P. mume SEP
genes, six M. domestica SEP genes, five P. hybrida FBP
genes, four A. thaliana SEP genes and 23 E-type genes in
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other plants) were used to generate a phylogenetic tree using
MEGA7.1 software with the maximum-likelihood (ML)
method. The bootstrap values were set for 1,000 replicates,
and the other parameters were set to default.

Real-time quantitative RT-PCR

To analyse the expression profiles of SEP genes in flower
buds at different development stages and in different or-
gans, real-time RT-PCR experiments were performed
using the PikoReal real-time PCR system (Thermo
Fisher Scientific, Germany). A mix of 10 ul was made
consisting of 2 pl cDNA, 2 uM of each primer
(Additional file 4: Table S2) and 5 pl SYBR Premix
ExTaq II (Takara, China). Temperatures were set as fol-
lows: 95 °C for 30 s; 40 cycles of 95 °C for 5 s, 60 °C for
30 s, 60 °C for 30 s; ending 20 °C. Furthermore, the
temperature of the melting curve in these reactions was
set to 60 °C ~ 95 °C, rising by 0.2 °C/s. Three biological
duplications were performed in all real-time RT-PCR ex-
periments, and each duplication was measured in tripli-
cate. In these experiments, the reference gene was the
protein phosphatase 2A (PP2A) and the relative expres-
sion levels were calculated using the2 ~ AACt ethod [21].

Yeast two-hybrid assays

Full-length ¢DNA of all PmSEPs were amplified with
gene-specific primers (Additional file 5: Table S3) via the
PCR method. These amplified sequences were cloned
into the pGBKT7 bait vector (Clonetech, USA) and
pGADT7 prey vector (Clonetech, USA) using an In-
Fusion HD Cloning Kit System at the EcoRI and BamHI
sites. Subsequently, the bait vectors were transformed
into yeast strain Y2H gold (Clonetech, USA), and the
prey vectors into yeast strain Y187 (Clonetech, USA)
using the Yeastmaker Yeast Transformation System 2
(Clonetech, USA). Later, these were selected on SD
plates deficient of Trp and Leu. After that, single col-
onies of each transformant in checked SD medium were
cultured overnight (30 °C, 250 rpm). Bait clones were
tested for their autoactivation and toxicity. For subse-
quent interactions, two selective strains were mated with
each other in YPDA liquid medium at 30 °C and 80 rpm
for 20-24 h. The diploid mating bacterial liquid, which
had been observed to have a cloverleaf structure using a
40 x microscope, was cultured on DDO plates (SD/-
Trp/-Leu) at 30 °C for 3-5 d. Single colonies were
chosen for culturing in DDO liquid medium. After
growing at 30 °C, 250 rpm for 20—24 h, 700 g of bacter-
ial liquid was centrifuged for 2 min, and the supernatant
liquid was discarded. Next, 1.5 ml aseptic ddH20 was
added to suspend sedimentary bacteria, and the previous
operation was repeated. Afterward, sufficient aseptic
ddH20 was added to make the ODg of the bacterial liquid
equal to 0.8. Finally, 100 ul of bacterial liquid (1, 1/10, 1/100
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and 1/1000) was cultured on several DDO and QDO/X/A
plates (SD/-Leu/-Trp/-His/-Ade/X-a-Gal/Aba) at 30 °C for
3-5 d. The screenings for protein-protein interaction events
were implemented in triplicate.

Results

Identification and cloning of SEP genes in P. mume

There are four E class genes in the P. mume genome.
According to their positions in the phylogenetic tree of
SEP genes, they are PmSEP1, PmSEP 2, PmSEP 3 and
PmSEP 4. In order to obtain the sequences of the SEP
genes, RT-PCR experiments were carried out to clone
these genes. The CDS sequences of PmSEP1, PmSEP2,
PmSEP3 and PmSEP4 were of 756 bp, 741 bp, 723 bp
and 750 bp, encoding 251, 246, 240 and 249 amino
acids, respectively. Based on the BLAST analysis, these
sequences showed high similarity and consistency to
their orthologues in other species. Additionally, all
PmSEPs contained conserved MADS and K domains,
belonging to the representative type IIMADS-box genes.
Therefore, all results suggest that these four genes are E
class genes.

Multiple sequence alignment and phylogenetic analyses
The results of the multiple sequence alignment of the E
class genes are shown in Fig. 1. In PmSEPs, the MADS
domain was highly conservative, while the K domain
was moderately conservative and the I domain showed
little tendency toward conservatism. Consistent with
previous studies, there were two conserved motifs, SEP I
and SEP II, in the C-terminal. In addition, a conserved
motif of a specific evolutionary branch between these
two SEP motifs was also found. The C-terminal of SEP
genes exhibited low conservancy among different evolu-
tionary branches, but these fragments were highly con-
servative in the same branch.

According to the phylogenetic tree (Fig. 2) of SEP
genes, four evolutionary branches (SEP3, SEP1/2, FBP9
and SEP4 clades) were identified. Four E class genes of
P. mume were clustered with SEP genes from other Pru-
nus or Rosaceae plants. These results suggest that these
four PmSEPs evolved from primitive Rosaceae plants, ra-
ther than from their own duplicative events.

Expression analyses
In order to ascertain the role of SEP genes in organogenesis
and floral organ development, the expression patterns of the
PmSEPs in different organs (root, stem, leaf, four whorls of
flower buds and three stages of fruits) and nine stages of
flower development were studied using quantitative RT-
PCR.

These four PmSEPs exhibited various expression pro-
files. They were highly expressed in flowers and fruits
(Fig. 3). The expressions of PmSEP2 and PmSEP3 were
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in alignment are shown in Additional file 7 (Data S2)

restricted to flowers and fruits, but the transcripts of
PmSEP1 and PmSEP4 were mildly detected in vegetative
organs. Furthermore, both PmSEP2 and PmSEP3 were
expressed in all floral organs, with predominantly high
expression levels being observed in the pistil and petal,
respectively. Compared with this, PmSEPI was expressed

only in the sepal and pistil, and the expression of
PmSEP4 was notably detected in the sepal and showed
faint expression in fruit and other organs. PmSEPI,
PmSEP2 and PmSEP3 were all highly expressed in the
fruit stages. In addition, PmSEPI and PmSEP3 were
down-regulated in the Fr2 stage and up-regulated in the
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Fig. 2 Phylogenetic tree of E-class MADS-box proteins from P. mume and other species. The Gene Bank accession numbers of genes used in constructing
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Fr3 stage, while PmSEP2 was up-regulated in the Fr2
stage and down-regulated in the Fr3 stage.

Based on the paraffin section analyses (Additional file 6:
Figure S2), there were nine development stages (S1-S9) of
flower buds in P. mume, including: undifferentiation (S1),
flower primordium formation (S2), sepal initiation (S3),
petal initiation (S4), stamen initiation (S5), pistil initiation
(S6), stamen and pistil elongation (S7), ovule development
(S8) and anther development (S9). All PmSEPs demon-
strated different expression profiles in flower development
(Fig. 4). Their expression levels continuously increased
during flower bud differentiation and were the highest in
S9. PmSEP4 was expressed in all nine stages, while
PmSEPI-3 had stage-specific expression behaviours.
Transcription of PmSEPI was expressed during S2
through S9, which shows its association with the

specification of flower primordium. PmSEP2 and PmSEP3
began to express during S3 and S4, respectively, suggesting
their participation in the development of specific floral or-
gans. In different cultivars, the expression levels of PmSEPI
and PmSEP2 showed little variation. PmSEP3 had similar
expression profiles during S4-S8, but its impression was
higher in ‘Subai Taige’ as compared with Jiang Mei' and
‘Sanlun Yudie’ in S9. PmSEP4 was up-regulated during S1—
S7 and down-regulated during S7-S9 in ‘Jiang Mei'. Simi-
larly it was up-regulated during S1-S8 and down-regulated
during S8-S9 in ‘Sanlun Yudie’ and unceasingly up-
regulated during S1-S9 in ‘Subai Taige’. Additionally, during
S1-S8, the expression levels of PmSEP4 were comparatively
higher in Jiang Mei’ and ‘Sanlun Yudie’ than in ‘Subai Taige’.
Nevertheless, in S9, PmSEP4 was more prominent in ‘Subai
Taige’ as compared with ‘Jiang Mei’ and ‘Sanlun Yudie’.
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SEP genes were divided into two groups according to
their expression patterns in the fourth floral whorl tis-
sues of different flower types. One group contained three
genes (PmSEP1, PmSEP2 and PmSEP3) with similar ex-
pression profiles in different cultivars. The other group
had only one gene, PmSEP4, which was prominent in
‘Subai Taige’ but poorly expressed in ‘Jiang Mei’ and
‘Sanlun Yudie’ (Fig. 5), indicating that it might be con-
cerned with the formation of upper flower in duplicated
flowers.

Protein-protein interactions among SEP genes in P. mume
We performed yeast two-hybrid assays of four SEP
genes, three B class genes and one C class gene in P.
mume, to investigate the protein-protein interaction re-
lationships among genes. Although P. mume and A.
thaliana had four SEP members, their evolutionary pro-
cesses were quite different. Thus, the interaction model
of the four PmSEPs might be quite different from their
orthologues in A. thaliana. The results of dimerisation
among four PmSEPs are shown in Fig. 6. PmSEPI,
PmSEP2 and PmSEP4 could interact with each other,
and all of them could interact with PmSEP3. These
results suggest that all PmSEPs can form both homodi-
mers and heterodimers with PmSEP3. These three
heterodimers showed strong, yet unequal interactive
capability; PmSEP1, PmSEP2 and PwmSEP3 showed

stronger interactive capability to form homodimers than
PmSEP4.

There were few B class genes in P. mume that could
interact with the four PmSEPs (Fig. 7). Only found one
B class gene, PmPI, exhibited strong interaction with
PmSEP2 and PmSEP3. None of the two AP3-type genes
could interact with any PmSEPs. The complexes formed
by B class genes with SEP-like genes were combined by
PmPI. Figure 8 shows the interaction patterns of the four
E class genes with one C class gene in P. mume. Only
two SEP genes, PmSEP2 and PmSEP3, could strongly
dimerise with PmAG. The dimerisation properties and
expression analyses may help to identify SEP protein
pairs that function together and may provide a basis for
further investigation into these functional redundancies
in the overlapping interaction maps.

Discussion

MADS-box genes only exist in Eudicotyledons [22]. In
A. thaliana, there are four E class genes (AtSEPI1-4) that
play pronounced roles in the flower meristem and flower
organs determinacy with redundant function [16-19,
23]. Similarly, we found four SEP genes (PmSEP1-4) in
P. mume. The SEP genes of plants are clustered into
four evolutionary branches: SEP3 clade, SEP1/2 clade,
FBP clade and SEP4 clade. Previous studies have sug-
gested that E class MADS-box genes are involved in
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floral organ development, and their expression patterns
vary [23]. In A. thaliana, AtSEPI and AtSEP2, both of
which belong to the SEP1/2 clade, are duplicate genes;
AtSEP3 is in the SEP3 clade. The transcripts of AtSEPI,
AtSEP2 and AtSEP3 were only detected in floral organs
and were restricted to the second, third and fourth floral
whorl; AtSEP4 was expressed in the fourth floral whorl
and the vegetative organs [16, 24-26]. In P. mume,
PmSEP2 was in the SEP1/2 clade and PmSEP3 was in
the SEP3 clade. The transcripts of PmSEP2 and PmSEP3,
similar to their homologues in A. thaliana, were not de-
tected in vegetative organs. However, these genes were
expressed not only in floral organs but also in fruit, indi-
cating that they may function differently with their ho-
mologues in A. thaliana. The same phenomenon was
also found in strawberries (Fragaria x ananassa Duch.),
apples (Malus x domestica) and poplars (Populus
tremuloides). FaMADS9, a member of the SEP1/2 clade
in strawberries, is expressed in petals, the thalamus and
fruit [27]. In apples, two genes of the SEP1/2 clade,
MdAMADS8 and MdAMADS9, are expressed in both
flowers and fruit [28]. The transcript of PTM3/4, be-
longing to the SEP1/2 clade in poplars, is detected in
buds, leaves, stems and flowers; however, in the SEP3
clade, PTM6 is only expressed in flowers [29]. Con-
versely, the SEP4 clade gene in A. thaliana, AtSEP4, is

the only gene expressed in the flower, fruit and vegeta-
tive organs simultaneously. SIMADS-RIN, the homolo-
gous gene of AtSEP4, is necessary for fruit ripening in
tomatoes (Solanum lycopersicum) [30]. MdMADS4, a
member of the SEP4 clade in apples, is expressed in four
floral whorls and fruit [31]. In P. mume, the transcript of
PmSEP4 was detected in all organs, but only showed
high expression level in sepals, which is indicative of
its participation in sepal development. In the case of
strawberries, the expression level of FauMADS4 is low
during fruit development [27]. The general conclusion
is that the expression patterns of SEP genes in the
same clade can show both conservation and
divergence, depending on the species within which
they are being observed.

PmSEP1 was clustered in the FBP9 clade, which is not
present in A. thaliana [32]. In addition, the expression
level of PmSEPI was high in sepals, pistil and fruit, but
was low in vegetative organs. In line with our findings,
PrpMADS2, the homologue of PmSEPI, is expressed in
sepals, pistils, fruits and petals [12]. The expression pro-
files of SEP genes in the same clade were different in the
different species, which is indicative of their evolutionary
functional divergence [22]. This is due to the fact that
multiple SEP genes exist in the plant genome (e.g., the
expression level of PmSEP4 was low in fruits, but
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PmSEP1, PmSEP2 and PmSEP3 were highly expressed).
The SEP3 orthologue holds a major role in the develop-
ment of pistil in Ranunculates [23]. All of these PmSEPs
were expressed prominently in reproductive parts, justi-
fying their key role in flower and fruit development.

Prolificated flowers are a very special flower type in P.
mume wherein the fourth whorl of floral organ, which
should be pistils, is differentiated into sepals or even a
complete upper flower. According to the expression pat-
terns of the four PmSEPs, we found that only PmSEP4
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was more highly expressed in the fourth floral whorl of
‘Subai Taige’ than in the other two cultivars, which had
no prolificated flowers. Furthermore, the expression level
of PmSEP4 was notably high in sepals, but low in other
organs; we can, therefore, speculate that PmSEP4 is
somehow linked with the formation of the upper flower
in P. mume. Based on the expression patterns of SEP
genes, it can be concluded that PmSEP2, PmSEP3 and
PmSEP4 are involved in the development of all four
floral whorls, while PmSEP1 only specifies sepals and
pistils. In addition, PmSEP1 and PmSEP4 might affect
the flower’s primordium formation. The expression pro-
files of the four PmSEPs in flower bud differentiation
were consistent with their specific expression patterns
corresponding with floral organs, and their expression
profiles in different cultivars were similar.

In the analyses of the protein-protein interactions
among eight MADS-box genes, four E class genes could
form dimers with other genes and act as ‘glue’ to make
combinations with other dimers, thereby forming a poly-
mer [15, 33]. According to the ‘floral quartet models’ of
floral organ development, B, C, and E class proteins act
together to determine the characteristics of stamens
while the tetramer of two C class proteins and two E
class proteins determine the characteristics of the pistil.
Previous studies have shown that AfSEP3 plays an essen-
tial role in DNA bending, thus forming cyclic tetramers
[34]. In P. mume, PmSEP2 and PmSEP3 could form di-
mers with B and C class genes, showing that these two
SEP genes might participate in petal, stamen and pistil
development. However, PmSEPI and PmSEP4 could not
form any heterodimers with B and C class genes. More-
over, due to their high expression level in sepals, it is
likely that PmSEPI and PmSEP4 are concerned with
sepal development. According to studies in the expres-
sion patterns, protein-protein interaction profiles and
comparative analyses of SEP genes with their ortholo-
gues, the roles of SEP genes in controlling floral organ
development in P. mume have been proposed. We can
now suggest the molecular regulation model of SEP
genes in floral organ development in P. mume: PmSEPI
and PmSEP4 specify the flower meristem and sepal;
petals are controlled by PmSEP2 and PmSEP3; stamens
are specified by PmSEP2 and PmSEP3 and carpel is con-
trolled by PmSEP2 and PmSEP3. Furthermore, for proli-
ficated flowers, it is possible that PmSEP4 is involved in
the formation of the upper flower in P. mume.

In this study, we first cloned four SEP genes in P.
mume and then investigated their expression patterns
and protein-protein interactions. All results were used to
elucidate the roles of these genes in P. mume flower de-
velopment and proposed a molecular regulation model
for flower organ development. This work sets the foun-
dation for further research on the functions of SEP genes
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during flower organ development. In the future, we will
transfer these four genes into A. thaliana to verify their
function, which will improve the molecular model of
floral organ development.

Conclusion

Despite its immense importance, functional studies
pertaining to the genetic control of flower characterisa-
tion are rare in P. mume. The comprehensive explor-
ation of floral SEP genes can do a great deal to expand
the understanding of the genetic basis behind flower
development and its prolification in P. mume. To the
best of our knowledge, this is a novel investigation ascer-
taining the role of SEP genes in floral expression and the
floral organogenesis of Prunus. Our research gives
insight into the development of prolificated flowers, thus
broadening the genetic basis of flower evolution.
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